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Abstract

We investigate the long-time dynamical behavior of coupled suspension bridge

equations with double nonlocal terms by using the quasi-stable methods. We first

establish the well-posedness of the solutions by means of the monotone operator the-

ory. Secondly, the dissipation of solution semigroup {S(t)}t≥0 is obtained, and then,

the asymptotic smoothness of solution semigroup {S(t)}t≥0 is verified by the energy

reconstruction method; ultimately, we prove the existence of global attractor. Finally,

we show the existence of the generalized exponential attractor.

Keywords: Coupled suspension bridge equations; double nonlocal terms; global

attractor; generalized exponential attractor.

1 Introduction

The early suspension bridge equation is derived from the mathematical model of one-

dimensional simple support beam suspended by hangers, which describes the deflection

of the roadbed in the vertical plane, see [1, 17]. As a new problem in the field of non-

linear analysis in 1990, Lazer and McKenna [2] introduced the following one-dimensional

suspension bridge equation
utt + EIuxxxx + δut + ku+ = W (x) + εf(x, t), (x, t) ∈ (0, L)× R+,

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, t ≥ 0.

(1.1)

∗ Corresponding author: maqzh@nwnu.edu.cn.
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In 1998, Ahmed and Harbi [16] made a rigorous mathematical analysis for the coupled

suspension bridge equations, which studied the dynamical behavior of system under the

different conditions, and gave the relevant simulation and physical interpretation.

In recent years, a series of important researches have been made on long-time dynamics

of suspension bridge equations, see for example [4,7,9–15,18–25] and the references there-

in. Ma and Zhong [18] first obtained the global attractor of the weak solution for coupled

suspension bridge equations in 2005, and they [19] further studied the existence of strong

solution and strong global attractor for the following beam-string coupling system
utt + αuxxxx + δ1ut + k(u− v)+ + fB(u) = hB(x), x ∈ [0, L],

vtt − βvxx + δ2vt − k(u− v)+ + fS(v) = hS(x), x ∈ [0, L].
(1.2)

Bochicchio, Giorgi and Vuk [7] proved the existence and regularity of the global attractor

with finite fractal dimension for the extensible suspension bridge equation

∂ttu+ ∂xxxxu+ (p− ‖∂xu‖2L2(0,1))∂xxu+ ∂tu+ k2u+ = f, (1.3)

where p ∈ R. Park and Kang [9] proved existence of global attractor for suspension bridge

equation with nonlinear damping. Wang and Ma obtained the existence of pullback at-

tractors for non-autonomous suspension bridge with time delay in [21], Hajjej et al. [25]

investigate the stability of the energy for suspension bridge with a localized structural

damping. Recently, Zhao, Zhao and Zhong [3] considered the following extensible beam

equations with nonlocal weak damping

utt −42u−m(‖∇u‖2)4u+ ‖ut‖put + f(u) = h, (x, t) ∈ Ω× R+, (1.4)

with two kinds of boundary conditions, namely, clamped or hinged boundary conditions

u|∂Ω =
∂u

∂ν

∣∣∣
∂Ω

= 0, or u|∂Ω = 4u|∂Ω = 0.

And they showed the existence of solution and global attractor for (1.4) by the monotone

operator theory and the energy reconstruction method.

It is worth noting that most of the researches on the long-time behavior of the so-

lutions for suspension bridge equation only obtain the existence of the attractors, while

the fractal dimension of the attractors and the existence of exponential attractor are rel-

atively less. Based on the above-mentioned works, we are concerned with the existence

of global attractor with finite fractal dimension and generalized exponential attractor for

the following coupled suspension bridge equations with double nonlocal termsutt + uxxxx + ‖ut‖put + k2(u− v)+ + ‖u‖qu = hB(x), (x, t) ∈ [0, L]× R+,

vtt − vxx + ‖vt‖pvt − k2(u− v)+ + ‖v‖qv = hS(x), (x, t) ∈ [0, L]× R+,
(1.5)
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with initial-boundary value conditions



u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, t ∈ R+,

v(0, t) = v(L, t) = 0, t ∈ R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0, L],

