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EXPONENTIAL STABILITY AND
APPLICATIONS OF SWITCHED POSITIVE

LINEAR IMPULSIVE SYSTEMS WITH
TIME-VARYING DELAYS AND ALL

UNSTABLE SUBSYSTEMS

Yanchao He, Yuzhen Bai†

Abstract The global uniform exponential stability of switched positive lin-
ear impulsive systems with time-varying delays and all unstable subsystems
is studied in this paper, which includes two types of distributed time-varying
delays and discrete time-varying delays. Switching behaviors dominating the
switched systems can be either stabilizing and destabilizing in the new designed
switching sequence. We design new linear programming algorithm process to
find the feasible ratio of stabilizing switching behaviors, which can be compen-
sated by unstable subsystems, destabilizing switching behaviors, and impulses.
Specifically, we add a kind of nonnegative impulses which is consistent with
the switching behaviors for the systems. Employing a multiple co-positive
Lyapunov−Krasovskii functional, we present several new sufficient stability
criteria and design new switching sequence. Then, we apply the obtained sta-
bility criteria to the exponential consensus of linear delayed multi-agent sys-
tems, and obtain the new exponential consensus criteria. Three simulations
are provided to demonstrate the proposed stability criteria.
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time-varying delays.
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1. Introduction

Switched systems are the special dynamical systems, which consist of a number of
subsystems and a switching rule among them [1–4]. As a special class of hybrid
systems, when the subsystems of switched systems are all positive linear system-
s, they are called switched positive linear systems (SPLS). SPLS receive a lot of
attentions since they can appropriately model some complex systems, such as au-
tomotive dynamic controls [5], multi-agent systems [6], aerospace engineering [7],
traffic controls [8], and so forth. On the other hand, time-varying delays are fre-
quently encountered in complex systems. Moreover, it is well known that even small
time-varying delays may affect or even destroy the stability of the systems, which
make difficulties for the stability analysis. Therefore, great interests and efforts have
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been focused on SPLS containing time-varying delays parameters [9,10], which have
been an essential and appealing study topic.

For the stability of studying SPLS with delays, there mainly exist the follow-
ing methods, such as co-positive Lyapunov function [11, 12], multiple co-positive
Lyapunov−Krasovskii functional [13, 14], or diagonal Lyapunov−Krasovskii func-
tional [15]. The exponential stability means that the systems state converges to
zero over an infinite time interval, which has a better application because of its
strong stability property. Therefore, many scholars devoted to study the exponen-
tial stability of switched systems with delays. For instance, Liu et al. [10] studied
the exponential stability for SPLS with delays and impulses by the multiple linear
co-positive Lyapunov functional approach and average dwell time method, which
presented a delay-dependent exponential stability criterion for SPLS. Li and Xi-
ang [16] addressed the exponential stability and L1−again control for a class of
SPLS with mixed time-varying delays and impulses by using the average dwell time
approach and the co-positive Lyapunov−Krasovskii function technique, which de-
veloped an interactive convex optimization approach to verify the results. With the
help of constructing an appropriate co-positive type Lyapunov−Krasovskii func-
tional approach, Li et al. [18] investigated the exponential stability and l1−again
controller design for SPLS with mixed time-varying delays. According to a co-
positive Lyapunov−Krasovskii functionals and average dwell time technique, Liu
et al. [19] considered the exponential stability of SPLS with impulses and mixed
time-varying delays.

Up to now, many scholars are interested in the fields that the subsystems of
switching systems are all unstable, but the main switching systems are stable.
Some significant results are presented in [20–23]. For instance, based on the theo-
ry of spherical covering and crystal point groups, Zhang et al. [20] obtained some
sufficient algebraic conditions for stabilizing switched linear systems with all un-
stable subsystems. Furthermore, authors in [20] designed a switching law to stabi-
lize the unstable switched behaviors. Liu et al. [21] investigated the stabilization
problem of SPLS with discrete time-varying delays by utilizing multiple co-positive
Lyapunov−Krasovskii functional, where all the subsystems of the main switching
systems are unstable while all switching behaviors in the new designed switching se-
quence are stabilizing. However, the switching behaviors may make some increment
of the energy functions, i.e., be destabilizing to the switched systems [22,23]. Specif-
ically, Zhou et al. [22] considered the exponential stability of SPLS with all unstable
subsystems and destabilizing switching behaviors in new switching sequence, which
evaluates the ratio of stabilizing switching behaviors to compensate the state di-
vergence caused by either unstable subsystems or destabilizing switching behaviors.
After that, Zhou et al. [23] investigated the global uniform exponential stability
of SPLS with all unstable subsystems and time-varying delays, which includes two
types of distributed time-varying delays and discrete time-varying delays, by ad-
justing the ratio of the stabilizing switching behaviors, the state divergence caused
by unstable subsystems and destabilizing switching behaviors can be compensated.

In some practical applications, impulsive interference is inevitable. Impulsive
behaviors are regarded as a dynamical process, which expresses a state convert-
s abruptly at some instants [16, 17, 24, 25, 29, 30]. Impulsive systems have been
triumphantly applied to problems in physics, mechanics, and some fields of en-
gineering. Recently, Ju et al. [26] took into account the impulsive effects of the
switched linear time-varying systems, where the impulsive jumping is limited by a
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linear matrix form. The results in [26] can be applied to the exponential consensus
of linear multi-agent systems. Zhou et al. [23] investigated the influences of time-
varying delays and the ratio of stabilizing switching behaviors for switched systems,
but they did not consider the impulsive effects for switched systems. In fact, there
may exist impulsive behaviors at switching instants for the switched systems in
some practical situations, and the linear multi-agent systems may encounter the
delays effects. Therefore, motivated by [23, 26], we will further study the effects of
impulsive behaviors for SPLS with time-varying delays and all unstable subsystems,
and consider the time-varying delays effects of the linear multi-agent systems with
impulses.

