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Abstract. In the present paper, we aim to investigate the existence
of solutions for the quasilinear boundary value problem involving
fractional operators in the ψ-fractional space Hα

p ([0, T ],R) with asymmetric
nonlinearities.

1. Introduction and motivation

The researches on the existence of weak solutions for the resonance problem
to p-Laplacian can also be found in the other papers, such as [17, 27] and the
references therein. The resonance problems involving p-Laplacian in RN , have
great relevance in the field of partial and ordinary differential equations. What
has been noticed during the last two decades is the attention to problems involving
resonance, both in the classical approach and in the fractional approach [15–20].

In 1997 Arcoya and Orsina [23], investigated the existence of a solution to the
problem

p2p2 (1.1)

{
−∆pu = λ1|u|p−2 + f(x, u)− h, in Λ

u ∈W 1,p
0 (Λ)

where Λ is a bounded open subset of RN , N ≥ 1, p > 1, f : Ω × R → R is a
bounded Caratheodory function. On the other hand, in 1998, Cuesta et al. [24]

carried out a work addressing p-Laplacian on W 1,p
0 (Λ) defined by

p3p3 (1.2)

{
−∆pu = α(u+)p−1 − β(u−)p−1, in Λ
u = 0, on ∂Λ

where −∆p = div(|∇u|p−2∇u) is the p-Laplacian.
In 2000, Bouchala and Drabek [25], investigated the existence of the weak

solutions of the boundary value problem

pp3pp3 (1.3)

{
−∆pu = λ1|u|p−2u+ g(u)− h(x), in Ω ⊂ RN

u = 0, on ∂Ω

with N ≥ 1, p > 1, g : R → R is a continuous function, h ∈ Lp′(Ω)
(
p′ = p

p−1

)
.

See also the interesting work carried out in 2001 by Dancer and Perera [26], where
he investigated the existence of positive solutions to the p-Laplacian problem.

On the other hand, the theory of fractional differential equations currently
occupies a prominent role in the general theory of differential equations, with
intense research, problems of its own, relevant results and a wide range of
applications [1, 2]. One front that has recently gained attention are problems
involving fractional differential equations and p-Laplacian, in order to discuss
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existence, non-existence and multiplicity of solutions using variational methods
[5–12] and the references therein.

Before presenting the main problem to be addressed in this paper, we will make
some considerations.

Let J = [0, T ] be a finite or infinite interval of the real line R and α > 0. The
Riemann-Liouville fractional integral (left-sided and right-sided) of a function ϕ
on J is defined by [1, 3, 4, 13]

eq111eq111 (1.4) Iα
0+ϕ (ξ) =

1

Γ (α)

∫ ξ

0
(ξ − s)α−1 ϕ (s) ds

and

eq112eq112 (1.5) Iα
0−ϕ (ξ) =

1

Γ (α)

∫ 0

ξ
(s− ξ)α−1 ϕ (s) ds.

On the other hand, let 1
p < α ≤ 1, with n ∈ N and ϕ ∈ Cn(J,R). The Caputo

fractional derivative left-sided and right-sided denoted by cDα
0+(·) (resp. cDα

0−(·))
of a function f of order α, is defined by [1, 3, 4, 13]

eq333eq333 (1.6) cDα
0+ϕ(ξ) = I1−α

0+ ϕ′(ξ) and cDα
0−ϕ(ξ) = I1−α

0− ϕ′(ξ)

where Iα
0+(·) and Iα

0−(·) there are defined in Eq.(1.4) and Eq.(1.5), respectively.
A natural consequence of the definition (1.6), is that in the limit of α → 1, we

have the classical derivative (integer order), given by cD1
0+ϕ(ξ) =

dϕ(ξ)

dξ
.

Let 1
p < α ≤ 1 and 1 < p < ∞. The ψ-fractional derivative space

Hα
p := Hα

p ([0, T ] ,R) is defined by the closure of C∞
0 ([0, T ] ,R), and is given

by

8989 (1.7) Hα
p ([0, T ],R) =

{
ϕ(·) ∈ L p([0, T ],R) :

∣∣cDα
0+ϕ(·)

∣∣ ∈ L p([0, T ],R).
}

The space (1.7), is reflexive, uniform convex Banach and separable space
[6, 9, 10]. In addition, it is equipped with norm

∥ϕ∥ = ∥ϕ∥L p + ∥cDα
0+ϕ∥L p , for all ϕ ∈ Hα

p ([0, T ],R).