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ [0, L],

(1.6)

where u = u(x, t), v = v(x, t) are the unknown function and denote the downward

deflections of the roadbed and the cable, respectively. ‖ut‖put, ‖vt‖pvt are the nonlocal

weak damping terms, ‖u‖qu, ‖v‖qv are the nonlocal functions, p, q ≥ 0, and the sim-

plest function to model the restoring force of the stays in the suspension bridge can be

denoted by multiplying the constant k2 by u − v, where k2 > 0 denotes the spring co-

efficient, (u − v)+ = max{(u − v), 0}, namely, the expansion if u − v is positive, but

zero, if u − v is negative, corresponding to compression. Moreover, The external forc-

ing term hB, hS ∈ L2([0, L]) (Here we can give two examples of the external forcing

term for this work: h(x) = cos(2πx
L ), or h(x) = sin(2πx

L ) ∈ L2([0, L])). For brevity, we

denote Ω = [0, L], 42u = uxxxx, −4v = −vxx.

Our main object in this paper is to investigate the existence of global attractor with

finite fractal dimension and generalized exponential attractor for beam-string coupled e-

quations with double nonlocal functions. Since the coupling of the equations is reflected in

the semilinear term (u−v)+, the double nonlocal terms don’t effect the energy reconstruc-

tion method proposed in [3], so we don’t meet the new difficulties in dealing with existence

of global attractor. Different from [3], we further obtain the finite fractal dimension of

global attractor and the existence of generalized exponential attractor.

This paper is organized as follows. In section 2, we recall several definition and ab-

stract results in theory of nonlinear dynamical systems that will be useful to discuss our

problem, and obtain the well-posedness results by means of the monotone operator theo-

ry and show that the problem (1.5)-(1.6) generates a dynamical system (H, S(t)) in the

space H = (H2(Ω) ∩ H1
0 (Ω)) × L2(Ω) × H1

0 (Ω) × L2(Ω) in the next section. In section

3, we give the dissipativity, and then prove the existence of global attractor for (1.5)-

(1.6). Finally, We obtain the existence of generalized exponential attractor with finite

fractal dimension in section 4.

Explaining in here, all C throughout the paper represent a normal numbers, and each

C is not exactly the same.
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2 Preliminaries

Let V0 = L2(Ω), V1 = H1
0 (Ω), V2 = H2(Ω)

⋂
H1

0 (Ω). Then we define the phase space

H = V2 × V0 × V1 × V0, (2.1)

and endowed with the norms

‖(u, ut, v, vt)‖H =

(
1

2
(‖4u‖2 + ‖ut‖2 + ‖∇v‖2 + ‖vt‖2)

) 1
2

,

where ‖∇·‖ and ‖4·‖ stand for the norm of V1 and V2, respectively. Denote A = 42 with

domain D(A) =
{
u ∈ H4(Ω) ∩H1

0 (Ω)|uxx(0, t) = uxx(L, t) = 0
}

.

Suppose that λ1 > 0 is the first eigenvalue of 42 with u(0) = u(L) = uxx(0) =

uxx(L) = 0, then λ
1
2
1 is the first eigenvalue of −4 with u(0) = u(L) = 0, and there holds

‖4u‖2 ≥ λ1‖u‖2, ∀u ∈ V2, ‖∇u‖2 ≥ λ
1
2
1 ‖u‖2, ∀u ∈ V1. (2.1)

Lemma 2.1 [8] Let X be a separable Banach space. We denote by Lp(a, b;X) with 1 ≤
p ≤ ∞ the space of (equivalence classes of) Bochner measurable functions f : [a, b] →
X such that ‖f(·)‖X ∈ Lp(a, b). Each Lp(a, b;X) is a Banach space with the norms

‖f‖Lp(a,b;X) =
(∫ b

a
‖f(t)‖pXdt

) 1
p
, 1 ≤ p <∞,

‖f‖L∞(a,b;X) = esssup{‖f(t)‖X : t ∈ [a, b]}.

We also denote by C(a, b;X) the space of strongly continuous functions with values in X and

use the space

W 1,p(a, b;X) = {f ∈ C(a, b;X) : f ′ ∈ Lp(a, b;X)},

where f ′(t) is a distributional derivative of f(t) with respect to t. We note that the s-

pace W 1,1(a, b;X) coincides with the set absolutely continuous functions from [a, b] into X.