In this paper, we add the impulses to the model in [23]. We first investigate the
global uniform exponential stability for switched positive linear impulsive systems
(SPLIS) with distributed time-varying delays and all unstable subsystems as follows

ẋ(t) = Aσ(t)x(t) +Bσ(t)

∫ t
t−d(t)

x(s)ds, t ≥ 0, t 6= tm, m = 1, 2, 3, · · ·,
x(t+) = Iσ(t+)σ(t−)(x(t−)), t = tm, m = 1, 2, 3, · · ·,
x(t0 + ϕ) = $(ϕ), ϕ ∈ [−d̂, 0],

(1.1)

where x(t) ∈ Rn stands for the state vector, the switching rule σ(t) : [0,∞)→ 〈n〉,
〈n〉 = {1, 2, · · · , n}, n > 1 is an integer, σ(t) denotes a piecewise right-continuous
function and satisfies limt→tm+ σ(t) = σ(tm), the matrices Ai(t), Bi(t) ∈ Rn×n,
i ∈ 〈n〉 are continuous time-varying matrix functions. The continuous switching
instants fulfill 0 ≤ t0 < t1 < t2 < · · · < tm < tm+1 · · · , and limm→∞ tm = ∞. The
distributed time-varying delays function d(t) fulfills 0 ≤ d(t) ≤ d̂ and ḋ(t) ≤ d < 1,
in other words, d(t) is upper bounded and slowly varying. Iσ(t+)σ(t−)(x) : Rn → Rn

are impulses, tm, m = 1, 2, · · · , those are not just the switching instants but
the impulsive instants, and satisfying 0 < tm < tm+1 and limm→∞ tm = ∞. As
t ∈ [tm, tm+1), the σ(tm)th subsystem is actuated, m = 0, 1, 2, · · · . At the switching
and impulsive instants, define x(t) = x(t+) at t = tm.

Next, we consider the SPLIS with discrete time-varying delays and all unstable
subsystems as following

ẋ(t) = Aσ(t)x(t) +Bσ(t)x(t− d(t)), t ≥ 0, t 6= tm,m = 1, 2, 3, · · ·,
x(t+) = Iσ(t+)σ(t−)(x(t−)), t = tm, m = 1, 2, 3, · · ·,
x(t0 + ϕ) = $(ϕ), ϕ ∈ [−d̂, 0],

(1.2)

where the definitions of all the variables and parameters are the same as system
(1.1). Then, we apply the obtained stability criteria to the exponential consensus
of linear delayed multi-agent systems with impulses.

By discretizing the dwell time interval, redefining the original switching se-
quence, and employing a multiple co-positive Lyapunov−Krasovskill functional.
The global uniform exponential stability of the SPLIS is established as a new at-
tempt. The global uniform exponential stability criteria imply that the ratio of
stabilizing switching behaviors are crucial to the global uniform exponential stabil-
ity of SPLIS with time-varying delays and unstable subsystems. Consequently, the
primary contributions are highlighted as following: (1) Compared with [22, 23], we
add the nonnegative impulses to the SPLS with time-varying delays, which includes
two types of distributed time-varying delays and discrete time-varying delays. We
first study the global uniform exponential stability of SPLIS with distributed time-
varying delays, then we extend the distributed time-varying delays case to discrete
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time-varying delays case. New sufficient global uniform exponential stability crite-
ria of SPLIS are obtained by multiple co-positive Lyapunov−Krasovskii functional
method. So the obtained stability criteria further improve the stability theory of
SPLIS. (2) Compared with [26], both discrete time-varying delays and all unsta-
ble subsystems effects are contained for the SPLIS. Moreover, both stabilizing and
destabilizing switching behaviors in new switching behaviors are included for SPLIS.
By finding the feasible ratio of stabilizing switching behaviors, the system state di-
vergence aroused through unstable subsystems, destabilizing switching behaviors,
impulsive effects are compensated. (3) Different from the existing stability criteria
in [16], our model is more comprehensive because of the unstable subsystems and
destabilizing switching behaviors. We design new linear programming algorithm
process to better verify the main stability criteria (Algorithm 3.3). Furthermore,
our main stability criteria are used as the exponential consensus of linear impulsive
multi-agent systems with switching communication topologies and discrete time-
varying delays (Example 5.3).

The framework of this paper is arranged as following. Model formation and
definitions are given in Section 2. Section 3 is dedicated to proving the main cri-
teria. In Section 4, the obtained criteria are used for the exponential consensus of
linear delayed multi-agent systems. Section 5 provides three simulation examples
to support our theoretical results. A conclusion and future directions are discussed
in Section 6.

2. Problem formation and preliminaries

We give the notations as follows. Rn represents the group of n-dimensional real
vectors. Rn×n indicates n × n-dimensional real matrices. 〈n〉 implies the group
{1, 2, · · · , n}, for n represents a positive integer. im(t) means the impulsive signal.
A vector Z ∈ Rn is positive described Z � 0 provided that all its elements are
positive. Z> shows the transpose of the vector Z. En symbolizes the n × n unit
matrix with appropriate dimension. A Metzler matrix denotes a real square matrix
whose off-diagonal elements are all non-negative. A vector y = (y1, y2, · · · , yn) ∈
Rn, ‖y‖1 =

∑n
i=1 | yi |. For a matrix D = {dij}, ‖D‖1 = maxj

∑n
i=1 | dij |. D � 0

denotes that all elements of matrixD are non-negative. Two vectors p, q ∈ Rn, p � q
signifies p − q � 0. Set ζ(t+) = limd→0+ ζ(t + d) and ζ(t−) = limd→0− ζ(t + d). A
function ψ(t) described on [0,∞), ψ(t+) and ψ(t−) imply the right limitation and
the left limitation of ψ(t), separately. max[Z] is the maximum component of vector
Z. Analogously, min[Z] is the minimum component of vector Z.

In this study, the switching sequence is redefined in a group of segments, and each
switching interval is divided into several subintervals. Moreover, the increasing and
decreasing behaviors of multiple co-positive Lyapunov−Krasovskill functional at
the time of switches and impulses are analyzed, which will be evaluated to describe
the stabilizing and destabilizing switching behaviors.

The switching sequence is redefined as tlk , lk+1 = lk + m, k = 0, 1, 2, · · · , set
tl0 = t0, where m represents a predetermined positive integer. Under the recom-
bination, a range of fragments are isolated from the initial switching sequence. In
the new switching sequence, time interval [tlk , tlk+1

) is defined as the (k + 1)th

segment, and each segment includes m switching moments called as tlk+g, ∀g ∈
M := {0, 1, · · · ,m − 1}. So the new switching sequence still fulfills 0 < ā1 ≤
tlk+g+1 − tlk+g ≤ ā2 <∞, ∀g ∈M , k ∈ N+.
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On kth part, the group of stabilizing and destabilizing switching behaviors are
represented by M↓k and M↑k , separately. Therefore, |M↓k | and |M↑k | are the num-
ber of stabilizing and destabilizing switching behaviors on the kth part, separately.
Accordingly, |M↓k |/m and |M↑k |/m represent the ratios of the stabilizing and desta-
bilizing switching behaviors, separately. Apparently, there often exist a pair of
positive integers m1 and m2 with m1 + m2 = m in order that the number of the
stabilizing and destabilizing switching behaviors satisfy |M↑k | = m1 and |M↓k | = m2.