In this sense, motivated by the problems (1.1)-(1.3) and Caputo fractional
derivatives, in this paper, we consider the fractional quasilinear boundary value
problem

eq1.1eq1.1 (1.8)
cDα

T

(
|cDα

0+ϕ|p−2 cDα
0+ ϕ

)
= θ+(ξ)(ϕ

+)p−1−θ−(ξ)(ϕ−)p−1+f(ξ, ϕ), ϕ ∈ Hα
p ([0, T ],R)

where cDα
T (·) and cDα

0+(·) are Caputo fractional derivatives of order 1
p < α ≤ 1,

[0, T ] is a bounded domain in R, 1 < p < ∞, ϕ± = max {±ϕ, 0}, θ± ∈
L ∞([0, T ],R) and f is a Caratheodory (that is, f(ξ, ϕ) is a measurable with
respect to ξ in Ω = [0, T ] for every ϕ in R, and continuous with respect to ϕ in R
for almost every ξ ∈ Ω) function on [0, T ]× R satisfying a growth condition

eq1.2eq1.2 (1.9) |f(ξ, ϕ)| ≤ qM1(ξ)
p−q|s|q−1 +M2(ξ)

p−1

with 1 ≤ q < p and M1,M2 ∈ L p([0, T ],R). Furthermore, we assume that

eq1.3eq1.3 (1.10) λ1 ≤ θ ± (ξ) ≤ λ2 − ε

or

eq1.4eq1.4 (1.11) λ1 + ε ≤ θ ± (ξ) ≤ λ2



RESONANCE FOR p-LAPLACIAN AND ASYMMETRIC NONLINEARITIES 3

for two consecutive variational eigenvalues λ1 < λ2 of
cDα

T

(
|cDα

0+(·)|p−2 cDα
0+ (·)

)
on Hα

p ([0, T ],R). During the paper, we condition by Σ the set of solutions of

(1.12) cDα
T

(
|cDα

0+ϕ|p−2 cDα
0+ ϕ

)
= θ+(ξ)(ϕ

+)p−1 − θ−(ξ)(ϕ
−)p−1

and set

(1.13) Θ(ξ, s) :

∫ s

0
f(ξ, t)dt and Ψ(ξ, s) := pΘ(ξ, s)− sΘ(ξ, s).

The main results of this paper is to investigate the following result:

teorema Theorem 1.1. Problem (1.8) has a solution when:

(1) Eq.(1.10) holds and

∫ T

0
Ψ(ξ, ϕj)dξ → +∞.

(2) Eq.(1.11) holds and

∫ T

0
Ψ(ξ, ϕj)dξ → −∞ for every sequence (ϕj) in

Hα
p ([0, T ],R) such that ||ϕj || → ∞ and

ϕj
|ϕj |

converges to some element

of Σ. In particular, (1.8) is solvable when (1.10) or (1.11) holds and Σ is
empty.

Below we highlight some comments on the difficulties of working with problems
of the type (1.8) and consequences of the results obtained in the paper:

(1) In general, when dealing with resonance problems, a difficulty and often
problematic is the lack of compactness of the variational functional
associated with the problem. However, it is possible to overcome this
difficulty by constructing an approximation sequence of non-resonance
problems, to obtain approximate solutions via min-max arguments and
passing to the limit.

(2) A natural consequence of the result investigated in this work is that in
the limit of α → 1, the integer case is obtained, i.e., the problem (1.8),
becomes the following problem

inteirointeiro (1.14)
(
|ϕ′|p−2 ϕ′

)′
= θ+(ξ)(ϕ

+)p−1 − θ−(ξ)(ϕ
−)p−1 + f(ξ, ϕ), ϕ ∈ H1

p([0, T ],R).

(3) Consequently, the result Theorem 1.1, is valid for the problem (1.14). On
the other hand, taking p = 2 in the problem (1.8), we have

ϕ′′ = θ+(ξ)ϕ
+ − θ−(ξ)ϕ

− + f(ξ, ϕ), ϕ ∈ H1
2([0, T ],R).

(4) Note that when α = 1, θ+(ξ) = θ−(ξ) = λ1 and q = 1 we have some special
cases that can be found in the literature, namely: Arcoya and Orsina [23],
Bouchala and Drabek [25], and Drabek and Robinson [27].

In the rest, the paper is divided into two sections, namely: Section 2, we present
some corollaries. In section 3, we investigate the main result of this paper, i.e.,
the Theorem 1.1.

2. Some Results

This section is intended to discuss the existence of a solution to the Problem
(1.8) via some corollaries.