Definition 2.2 [3, 5] A function (u(t), v(t)) ∈ C([0, T ];V2 × V1) possessing the initial

data u(0) = u0, ut(0) = u1, v(0) = v0, vt(0) = v1 is said to be

(S) a strong solution of (1.5)-(1.6) on the interval [0, T ] if and only if

(i) u ∈ W 1,1(a, b;V2), v ∈ W 1,1(a, b;V1), ut ∈ W 1,1(a, b;V2) and vt ∈ W 1,1(a, b;V1) for

any 0 < a < b < T ;

(ii) Au(t) + A
1
2 v(t) + Dut(t) + Dvt(t) ∈ V

′
0 for almost all t ∈ [0, T ], where the opera-

tor D satisfies the Assumption 1.1(D) in [5], and Dut(t) = ‖ut‖put, Dvt(t) = ‖vt‖pvt;
(iii) Eq.(1.5) is satisfied in V ′0 for almost all t ∈ [0, T ].
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(G) a generalized solution of (1.5)-(1.6) on the interval [0, T ] if and only if there exists se-

quence of the strong solution {un(t)}, {vn(t)} of (1.5)-(1.6) with initial data (u0n, u1n, v0n, v1n)

instead of (u0, u1, v0, v1) such that

lim
n→∞

max
t∈[0,T ]

{
|∂tu(t)−∂tun(t)|+|A

1
2u(t)−A

1
2un(y)|+|∂tv(t)−∂tvn(t)|+|A

1
4 v(t)−A

1
4 vn(t)|

}
= 0.

Remark 2.3 For the convenience of readers, the Assumption 1.1(D) in [5] is given as

follow: the operator D : D(A
1
2 ) → [D(A

1
2 )]′ is assumed the monotone semicontinuous

with D(0) = 0, i.e. (Du−Dv, u−v) ≥ 0 for all u, v ∈ D(A
1
2 ), and λ 7→ (D(u+λv), v) is

a continuous function from R into itself. Moreover, we assume that there exists a set W ⊂
D(A

1
2 ) such that D(w) ⊂ V ′ for every w ∈W and W is dense in V .

Lemma 2.4 [3] Let H be a Hilbert space with inner product (·, ·) and norm ‖ · ‖H , u, v ∈
H. Then there exists some constant Cγ which depends on γ such that

(‖u‖γ−2
H u− ‖v‖γ−2

H v, u− v) ≥

Cγ‖u− v‖
γ
H , γ ≥ 2,

Cγ
‖u−v‖2H

(‖u‖H+‖v‖H)2−γ , 1 ≤ γ ≤ 2.
(2.2)

Corollary 2.5 Denote D(µt) = ‖µt‖pµt and by Lemma 2.3, we obtain(
D(µt)−D(ϑt), µt − ϑt

)
≥ Cp‖µt − ϑt‖p+2, p ≥ 0, µt, ϑt ∈ V0, (2.3)

i.e., the damping operator D is strong monotone. Moreover, the damping operator D sat-

isfies the Assumption 1.1(D) in [5].

Theorem 2.6 Let T > 0 be arbitrary, the following statements hold:

(1) For every (u0, u1, v0, v1) ∈ V2 × V2 × V1 × V1, such that Au0 + A
1
2 v0 + Du1 + Dv1 ∈

L2(Ω), there exists a unique strong solution of (1.5)-(1.6) on the interval [0, T ] such that

(ut, utt, vt, vtt) ∈ L∞([0, T ];V2 × V0 × V1 × V0),

(ut, vt) ∈ Cr([0, T ];V2 × V1), (utt, vtt) ∈ Cr([0, T ];V0 × V0),

Au(t) +Dut(t) ∈ Cr([0, T ];V
′

0 ), A
1
2 v(t) +Dvt(t) ∈ Cr([0, T ];V

′
0 ),

where Cr represents the space of right continuous functions, and the solution of Eq.(1.5)

satisfies the energy relation

E(t) +

∫ t

0
(‖ut‖put, ut)dσ +

∫ t

0
(‖vt‖pvt, vt)dσ = E(0), (2.4)

where

E(t) =
1

2
‖ut‖2 +

1

2
‖4u‖2 +

1

2
‖vt‖2 +

1

2
‖∇v‖2 +

1

2
k2‖(u− v)+‖2

+
1

q + 2
‖u‖q+2 +

1

q + 2
‖v‖q+2 −

∫
Ω
hB(x)u(t)dx−

∫
Ω
hS(x)v(t)dx,

(2.5)
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E0(t) =
1

2
‖ut‖2 +

1

2
‖4u‖2 +

1

2
‖vt‖2 +

1

2
‖∇v‖2 +

1

2
k2‖(u− v)+‖2

+
1

q + 2
‖u‖q+2 +

1

q + 2
‖v‖q+2.