Figure 1. The sketch map process of adjusting the original switching sequence with m = 4. Then,

the number of the stabilizing switching and destabilizing switching behaviors satisfy |M↑k | = m1 and

|M↓k | = m2, and m1 +m2 = 4

The global uniform exponential stability criteria will be constructed for SPLIS
(1.1) and (1.2) by multiple co-positive Lyapunov−Krasovskii functional in Section 3.
Before beginning to construct stability conditions of SPLIS (1.1) and (1.2), describe
a group of subsystem couples which cause stabilizing switching behaviors as Ñ :=
{(j, i); ∃k ∈ N, σ(t) = j, t ∈ [tlk+g, tlk+g+1), σ(t) = i, t ∈ [tlk+g+1, tlk+g+2), g +

1 ∈ M↓k+1}. Give a definition to matrix B as B = (buv) ∈ Rn×n, where (buv) =

max{Bi(uv)}, and Bi
(uv) characterizes the u− th row and v− th column component

of Bi. Obviously, B � Bi.

Remark 2.1. As discussed above, it can be seen that the global uniform expo-
nential stability of the SPLIS (1.1) and (1.2) in this paper is influenced by the
following four aspects: (1) the property of subsystems, (2) the proportion of stabi-
lizing switching behaviors, (3) the time-varying delays, (4) the impulsive effects.

Figure 2. The influence factors of GUES for SPLIS (1.1) and (1.2).

In the next, several essential definitions, assumptions, and lemmas are proposed.
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Definition 2.1. (see [27]) The SPLIS (1.1) or (1.2) is called global uniform ex-

ponential stability provided that ∀ x(t0 + ϕ) = $(ϕ), ϕ ∈ [−d̂, 0], there are two
parameters µ > 0 and ν > 0 in order that every solution x(t) of system (1.1) or (1.2)
fulfils ‖x(t)‖1 ≤ µe−ν(t−t0)‖x(t)‖1c, ∀t ≥ t0, and ‖x(t)‖1c = sup

−d̂≤ϕ≤0

‖x(t0 + ϕ)‖1.

Definition 2.2. (see [28]) The SPLIS (1.1) or (1.2) is called positive provided that

∀x(t0 + ϕ) ≥ 0, ϕ ∈ [−d̂, 0] and for any switching rule σ(t), the relevant trajectory
x(t) fulfils x(t) ≥ 0, ∀t ≥ t0.

We present the following assumption in this paper.

(H1) Iji ≥ 0 for x ≥ 0, and there exist a class of positive matrices Ci ∈ Rn×n,
satisfying Iji(x) ≤ Cix for x ∈ Rn, i, j ∈ 〈n〉, σ(tm

+) = j, σ(tm
−) = i, i 6= j,

m = 1, 2, 3, · · · .

Lemma 2.1. (see [28]) The SPLIS (1.1) or (1.2) is positive when and only when
Ai is a Metzler matrix and Bi � 0, ∀i ∈ 〈n〉.

3. Main results

In this Section, we establish the new global uniform exponential stability criteria for
SPLIS (1.1) and (1.2), and design the new linear programming algorithm process
to better verify the obtained stability criteria.

3.1. Global uniform exponential stability of SPLIS (1.1) with
distributed time-varying delays case

Theorem 3.1. Suppose that (H1) is held. Given that ā1 ≤ ā2, positive integer
T , three positive integers m1, m2, m satisfying m1 + m2 = m. If there are three
constants ζ, ε, η, fulfilling 0 < ζ < 1, ε ≥ 1, η > 0, and a class of positive vectors
Zi,s, i ∈ 〈n〉, s ∈ {0, 1, · · · , T − 1}, in order that the following inequalities hold,

(ZTi,s+1 − ZTi,s)T
ā1

(1− d)En + ZTi,s+1

(
(1− d)Ai + 2d̂B − η(1− d)En

)
≺ 0, (3.1)

(ZTi,s+1 − ZTi,s)T
ā1

(1− d)En + ZTi,s

(
(1− d)Ai + 2d̂B − η(1− d)En

)
≺ 0, (3.2)

ZTi,T

(
(1− d)Ai + 2d̂B − η(1− d)En

)
≺ 0, (3.3)(

(ZTi,s+1 − ZTi,s)T d̂
ā1

− ZTi,s+1

)
B ≺ 0, (3.4)

(
(ZTi,s+1 − ZTi,s)T d̂

ā1
− ZTi,s

)
B ≺ 0, (3.5)

Zi,0 �

{
ζCjZj,T , (j, i) ∈ Ñ ,
εCjZj,T , otherwise,

(3.6)
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m2

m
ln ζ +

m1

m
ln ε+ ā2η < 0, (3.7)

then the SPLIS (1.1) is global uniform exponential stability.

Remark 3.1. Conditions (3.1)−(3.5) assess the evolution of each subsystem be-
tween every two switching behaviors. Condition (3.6) estimates the changes of
energy at every switching and impulsive instant when stabilizing switching behav-
iors (by ζ) and destabilizing switching behaviors (by ε) are dynamic. The ratios of
all stabilizing and destabilizing switching behaviors are confined by condition (3.7).

Remark 3.2. Compared with [23], we add the impulses to the model in [23], and
analyze the impulsive effects for the stability of the model. Then, we get the new
global uniform exponential stability condition (3.6) in Theorem 3.1.

Proof. Firstly, each switching interval [tlk , tlk+1) is divided into T+1 segments via
the next two processes: (i) The time interval [tlk , tlk+1) is parted into [tlk , tlk + ā1)
and [tlk + ā1, tlk+1). (ii) The time interval [tlk , tlk + ā1) is parted into T segments
called as Glk,s = [tlk + se, tlk + (s + 1)e), s = 0, 1, · · · , T − 1, with same length
e = ā1

T . Then, in terms of the switching rule σ(t), the following vector function
Zi(t) is constructed.

Zi(t) =

{
%(t)Zi,s + %̃(t)Zi,s+1, t ∈ Glk,s, s = 0, 1, · · · , T − 1,

Zi,T , t ∈ [tlk + ā1, tlk+1
),

(3.8)

where %(t) =
tlk + (s+ 1)e− t

e
, t ∈ Gk,s, %̃(t) = 1− %(t) =

t− tlk − se
e

.