Corollary 2.1. Problem (1.8) has a solution when:

(1) Eq.(1.10) holds, Ψ(ξ, s) → +∞, a.e. as |s| → ∞, and Ψ(ξ, s) ≥ −ϵ(ξ).
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(2) Eq.(1.11) holds, Ψ(ξ, s) → −∞, a.e., as |s| → ∞ and Ψ(ξ, s) ≤ ϵ(ξ) for
some ϵ ∈ L 1([0, T ],R).

Proof. If (1) holds, then Ψ(ξ, ϕj(ξ)) = Ψ(ξ, ρjνj(ξ)) → +∞ for some a.e. ξ such
that M1(ξ) ̸= 0 and Ψ(ξ, ϕj(ξ)) ≥ −ϵ(ξ). Using the Fatou’s lemma, follows that

eq1.7eq1.7 (2.1)

∫ T

0
Ψ(ξ, ϕj(ξ))dξ ≥

∫
v ̸=0

Ψ(ξ, ϕj(ξ))dξ −
∫
v=0

ϵ(ξ)dξ → +∞.

Similarly, follows that

∫ T

0
Ψ(ξ, ϕj(ξ))dξ → −∞ if (2) holds. □

Since (1) and (2) hold on subsets of {ξ ∈ Λ;M1(ξ) ̸= 0} with positive measure,
the ideas discussed above are maintained. Consider w = ν± in

eq1.8eq1.8 (2.2)∫ T

0
|cDα

0+ν|p−2 cDα
0+ν

cDα
0+w dξ =

∫ T

0
(θ+(ξ)(ν

+)p−1 − θ−(ξ)(ν
−)p−1)w dξ

gives
eq1.9eq1.9 (2.3)

||ν±||p =
∫ T

0
θ±(ξ)(ν

±)pdξ ≤ ||θ±||∞||ν±||p
p+α
µ(Λ±)

p ≤ ||θ±||∞S−1||ν±||pµ(Λ±)
p

where Λ± = {ξ ∈ Λ = [0, T ];M1(ξ) ≥ 0}, S is the best constant for the trace
embedding Hα

p ([0, T ],R) ↪→ L ∞([0, T ],R) and, µ is the Lebesgue measure in R.
Thus

eq1.10eq1.10 (2.4) µ (Λ±) ≥
(
S||θ±||−1

∞
)1/p

and so

eq1.11eq1.11 (2.5) µ ({ξ ∈ [0, T ];M1(ξ) = 0}) ≤ µ([0, T ],R)− S1/p
(
||θ+||−1/p

∞ + ||θ−||−1/p
∞

)
.

In this sense, we have the following result.

Corollary 2.2. Problem (1.8) has a solution when:

(1) Eq.(1.10) holds, Ψ(ξ, s) → ∞ in Λ′ = [0, T ] as |s| → ∞, and Ψ(ξ, s) ≥
−ϵ(ξ)

(2) Eq.(1.11) holds, Ψ(ξ, s) → −∞ in Λ′ as |s| → ∞ and Ψ(ξ, s) ≤ ϵ(ξ) for

some Λ′ ⊂ Λ with µ(Λ′) > µ([0, T ],R)−S1/p
(
||θ+||−1/p

∞ + ||θ−||−1/p
∞

)
and

ϵ ∈ L 1([0, T ],R).

Next, note that

Ψ+(ξ)(ν
+(ξ))q +Ψ−(ξ)(ν

−(ξ))q ≤ lim inf
Ψ(ξ, ϕj(ξ))

ρqj

≤ lim sup
Ψ(ξ, ϕj(ξ))

ρqj

≤ Ψ+(ξ)(ν
+(ξ))q +Ψ−(ξ)(ν

−(ξ))q.eq1.12 (2.6)

Moreover,

eq1.14eq1.14 (2.7)
Ψ(ξ, ϕj(ξ))

ρqj
≤ (p+ q)M1(ξ)

p−q|νj(ξ)|q + (p+ 1)
M2(ξ)

p−q|νj(ξ)|
ρq−1
j
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by (1.9), so it follows that

∫ T

0
(Ψ+(ν

+)q +Ψ−(ν
−)q)dξ ≤ lim inf

∫ T

0
Ψ(ξ, ϕj)dξ

ρqj

≤ lim sup

∫ T

0
Ψ(ξ, ϕj)dξ

ρqj

≤
∫ T

0
(Ψ+(ν

+)q +Ψ−(ν
−)q)dξ.eq1.15 (2.8)

Thus, we have the following corollary.

Corollary 2.3. Problem (1.8) has a solution when:

(1) Eq.(1.10) holds and

∫ T

0
Ψ+(ν

+)q +Ψ−(ν
−)q > 0 for all ν ∈ Σ.