(2.6)

(2) For any initial data (u0, u1, v0, v1) ∈ V2×V0×V1×V0 there exists a unique generalized

solution such that

(u, ut, v, vt) ∈ C([0, T ];V2 × V0 × V1 × V0). (2.7)

Theorem 2.7 [3] Assume that the damping operator D maps V0 into V
′

0 and is a mono-

tone semicontinuous operator which is bounded on bounded sets, i.e., for any ρ, there have

sup
{
|D(u)|

V
′
0

: u ∈ V0, ‖u‖ ≤ ρ
}
<∞. (2.8)

Then every generalized solution is also weak, i.e., the relation

(ut(t), ω) = (u1, ω)−
∫ t

0

((
Au(σ), ω

)
−
(
Dut(σ), ω

)
+
(
(hB − k2(u− v)+−‖u‖qu), ω

))
dσ,

(vt(t), ν) = (v1, ν)−
∫ t

0

((
A

1
2 v(σ), ν

)
−
(
Dvt(σ), ν

)
+
(
(hS + k2(u− v)+ − ‖v‖qv), ν

))
dσ,

holds for every ∀ω ∈ V2, ∀ν ∈ V1 and for almost all t ∈ [0, T ].

Remark 2.8 The proof of Theorem 2.6 is similar to the proof of Theorem 2.3 in [3], so

we only give the above conclusion.

Corollary 2.9 Problem (1.5)-(1.6) generates a dynamical system (H, S(t)) in the space H,

the corresponding evolution operator S(t) is given by the formula

S(t)(u0, u1, v0, v1) = (u(t), ut(t), v(t), vt(t)), (2.9)

where (u(t), v(t)) solve (1.5) with the initial data (u0, u1, v0, v1).

In order to obtain the main result for our problem, we also need the following definitions

and abstract results from the book of Chueshov and Lasiecka [6] (see Chap. 7).

Definition 2.10 [5] A dynamical system (X,S(t)) is said to be asymptotically smooth if

and only if for any bounded set D such that S(t)D ⊂ D for t > 0, there exists a compact

set K ⊂ D̄ in the closure D̄ of D, such that

lim
t→+∞

distX{S(t)D,K} = 0, (2.10)

where distX{A,B} is the Hausdorff semidistance between sets A and B.

6



Definition 2.11 [5] A bounded closed set A ⊂ X is said to be a global attractor of the

dynamical system (X,S(t)) if and only if

(1) A is an invariant set, i.e. S(t)A = A for ∀t ≥ 0;

(2) A is uniformly attracting, i.e. lim
t→+∞

distX{S(t)M,A} = 0 for all bounded set M ⊂ X.

Theorem 2.12 [5] Let (X,S(t)) be a dynamical system on a complete metric space X en-

dowed with a metric d. Assume that for any bounded positively invariant set B ⊂ X there

exists T > 0, a continuous non-decreasing function r : R+ → R+ and a pseudomet-

ric %TB ∈ C(0, T ;X) such that

(1) r(0) = 0 and r(s) < s for every s > 0;

(2) the pseudometric %TB is precompact (with respect to X), i.e. for any sequence {xn} ⊂
B has a subsequence {xnk} such that the sequence {yk} ⊂ C(0, T ;X) of elements yk(τ) =

S(τ)xnk is Cauchy with respect to %TB;

(3) the following inequality holds

d(S(T )y1, S(T )y2) ≤ r
(
d(y1, y2) + %TB

(
{S(τ)y1}, {S(τ)y2}

))
, ∀y1, y2 ∈ B, (2.11)

where we denote by {S(·)yi} the element in the space C(0, T ;X) given by function yi(·) =

S(·)yi, i = 1, 2. Then (X,S(t)) is an asymptotically smooth dynamical system.

Definition 2.13 [6] Let (X,S(t)) be a dissipative dynamical system in a complete metric

space X. Then the dynamical system (X,S(t)) possesses a compact global attractor if and

only if (X,S(t)) is asymptotically smooth.