For t ∈ [tlk+g, tlk+g+1), Zσ(t)(t) = Zi(t) as σ(t) = i, i ∈ 〈n〉. From (3.8), Zσ(t)(t)
is a piecewise right-continuous vector function, ∀t ∈ [tlk+g, tlk+g+1). Choose the
following multiple co-positive Lyapunov−Krasovskill functional for SPLIS (1.1):

Vσ(t)(t) = V 1
σ(t)(t) + V 2

σ(t)(t) + V 3
σ(t)(t), (3.9)

where

V 1
σ(t)(t) = (1− d)ZTσ(t)(t)x(t), (3.10)

V 2
σ(t)(t) =

∫ t

t−d(t)

(s− (t− d(t)))eη(t−s)ZTσ(t)(t)Bx(s)ds, (3.11)

V 3
σ(t)(t) =

∫ 0

−d̂

∫ t

t+ϕ

eη(t−s)ZTσ(t)(t)Bx(s)dsdϕ. (3.12)

For t ∈ [tlk+g, tlk+g+1) as σ(t) = i, i ∈ 〈n〉, by (3.10)−(3.12), we obtain the time
derivative of Vi(x) along the trajectory of the SPLIS (1.1) as follows

V̇ 1
i (t) = V11 + V12 + V13

= (1− d)Ż>i (t)x(t) + (1− d)ZTi (t)Aix(t)

+ (1− d)ZTi (t)Bi

∫ t

t−d(t)

x(s)ds, (3.13)

V̇ 2
i (t) = V21 + V22 + V23 − V24
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= ηV 2
i +

∫ t

t−d(t)

(s− (s− d(t)))eη(t−s)Ż>i (t)Bx(s)ds

+d(t)ZTi (t)Bx(t)− (1− ḋ(t))

∫ t

t−d(t)

eη(t−s)ZTi (t)Bx(s)ds, (3.14)

V̇ 3
i (t) = V31 +V32−V33 = ηV 3

i + d̂ZTi (t)Bx(t)−
∫ t

t−d̂
eη(t−s)ZTi (s)Bx(s)ds. (3.15)

Due to ḋ(t) ≤ d < 1, η > 0, it is acquired that 1 − d < 1 − ḋ(t) and eη(t−s) ≥ 1.

Hence, V13 − V24 ≤ 0. According to the condition 0 ≤ d(t) ≤ d̂, we have

V23 + V32 ≤ 2d̂ZTi (t)Bx(t). (3.16)

Then, in terms of the integral formula, we obtain

V22 − V33 ≤
∫ t

t−d(t)

eη(t−s)
(

(s− (t− d(t)))Ż>i (t)− Z>i (s)
)
Bx(s)ds. (3.17)

Afterwards, we gain

V̇i(t) ≤ V11 + V12 + ηV 2
i + ηV 3

i + 2d̂ZTi (t)Bx(t)

+

∫ t

t−d(t)

eη(t−s)
(

(s− (t− d(t)))Ż>i (t)− Z>i (s)
)
Bx(s)ds. (3.18)

According to (3.18), we acquire that

V̇i(t)− ηVi(t)
≤ (1− d)ŻTi (t)x(t) + (1− d)ZTi (t)Aix(t)

+

∫ t

t−d(t)

eη(t−s)
(

(s− (t− d(t)))Ż>i (t)− Z>i (s)
)
Bx(s)ds

+ 2d̂ZTi (t)Bx(t)− η(1− d)Z>i (t)x(t)

= (1− d)ŻTi (t)x(t) + ZTi (t)
(

(1− d)Ai + 2d̂B − η(1− d)En

)
x(t)

+

∫ t

t−d(t)

eη(t−s)
(

(s− (t− d(t)))Ż
T

i (t)− ZTi (s)
)
Bx(s)ds. (3.19)

Then, when t ∈ [tlk+g, tlk+g + ā1),

V̇i(t)− ηVi(t)

≤ %(t)
(

(1− d)ŻTi (t) + ZTi,s

(
(1− d)Ai + 2d̂B − η(1− d)En

))
x(t)

+ %̃(t)
(

(1− d)ŻTi (t) + ZTi,s+1

(
(1− d)Ai + 2d̂B − η(1− d)En

))
x(t)

+

∫ t

t−d(t)

eη(t−s)
(
%(s)

(
d̂ŻTi (t)− ZTi,s

)
+ %̃(s)

(
d̂ŻTi (t)− ZTi,s+1

))
Bx(s)ds.

(3.20)

By the definition of Zi(t), we gain that ŻTi (t) =
(ZTi,s+1−Z

T
i,s)T

ā1
for

t ∈ [tlk + g+ se, tlk + g+ (s+ 1)e), s = 0, 1, · · · , T − 1. Consequently, by (3.20) and
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conditions (3.1), (3.2), (3.4), (3.5), we get that V̇i(t) < ηVi(t).
For t ∈ [tlk+g + ā1, tlk+g+1), it is apparent that Z>i (t) = Z>i,T . So it concludes from
(3.19) and condition (3.3) that
V̇i(t) < ηVi(t), t ∈ [tlk+g + ā1, tlk+g+1). Subsequently, we obtain that for t ∈
[tlk+g, tlk+g+1), ∀k ∈ N , g ∈M ,

Vσ(tlk+g)(t) < eη(t−tlk+g)Vσ(tlk+g)(t
+
lk+g). (3.21)

Since at every switching and impulsive instant tlk+g, denote σ(t−lk+g) = j, σ(t+lk+g) =

i, j, i ∈ 〈n〉, j 6= i, Z>j,T is replaced by Z>j,TC
>
j , from condition (3.6) and the defini-

tion of multiple co-positive Lyapunov−Krasovskill functional. Then, we calculate
the value of multiple co-positive Lyapunov−Krasovskill functional at tlk+g,

(i) when g ∈M↓k ,

V (tlk+g

+, x(tlk+g
+))− ζV (tlk+g

−, x(tlk+g
−))

= (1− d)
(
ZTi,0 − ζZTj,TC>j

)
x(t)

+

∫ t

t−d(t)

(s− (t− d(t))) eη(t−s) (ZTi,0 − ζZTj,TC>j )Bx(s)ds

+

∫ 0

−d̂

∫ t

t+ϕ

eη(t−s) (ZTi,0 − ζZTj,TC>j )Bx(s)dsdϕ

≤ 0,

(ii) when g ∈M↑k ,

V (tlk+g

+, x(tlk+g
+))− εV (tlk+g

−, x(tlk+g
−))

= (1− d)
(
ZTi,0 − εZTj,TC>j

)
x(t)

+

∫ t

t−d(t)

(s− (t− d(t))) eη(t−s) (ZTi,0 − εZTj,TC>j )Bx(s)ds

+

∫ 0

−d̂

∫ t

t+ϕ

eη(t−s) (ZTi,0 − εZTj,TC>j )Bx(s)dsdϕ

≤ 0.