(2) Eq.(1.11) holds and

∫ T

0
Ψ+(ν

+)q +Ψ−(ν
−)q < 0 for all ν ∈ Σ.

3. Main results

Note that the eigenvalues of cDα
T

(
|cDα

0+(·)|p−2 cDα
0+ (·)

)
on Hα

p ([0, T ],R)
correspond to the critical values of

eq2.1eq2.1 (3.1) Eα(ϕ) =

∫ T

0
|cDα

0+ϕ|pdξ

with ϕ ∈ M =
{
ϕ ∈ Hα

p ([0, T ],R); ||ϕ||p = 1
}
. Moreover, Eα satisfies the Palais-

Smale condition, i.e., if {ϕn} ⊂ Hα
p (Ω) such that {Eα({ϕn})} is bounded and

Eα({ϕn}) → 0 in
(
Hα

p (Ω)
)∗
, then {ϕn} has a subsequence that converges inHα

p (Ω).
Consider the unbounded sequence of eigenvalues given by

eq2.2eq2.2 (3.2) λ1 := inf
A∈H1

max
ϕ∈A

Eα(ϕ)

where

eq2.3eq2.3 (3.3) H1 = {A ⊂ I : ∃ a continuous add subjection h : I → A}

and I is an interval in R.

Lemma 3.1. λ1 is an eigenvalue of cDα
T

(
|cDα

0+(·)|p−2 cDα
0+ (·)

)
and λ1 → ∞.

Proof. Suppose that λ1 is a regular value of Eα, so there exists an ε > 0 and
η : M → M (homeomorphism) such that η(Eλ1+ε

α ) ⊂ Eλ1+ε
α , see [21]. On the

other hand, taking A ∈ H1 with maxEα(A) ≤ λ1 + ε and setting A = η(A),
we have a set in H1 for which max Eα(A) ≤ λ1 − ε, which contradicts λ1 (see
Eq.(3.2)). Finally, let µ1 → ∞ eigenvalues, follows that λ1 ≥ µ1 since the genus
of each A in H1 is 1, so λ1 → ∞. □

Let us now discuss the main result of this paper.
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Proof. (Proof of Theorem 1.1) Let’s just do the proof of (1), the case (2) is
similarly. Then consider

eq2.4eq2.4 (3.4) θj±(ξ) =

{
θ±(ξ), if θ±(ξ) ≥ λ1 +

1
j

λ1 +
1
j , if, θ±(ξ) < λ1 +

1
j

so that

eq2.5eq2.5 (3.5) λ1 +
1

j
≤ θj± ≤ λ2 − ε, |θj±(ξ)− θ±(ξ)| ≤

1

j

and let

Φj(ϕ) =

∫ T

0
|cDα

0+ϕ|p − θj+(ξ)(ϕ
+)p − θj−(ϕ

−)p − pΘ(ξ, ϕ)dξ, ϕ ∈ Hα
p ([0, T ],R).eq2.6 (3.6)

First, we show that there is a ϕj ∈ Hα
p ([0, T ],R), such that

eq2.7eq2.7 (3.7) ||ϕj || ||Φ′
j(ϕj)|| → 0, inf Φj(ϕj) > −∞.

Using (3.2), there exists an A ∈ H1, such that

eq2.8eq2.8 (3.8) Eα(ϕ) ≤ λ1 +
1

2j
, ϕ ∈ A.

For ϕ ∈ A, and R > 0, one has

Φj(Rϕ) =

∫ T

0
|cDα

0+Rϕ|p − θj+(ξ)(Rϕ+)p − θj−(ξ)(Rϕ−)p − pΘ(ξ,Rϕ)dξ

= Rp

{∫ T

0

(
|cDα

0+ϕ|p − θj+(ξ)(ϕ
+)p − θj−(ξ)(ϕ

−)p − pΘ(ξ, ϕ)
)
dξ

}
eq2.9 (3.9)

≤ −Rp

2j
+ p

(
||M1||p−q

p Rq + ||M2||p−1
p R

)
.

Using (1.9), (3.5) and (3.8), so

eq2.10eq2.10 (3.10) max
ϕ∈A

Φj(Rϕ) → −∞, as R → ∞.

Next let,

eq2.11eq2.11 (3.11) E =

{
ϕ ∈ Hα

p ([0, T ],R) :
∫ T

0
|cDα

0+rϕ|pdξ ≥ λ2

∫ T

0
|ϕ|pdξ

}
.

For ϕ ∈ E and (3.6), yields

eq2.12eq2.12 (3.12) Φj(ϕ) ≥ ε||ϕ||pp − p
(
||M1||p−q

p ||ϕ||qp + ||M2||p−1
p ||ϕ||p

)
.