Definition 2.14 [6] Let X and Y be two reflexive Banach spaces with X ↪→↪→ Y and

put H = X × Y . If there exist a compact semi-norm nX on X and two locally bounded

nonnegative functions a(t) and c(t) satisfying

b(t) ∈ L1(R+) with lim
t→∞

b(t) = 0, (2.12)

‖S(t)y1 − S(t)y2‖2H ≤ a(t)‖y1 − y2‖2H , (2.13)

and

‖S(t)y1 − S(t)y2‖2H ≤ b(t)‖y1 − y2‖2H + c(t) sup
s∈[0,1]

[nX(u(s)− v(s))]2, (2.14)

for every yi ∈ B, i = 1, 2, where B ⊂ H is the bounded positively invariant set, and

S(t)yi = yi(t), t > 0. Then (H,S(t)) is called quasi-stable on B.

Theorem 2.15 [6] Let (X,S(t)) be a dynamical system. If (X,S(t)) possesses a com-

pact global attractor A and is quasi-stable on A, then the attractor A has finite fractal

dimension.

7



Theorem 2.16 [6] Let B be a bounded positively invariant absorbing set on the dynamical

system (X,S(t)) which is quasi-stable. If there exists a larger space X̃ ⊇ X such that for

any T > 0, it holds

‖S(t1)y − S(t2)y‖
X̃
≤ CB|t1 − t2|τ , t1, t2 ∈ [0, T ], y ∈ B, (2.15)

where CB > 0 depends on B, τ ∈ (0, 1]. Then the dynamical system (X,S(t)) possesses a

generalized exponential attractor Aexp ⊂ X whose dimension is finite in X̃.

3 Global attractor

In this section, we will prove the dissipativity of the semigroup {S(t)}t≥0 corresponding

to (1.5)-(1.6), and verify the asymptotic smoothness of the dynamical system (H, S(t)) by

means of a priori estimates and the energy reconstruction method. Finally, the existence

of global attractor is obtained.

Theorem 3.1 The dynamical system (H, S(t)) generated by (1.5)-(1.6) in the space H is

dissipative, namely, for any bounded set B ⊂ H, there exist a positive constant R > 0 and

t0 = t0(B) > 0, such that

‖S(t)y‖H = ‖ (u(t), ut(t), v(t), vt(t))‖H ≤ R,

for all y ∈ B and t ≥ t0.

Proof. Multiplying (1.5) by φ = ut + εu and ψ = vt + εv, and integrating over Ω, respec-

tively, we obtain that

d

dt

(1

2
‖ut‖2 +

1

2
‖4u‖2 +

1

2
‖vt‖2 +

1

2
‖∇v‖2 +

1

2
k2‖(u− v)+‖2

+
1

q + 2
‖u‖q+2 +

1

q + 2
‖v‖q+2 + (ut, εu) + (vt, εv)

−
∫

Ω
hBudx−

∫
Ω
hSvdx

)
− ε‖ut‖2 + ε‖4u‖2 − ε‖vt‖2 + ε‖∇v‖2

+ εk2‖(u− v)+‖2 + ε‖u‖q+2 + ε‖v‖q+2 + (‖ut‖put, ut + εu)

+ (‖vt‖pvt, vt + εv)− ε
∫

Ω
hBudx− ε

∫
Ω
hSvdx = 0.

(3.1)

According to Hölder and Young inequalities and (2.1), it follows that∣∣∣ ∫
Ω
hBudx

∣∣∣ ≤ 1

λ1
‖hB‖2 +

1

4
‖4u‖2, (3.2)

∣∣∣ ∫
Ω
hSvdx

∣∣∣ ≤ 1√
λ1
‖hS‖2 +

1

4
‖∇v‖2. (3.3)
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Combining with (2.5)-(2.6) and (3.2)-(3.3), we have

E(t) ≥ c0E0(t)− C0, 0 < c0 < 1. (3.4)

Denote W (t) = E(t)+(ut, εu)+(vt, εv), and by Hölder and Young inequalities, there holds

ε|(ut, u)| ≤ 1

4
‖ut‖2 +

ε2

λ1
‖4u‖2, (3.5)

and

ε|(vt, v)| ≤ 1

4
‖vt‖2 +

ε2√
λ1
‖∇v‖2, (3.6)

together (3.4)-(3.6), there exists ε0 > 0 with 0 < ε < ε0 such that

W (t) ≥ c1E0(t)− C1, 0 < c1 < 1. (3.7)

Next, we rewrite (3.1) as follows

d

dt
W (t) + εW (t) + Y (t) = 0, (3.8)

where

Y (t) =(‖ut‖put, ut + εu) + (‖vt‖pvt, vt + εv)− 3ε

2
‖ut‖2 −

3ε

2
‖vt‖2

+
ε

2
‖4u‖2 +

ε

2
‖∇v‖2 +

εk2

2
‖(u− v)+‖2 +

(q + 1)ε

q + 2
‖u‖q+2

+
(q + 1)ε

q + 2
‖v‖q+2 − ε2(ut, u)− ε2(vt, v).