Therefore,

Vσ(tlk+g)(t) ≤

{
εVσ(tlk+g−1)(t

−
lk+g), g ∈M

↑
k ,

ζVσ(tlk+g−1)(t
−
lk+g), g ∈M

↓
k .

(3.22)

By the mathematical induction, when t ∈ [t0, t1), we get

Vσ(t0)(t) < eη(t−t0)Vσ(t0)(t0).

In the first segment [tl0 , tl1), according to (3.22), we obtain

Vσ(tl0 )(t
−
l1

) ≤ ζ |M
↓
k |ε|M

↑
k |eη(tl1−tl0 )Vσ(tl0 )(t

+
l0

)

≤ ζm2εm1eη(tl1−tl0 )Vσ(t0)(t0). (3.23)

From induction, the following conclusion can be drawn: in (k + 1)th part, when
t ∈ [tlk+g, tlk+g+1),

Vσ(tlk+g)(t) ≤ εm1(ζm2εm1)keη(t−t0)Vσ(t0)(t0). (3.24)
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Because when t ∈ [tlk+g, tlk+g+1), (k+1)mā2+ā2 ≥ t−t0, thus, k ≥ t− t0 − ā2

mā2
−1.

Furthermore, let γ = m2 ln ζ+m1 ln ε. From condition (3.7), we get γ < −mā2η < 0.
According to (3.24), we acquire that when t ∈ [tlk+g, tlk+g+1),

Vσ(tlk+g)(t) ≤ εm1eη(t−t0)eγkVσ(t0)(t0)

= εm1eη(t−t0)+γkVσ(t0)(t0)

≤ εm1eη(t−t0)+(
t−t0−ā2
mā2

−1)γVσ(t0)
(t0). (3.25)

Through condition (3.7), there exits an adequate minor positive constant ω in order
that m2 ln ζ +m1 ln ε+mā2η + ω < 0, γ +mā2η + ω < 0. Therefore,

Vσ(tlk+g)(t) ≤ κe−
ω
mā2

(t−t0)Vσ(t0)
(t0), (3.26)

and κ = εm1

eγ(1+1/m) . In terms of the definition of Vσ(t)(t), we get that

Vσ(t)(t) ≥ (1− d)Z>σ(t)(t)x(t) ≥ (1− d) min
i,T
{min[Zi,T ]}‖x(t)‖1, (3.27)

and

Vσ(t0)(t0) ≤ (1− d) max
i,T
{max[Zi,T ]}‖x(t0)‖1

+d̂eηd̂ max
i,T
{max[Zi,T ]}‖B‖1

∫ t0

t0−d̂
‖x(s)‖1ds

+d̂2 max
i,T
{max[Zi,T ]}‖B‖1

∫ t0

t0−d̂
‖x(s)‖1ds, (3.28)

where T ∈ {0, 1, 2, · · · , T}. Therefore, we have

‖x(t)‖1 ≤
1

(1− d) mini,T {min[Zi,T ]}
κe−

ω
mā2

(t−t0){(1− d) max
i,T
{max[Zi,T ]}‖x(t0)‖1

+d̂eηd̂ max
i,T
{max[Zi,T ]}‖B‖1

∫ t0

t0−d̂
‖x(s)‖1ds

+d̂2 max
i,T
{max[Zi,T ]}‖B‖1

∫ t0

t0−d̂
‖x(s)‖1ds}

≤ µe−
ω
mā2

(t−t0) sup
−d̂≤ϕ≤0

‖x(t0 + ϕ)‖1, (3.29)

where µ =
maxi,T {max[Zi,T ]}
mini,T {min[Zi,T ]}

(
1 + d̂eηd̂+d̂2

1−d ‖B‖1
)
κ. Let ν = ω

mā2
. We can conclude

that ‖x(t)‖1 ≤ µe−ν(t−t0)‖x(t0)‖1c from (3.29), ∀t ≥ t0, so SPLIS (1.1) is global
uniform exponential stability.

3.2. Global uniform exponential stability of SPLIS (1.2) with
discrete time-varying delays case

Corollary 3.1. Suppose that (H1) is held. Given that ā1 ≤ ā2, positive integer T ,
three positive integers m1, m2, m are satisfying m1 + m2 = m. If there are three
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constants ζ, ε, η, fulfilling 0 < ζ < 1, ε ≥ 1, η > 0 and a class of positive vectors
Zi,s, i ∈ 〈n〉, s ∈ {0, 1, · · · , T − 1}, in order that the following inequalities hold,

(ZTi,s+1 − ZTi,s)T
ā1

(1− d)En + ZTi,s+1

(
(1− d)Ai + (1 + d̂)B − η(1− d)En

)
≺ 0,

(3.30)

(ZTi,s+1 − ZTi,s)T
ā1

(1− d)En + ZTi,s

(
(1− d)Ai + (1 + d̂)B − η(1− d)En

)
≺ 0,

(3.31)

ZTi,T

(
(1− d)Ai + (1 + d̂)B − η(1− d)En

)
≺ 0, (3.32)(

(ZTi,s+1 − ZTi,s)T d̂
ā1

− ZTi,s+1

)
B ≺ 0, (3.33)

(
(ZTi,s+1 − ZTi,s)T d̂

ā1
− ZTi,s

)
B ≺ 0, (3.34)

Zi,0 �

{
ζCjZj,T , (j, i) ∈ Ñ ,
εCjZj,T , otherwise,

(3.35)

m2

m
ln ζ +

m1

m
ln ε+ ā2η < 0, (3.36)

then the SPLIS (1.2) is global uniform exponential stability.

Remark 3.3. Compared to [23], we add the impulses to the model, and we get the
new global uniform exponential stability condition (3.35) in Corollary 3.1. Condi-
tion (3.35) is also the constraint of vector at every switching and impulsive instant.