Hence

eq2.13eq2.13 (3.13) inf
ϕ∈E

Φj(ϕ) ≥ ϵ := min
r≥0

[
εrp − p

(
||M1||p−q

p rq + ||M2||p−1
p r

)]
> −∞.

Using (3.10), follows that

eq2.14eq2.14 (3.14) max Φj(RA) < ϵ

where RA = {Rϕ : ϕ ∈ A} for R > 0 fix and large. Since A ∈ H1, there exists a
continuous add subjection h : I → A. Consider

eq2.15eq2.15 (3.15) Γ =
{
φ ∈ C(D,Hα

p ([0, T ],R)) : φ|I = Rh
}

where D is the interval in R with boundary I.
Affirmation 1: φ(D) ∩ E ̸= ∅, ∀φ ∈ Γ.
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The proof will be divided into two parts. The first part is to investigate when
0 ∈ φ(D). Consider π the radial projection. For M, A := π(φ(D)∪−π(φ(D))) ∈
H1, yields

eq2.17eq2.17 (3.16) max
ϕ∈π(φ(D))

Eα(ϕ) = max
ϕ∈A

Eα(ϕ) ≥ λ2

then π(φ(D)) ∩ E ̸= ∅. Consequently, follow that φ(D) ∩ E ̸= ∅.
Note that, there exists a ϕj such that

eq2.18eq2.18 (3.17) ||ϕj || ||Φ′
j(ϕj)|| → 0, |Φ′

j(ϕj)− cj | → 0

where

eq2.19eq2.19 (3.18) ϵj := inf
φ∈Γ

max
ϕ∈φ(D)

Φj(ϕ) ≥ ϵ.

Thus, we get (3.7). Obtaining Eq.(3.17), follows the deformation argument [22].
In this sense, we finish the proof of first part.

Affirmation 2: A subsequence of (ϕj) converges to a solution of (1.8).
Note that, if (ϕj) so bounded, hence suppose that ρ := ||ϕj || → ∞. Consider

νj :=
ϕj
ρj

. Without loss of generality , we may assume that νj → ν weakly in

Hα
p ([0, T ],R), strongly in L p([0, T ],R), and a.e in Λ. So, we obtain∫ T

0
|cDα

0+ϕ|p−2 cDα
0+νj

cDα
0+(νj − ν)dξ

=
(Φ′(ϕj)νj − ν)

pρp−1
j

+

∫ T

0

(
(θj+)(ξ)(ν

+
j )

p−1 − θj−(ξ)(ν
−
j )

p−1 +
f(ξ, ϕj)

ρp−1
j

)
(νj − ν)dξ → 0.

eq2.21 (3.19)

In this sense, follows that νj → ν strongly in Hα
p ([0, T ],R). In particular,

||M1|| = 1, then ν ̸= 0. Moreover, for each w ∈ Hα
p ([0, T ],R), yields

(Φ′(ϕj)νj − ν)

pρp−1
j

=

∫ T

0
|cDα

0+ϕ|p−2 cDα
0+νj

cDα
0+wdξ

−

[
θj+(ξ)(ν

+
j )

p−1 − θj−(ξ)(ν
−
j )

p−1 +
f(ξ, ϕj)

ρp−1
j

]
w(3.20)

gives that∫ T

0
|cDα

0+ϕ|p−2 cDα
0+ν

cDα
0+w dξ −

[
θ+(ξ)(ν

+)p−1 − θ−(ξ)(ν
−)p−1

]
w = 0

so ν ∈ Σ. Thus,

(Φ′
j(ϕj), ϕj)

p
− Φj(ϕj) =

∫ T

0
Ψ(ξ, ϕj)dξ → ∞

contradicting (3.7). Thus, we complete the proof of the theorem. □
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4. Conclusion and future work

The present paper is a natural motivation for the works [23–25] as discussed in
the introduction. The objective of investigating the existence of a solution for a
new class of fractional quasilinear boundary value problem was only possible once
we circumvented the compactness problem as presented in the course of the work
via variational methods. Although we were able to achieve the objective, we were
left with some questions that arose during the discussion of the results, and are
better described as follows:

• Would it be possible to investigate the nonresonance of the problem (1.8)?
What conditions would be necessary? And discuss the Fucık spectrum for
the problem (1.8)?

• Finally, would it be possible to extend the results here to a double-phase
p-Laplacian? What conditions must be imposed for the results to still be
valid?

In this sense, we believe that the present work allowed to contribute with new
results for the theory of fractional differential equations and raise some interesting
questions about the problem (1.8), allowing a natural continuation of this present
paper.
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