Proof. Choose the following multiple co-positive Lyapunov−Krasovskill function-
al for SPLIS (1.2):

Vσ(t)(t) = V 1
σ(t)(t) + V 2

σ(t)(t) + V 3
σ(t)(t), (3.37)

and

V 1
σ(t)(t) = (1− d)ZTσ(t)(t)x(t), (3.38)

V 2
σ(t)(t) =

∫ t

t−d(t)

eη(t−s)ZTσ(t)(t)Bx(s)ds, (3.39)

V 3
σ(t)(t) =

∫ 0

−d̂

∫ t

t+ϕ

eη(t−s)ZTσ(t)(t)Bx(s)dsdϕ. (3.40)

For t ∈ [tlk+g, tlk+g+1), define σ(t) = i, i ∈ 〈n〉, we obtain the time derivative of
Vi(x) along the trajectory of the SPLIS (1.2) as following

V̇ 1
i (t) = V11 + V12 + V13

= (1− d)Ż>i (t)x(t) + (1− d)ZTi (t)Aix(t)

+ (1− d)ZTi (t)Bix(t− d(t)), (3.41)



12 Yanchao He, Yuzhen Bai

V̇ 2
i (t) = V21 + V22 + V23 − V24 = ηV 2

i +

∫ t

t−d(t)

eη(t−s)Ż>i (t)Bx(s)ds+ ZTi (t)Bx(t)

−(1− ḋ(t))eηd(t)ZTi (t)Bx(t− d(t)), (3.42)

V̇ 3
i (t) = V31 +V32−V33 = ηV 3

i + d̂ZTi (t)Bx(t)−
∫ t

t−d̂
eη(t−s)ZTi (s)Bx(s)ds. (3.43)

Then, we acquire that

V̇i(t)− ηVi(t) = V11 + V12 + V13 + V22 + V23 − V24 + V32 − V33

− η(1− d)Z>i (t)x(t). (3.44)

Due to d(t) ∈ [0, d̂], d ∈ [ḋ(t), 1), and
∫ t−d(t)

t−d̂ eη(t−s)ZTi (s)Bx(s)ds ≥ 0, we have

V13 − V24 ≤ 0, V22 − V33 ≤
∫ t
t−d(t)

eη(t−s)
(
ŻTi (t)− Z>i (s)

)
Bx(s)ds. Therefore, we

gain the following

V̇i(t)− ηVi(t)
= (1− d)ŻTi (t)x(t)

+ ZTi (t)
(

(1− d)Ai + (1 + d̂)B − η(1− d)En

)
x(t)

+

∫ t

t−d(t)

eη(t−s)
(
ŻTi (t)− ZTi (s)

)
Bx(s)ds

≤ %(t)
(

(1− d)ŻTi (t) + ZTi,s

(
(1− d)Ai + (1 + d̂)B − η(1− d)En

))
x(t)

+ %̃(t)
(

(1− d)ŻTi (t) + ZTi,s+1

(
(1− d)Ai + (1 + d̂)B − η(1− d)En

))
x(t)

+

∫ t

t−d(t)

eη(t−s)
(
%(s)

(
ŻTi (t)− ZTi,s

)
+ %̃(s)

(
ŻTi (t)− ZTi,s+1

))
Bx(s)ds. (3.45)

From conditions (3.30)−(3.34), we give that

V̇σ(t) − ηVσ(t) ≤ 0.

The following procedure is the same as Theorem 3.1. Then we get the conclusion
that SPLIS (1.2) is global uniform exponential stability.

Furthermore, for the circumstance as all switching behaviors are all stabilizing,
Corollary 3.1 is reduced to Corollary 3.2:

Corollary 3.2. Suppose that (H1) is held. Given that ā1 ≤ ā2, positive integer
T , two positive integers m2, m satisfying m2 = m. If there are two constants
ζ, η, fulfilling 0 < ζ < 1, η > 0, and a class of positive vectors Zi,s, i ∈ 〈n〉,
s ∈ {0, 1, · · · , T − 1}, in order that (3.30)−(3.34) and the next inequalities hold:

Zi,0 ≤ ζCjZj,T , (j, i) ∈ Ñ , (3.46)

ln ζ + ā2η < 0, (3.47)

then the SPLIS (1.2) is global uniform exponential stability.

Remark 3.4. Compared to [23], we add the impulses to the model, and we get the
new global uniform exponential stability condition (3.47) in Corollary 3.2. Condi-
tion (3.47) is also the constraint of vector at every switching and impulsive instant.
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3.3. The algorithm to find feasible solution

We present the following algorithm to verify Theorem 3.1. Then the similar algo-
rithm can be easily obtained for Corollary 3.1, Corollary 3.2, and the Theorems
4.1-4.2 in Section 4.

Step 1). Choose a group of constants 0 < ζ < 1, ε ≥ 1, ā2 > 0, η > 0, m1, m2, m
are three positive integers satisfying m1 +m2 = m, all parameters satisfying (3.7).
Step 2). Choose the lower bound of switching interval ā1 satisfying ā1 ≤ ā2, T > 0,
T ∈ N+, then Zi,s satisfying (3.1)-(3.6) can be obtained by linear programming;
otherwise, go back to Step 1.
Step 3). With the feasible parameters ζ, ε, η, ā2 > 0, find the feasible value of m2

m
for designing the new switching sequence.

Remark 3.5. Compared with [23], we add the impulsive effects to the SPLS with
distributed time-varying delays and unstable subsystems. The number of linear
matrix inequalities in this paper are more than [23], so our results are better than
[23]. Furthermore, compared with [16], our model is comprehensive because of
the existences of unstable subsystems and destabilizing switching behaviors. We
design new linear programming algorithm process to better verify the global uniform
exponential stability criteria for SPLIS (1.1) and (1.2).

4. Applications in the consensus of linear delayed
multi-agent systems

In this Section, we apply the obtained criteria to the exponential consensus of linear
delayed multi-agent system. We consider the linear delayed multi-agent system with
switching topologies and impulses

u̇i(t) =
∑n
j=0 a

(σ(t))
ij (uj(t)− ui(t)) +

∑n
j=0 b

(σ(t))
ij (uj(t− d(t))− ui(t− d(t))),

t ≥ 0, t 6= tm,m = 1, 2, 3, · · · ,
u(t+) =

∑n
j=0 c

(σ(t+))
ij uj(t

−), t = tm,m = 1, 2, 3, · · · ,
(4.1)

where ui(t) ∈ R denotes the state of the ith agent for i ∈ 〈n〉, σ(t) : [0,∞) → 〈r〉
represents the switching rule, u0 ∈ R is the state of leader with dynamic equation

u̇0 = 0, a
(s)
ij is nonnegative weights satisfying a

(s)
ii = 0, i, j ∈ 〈n〉, s ∈ 〈r〉, b(s)ij ≥ 0,

impulses coefficients c
(s)
ij , where i ∈ 〈n〉 and s ∈ 〈r〉.

Do the transformation vi(t) = ui(t)−u0(t). System (4.1) converts into the next
matrix form{

v̇(t) = Aσ(t)v(t) +Bσ(t)v(t− d(t)), t ≥ 0, t 6= tm,m = 1, 2, 3, · · ·,
v(t+) = Cσ(t+)v(t−), t = tm,m = 1, 2, 3, · · · ,

(4.2)

and As = Ds − Ls, Ds = −diag{a(s)
10 , a

(s)
20 , . . . , a

(s)
n0 }, Bs = [b

(s)
ij ]

n×n and Bs ≥ 0,

Cs = [C
(s)
ij ]

n×n and Ls = (l
(s)
ij ) denotes the Laplace matrix with l

(s)
ii =

∑n
j=1 a

(s)
ij

and l
(s)
ij = −a(s)

ij for i 6= j, i, j ∈ 〈n〉 and s ∈ 〈r〉. When limt→∞[ui(t)− u0(t)] = 0,
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and i ∈ 〈n〉, we call system (4.1) reaches exponential consensus, which is equal to
the exponential stability of system (4.2). Thus, we obtain the following exponential
consensus criteria according to Corollary 3.1 and Corollary 3.2.

Theorem 4.1. Suppose that (H1) is held. Given that ā1 ≤ ā2, positive integer T ,
three positive integers m1, m2, m are satisfying m1 + m2 = m. If there are three
constants ζ, ε, η, fulfilling 0 < ζ < 1, ε ≥ 1, η > 0 and a class of positive vectors
Zi,s, i ∈ 〈n〉, s ∈ {0, 1, · · · , T −1}, in order that (3.30)−(3.36) hold, then the linear
delayed multi-agent system (4.1) achieves exponential consensus.

Theorem 4.2. Suppose that (H1) is held. Given that ā1 ≤ ā2, positive integer
T , two positive integers m, m2, satisfying m2 = m. If there are two constants
ζ, η, fulfilling 0 < ζ < 1, η > 0, and a class of positive vectors Zi,s, i ∈ 〈n〉,
s ∈ {0, 1, · · · , T − 1}, in order that (3.30)−(3.34), (3.46)−(3.47) hold, then the
linear delayed multi-agent system (4.1) achieves exponential consensus.

Remark 4.1. When there is no time delay, the consensus of the system (4.1) was
investigated in [26] by utilizing discrete absolute value Lyapunov function. We
consider the effects of discrete time-varying delays for system (4.1), so the obtained
criteria enhance the relevant stability criteria in [26].

5. Simulation examples

The theoretical results are verified through three simulation examples.

Example 5.1. Consider continuous-time SPLIS (1.1) with the following parame-
ters:

A1 =

0.45 0.45

0.9 −15.4

 , B1 =

 0 0.015

0.015 0.015

 ,
A2 =

0.49 0.98

0.78 −9.9

 , B2 =

0.015 0

0.015 0.015

 ,
A3 =

−9.2 0.46

0.09 0.08

 , B3 =

0.015 0.015

0.015 0

 .
Impulsive matrices taking the form of

C1 =

1.05 0

0 1.04

 , C2 =

1.1 0

0 1.2

 , C3 =

1.3 0

0 1.6

 .
And d(t) = 0.15− 0.15 cos(t). According to above, we acquire that d̂ = 0.3, 0.15 ≤
d < 1, B = [0.015, 0.015; 0.015, 0.015].

Choosing the initial state x(0) = (3, 7)T , and the three subsystems solution
trajectories of system (1.1) are displayed in Figure 3 and Figure 4, which indicate
that the three subsystems are all unstable. Let η = 1.15, ā1 = 0.12, ā2 = 0.15,
ζ = 0.7, ε = 1.2, m1 = 1, m2 = 8, m = 9 and T = 1, it can be gained that
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conditions in Theorem 3.1 hold with Zji given as follows.

Z1,0 =

 80.4001

169.1412

 , Z1,1 =

 59.1225

236.9019

 ,
Z2,0 =

 72.4943

152.5653

 , Z2,1 =

 56.4351

205.3150

 ,
Z3,0 =

 41.4550

170.4646

 , Z3,1 =

 90.5496

152.8046

 .

It is observed that Ñ = {(2, 3), (3, 2), (1, 3), (3, 1)}, i.e., the stabilizing switching
behaviors occur not only subsystems couples of 2 and 3, but also subsystems couples
of 1 and 3. Furthermore, the feasible value of m2

m is 0.88889. The new switching
sequence is designed as follows,

2→ 3→ 2→ 3→ 1→ 3→ 1→ 2→ 3.︸ ︷︷ ︸
Loop this sequence
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Figure 3. The state trajectories of subsystem 1 and subsystem 2 of SPLIS (1.1).
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Figure 4. The state trajectories of subsystem 3 of SPLIS (1.1).

Choosing initial condition x(0) = (3, 7)T , the switching and impulsive signals
are in Figure 5(a) . The solution trajectory of SPLIS (1.1) is displayed in Figure
5(b), which implies that the solution trajectory of SPLIS (1.1) is global uniform
exponential stability. Furthermore, SPLIS (1.1) contains the impulsive effects, so
that the main results in [23] cannot be applied to the example.
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Figure 5. The signals and state trajectories of SPLIS (1.1).

Remark 5.1. In Example 5.1, there are nine switching parts on the first segment
from Figure 5(a). According to the definitions of the designed sequence and stabiliz-
ing switching behaviors, only 1→ 2(the 8th part) indicates destabilizing switching
behavior in the first segment. Therefore, the number of destabilizing and stabiliz-
ing switching behaviors is ”1” and ”8”, respectively. Examples 5.2-5.3 have similar
explanations as Example 5.1.

Example 5.2. Consider continuous-time SPLIS (1.2) with the following parame-
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ters:

A1 =

0.06 0.42

0.68 −9.9

 , B1 =

0.012 0.012

0 0.012

 ,
A2 =

0.09 1.9

0.27 −4.4

 , B2 =

0.012 0.012

0.012 0

 ,
A3 =

−8.5 0.47

1.58 0.09

 , B3 =

 0 0.012

0.012 0.012

 .

Impulsive matrices taking the form of

C1 =

1.02 0

0 1.035

 , C2 =

1.08 0

0 1.014

 , C3 =

1.038 0

0 1.059

 .

And d(t) = 0.18 − 0.18 cos(t). Therefore, we gain that d̂ = 0.36, 0.18 ≤ d < 1,
B = [0.012, 0.012; 0.012, 0.012].

Choosing the initial state x(0) = (2, 5)T , and the three subsystems state trajec-
tories are shown in Figure 6 and Figure 7, which show that the three subsystems
are all unstable.
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Figure 6. The state trajectories of subsystem 1 and subsystem 2 of SPLIS (1.2).
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Figure 7. The state trajectories of subsystem 3 of SPLIS (1.2).

Let η = 0.76, ā1 = 0.09, ā2 = 0.0955, ζ = 0.86, ε = 1.02, m1 = 1, m2 = 10,
m = 11 and T = 1, it can be acquired that conditions in Corollary 3.1 hold with
Zji given as follows.

Z1,0 =

155.7359

197.1935

 , Z1,1 =

149.2218

250.2733

 ,
Z2,0 =

153.2504

197.3689

 , Z2,1 =

140.9317

255.4565

 ,
Z3,0 =

128.8974

220.7683

 , Z3,1 =

176.6993

218.7161

 .

It can be observed that group Ñ = {(2, 3), (3, 2), (1, 3), (3, 1)}, i.e., the stabilizing
switching behaviors occur between subsystems couples of 2 and 3 and subsystem
couples of 1 and 3. Furthermore, the feasible limit of m2

m is counted as 0.90909. The
new switching sequence is designed as follows,

2→ 3→ 2→ 3→ 1→ 3→ 1→ 2→ 3→ 1→ 3.︸ ︷︷ ︸
Loop this sequence

Choosing the initial condition x(0) = (2, 5)T , the switching and impulsive signals
are exhibited in Figure 8(a). The solution trajectory of SPLIS (1.2) is shown in
Figure 8(b), which implies that the solution trajectory of SPLIS (1.2) is global
uniform exponential stability. Moreover, SPLIS (1.2) contains the impulsive effects,
the results in Zhou et al. [23] are invalid.
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Figure 8. The signals and state trajectories of SPLIS (1.2).

Example 5.3. Consider the linear delayed multi-agent system (4.1) with r = 2,
n = 3, d(t) = 0.12 − 0.12 cos(t), D1 = diag{0,−1.02, 0}, D2 = diag{−1.04, 0, 0},
and Laplace matrices fulfilling

L1 =


0.08 −0.08 0

0 0 0

0 0 0

 , L2 =


0 0 0

0 0 0

0 −0.07 0.07

 ,
and

B1 =


0.002 0 0

0 0 0

0 0 0

 , B2 =


0 0 0

0 0.002 0

0 0 0.002

 ,
Impulsive matrices taking the form of

C1 =


1.03 0 0

0 1.02 0

0 0 1.04

 , C2 =


1.003 0 0

0 1.002 0

0 0 1.004

 ,
which infers from A1 = D1 − L1, A2 = D2 − L2, we have

A1 =


−0.08 0.08 0

0 −1.02 0

0 0 0

 , A2 =


−1.04 0 0

0 0 0

0 0.07 −0.07

 , B =


0.002 0 0

0 0.002 0

0 0 0.002

 .
Since there exist the discrete time-varying delays effects, Corollary 3 in [26] cannot

be applied to this example. d̂ = 0.24, 0.12 ≤ d < 1. Choosing η = 1.09, ā1 = 0.42,
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ā2 = 0.47, ζ = 0.58, T = 1, m2 = m = 2. It is obtained that conditions in Theorem
4.2 hold true for

Z10 =


623.1397

626.1294

620.2074

 , Z11 =


838.6341

846.8560

830.5703

 , Z20 =


500

500

500

 , Z21 =


500

500

500

 .

It can be observed that group Ñ = {(1, 2), (2, 1)}, so all switching behaviors are
stabilizing. The switching sequence is designed as follows

1→ 2.︸ ︷︷ ︸
Loop this sequence

Choosing the initial state u(0) = [1.2, 1.6, 0.09]>, and two subsystems of system
(4.1) are shown in Figure 9, which shows that the two subsystems are all unstable.

Therefore, the system (4.1) reaches exponential consensus. Choosing initial
condition u0(0) = 0.18, u1(0) = 1.2, u2(0) = 1.6, u3(0) = 0.09 and the signals are
shown in Figure 10(a). The solution trajectories of the system (4.1) is shown in
Figure 10(b), which implies that the system (4.1) is exponential consensus.
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Figure 9. The state trajectories of two subsystems of system (4.1).
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Figure 10. The signals and state trajectories of system (4.1).

Remark 5.2. It should be noted that the recent results in [16, 22, 23, 26] can-
not be applied to Examples 5.1, 5.2 and 5.3 due to the coexistence of distributed
time-varying delays, discrete time-varying delays, unstable subsystems, stabiliz-
ing/destabilizing switching behaviors, and impulsive effects. To some extent, the
proposed results in this paper are more effective than previous ones.

6. Discussions

The global uniform exponential stability of SPLIS with time-varying delays and all
unstable subsystems is investigated in this paper. By utilizing multiple co-positive
Lyapunov−Krasovskill functional, new specific global uniform exponential stabili-
ty criteria for the SPLIS in the case of switching-impulse signals are obtained in
the fields of linear matrix inequalities, which are verified via the linear program-
ming algorithm. After that, the main stability criteria are applied to the exponen-
tial consensus of linear delayed multi-agent systems with switching communication
topologies.

There exist some limitations on our work. It is worth noting that the impul-
sive instants and switching instants may may not be synchronous. We deal with
the impulsive effects for the SPLIS in this paper, which are synchronous with the
switching signals. Then, we will gradually explore the case of global uniform ex-
ponential stability for SPLIS (1.1) and SPLIS (1.2) with asynchronous switching
impulsive signals in the future. Furthermore, the method in this paper aren’t di-
rectly generalized to the case of two types of time-varying delays. In fact, there
exists the corresponding results of two types of time-varying delays case in theory.
The main difficulty is how to define Lyapunov-Krasovskii functional. This will be
left for our future study.
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