(3.9)

Using Young inequality, we get that there exist constants c2, c3 > 0 such that

(ut, ut) = ‖ut‖2 ≤ c2 + c3‖ut‖p+2. (3.10)

Combining with (2.4) and (3.4), there exists CB > 0 such that

E0(t) ≤ C(1 + E(t)) ≤ C(1 + E(0)) ≤ CB. (3.11)

By Cauchy and Young inequalities, (2.1) and (3.11), we have

|(‖ut‖put, εu)| ≤ ε‖ut‖p(
1

2
‖ut‖2 +

1

2
‖u‖2)

≤ ε

2
‖ut‖p+2 +

ε

2
‖ut‖p‖u‖2

≤ ε

2
‖ut‖p+2 +

ε

2
(Cσ‖ut‖p+2 + σ)‖u‖2

≤ ε

2
‖ut‖p+2 +

εCσ
2λ1
‖4u‖2 · ‖ut‖p+2 +

εσ

2λ1
‖4u‖2

≤ ε

2
‖ut‖p+2 +

εCσ
2λ1

E0(t) · ‖ut‖p+2 +
εσ

λ1
E0(t)

≤ ε

2
‖ut‖p+2 +

εCσCB
2λ1

‖ut‖p+2 + εC2,

(3.12)
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similarly, the following inequality holds

|(‖vt‖pvt, εv)| ≤ ε

2
‖vt‖p+2 +

εCσCB

2
√
λ1
‖vt‖p+2 + εC3. (3.13)

Together with (2.1) and (3.12)-(3.13), we achieve

(‖ut‖put, ut + εu) ≥
(

1− ε

2
− εCσCB

2λ1

)
‖ut‖p+2 − εC2, (3.14)

and

(‖vt‖pvt, vt + εv) ≥
(

1− ε

2
− εCσCB

2
√
λ1

)
‖vt‖p+2 − εC3. (3.15)

Now, by virtue of (3.9)-(3.10) and (3.14)-(3.15), it follows that

Y (t) ≥
(

1

c3

(
1− ε

2
− εCσCB

2λ1

)
− 3ε

2
− ε

4

)
‖ut‖2

+

(
1

c3

(
1− ε

2
− εCσCB

2
√
λ1

)
− 3ε

2
− ε

4

)
‖vt‖2

+

(
ε

2
− ε3

λ1

)
‖4u‖2 +

(
ε

2
− ε3√

λ1

)
‖∇v‖2

− c2

c3

(
2− ε− εCσCB

2λ1
− εCσCB

2
√
λ1

)
− εC2 − εC3,

(3.16)

choose ε > 0 small enough, such that

1

c3

(
1− ε

2
− εCσCB

2λ1

)
− 3ε

2
− ε

4
> 0,

ε

2
− ε3

λ1
> 0,

ε

2
− ε3√

λ1
> 0, (3.17)

1

c3

(
1− ε

2
− εCσCB

2
√
λ1

)
− 3ε

2
− ε

4
> 0, 2− ε− εCσCB

2λ1
− εCσCB

2
√
λ1

> 0. (3.18)

We obtain that Y (t) ≥ −εC4, then it yields from (3.8) that

d

dt
W (t) + εW (t) ≤ εC4. (3.19)

Applying the Gronwall lemma, we conclude that

W (t) ≤W (0)e−εt + C4(1− e−εt). (3.20)

Therefore, there exists t0 = t0(B) = 1
ε ln W (0)

C4
such that

W (t) ≤ 2C4, ∀t ≥ t0. (3.21)

We claim from (3.7) that

‖(u, ut, v, vt)‖H ≤
2C4 + C1

c1
= R. (3.22)

This is the complete proof of the dissipativity. �
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Remark 3.2 Theorem 3.1 implies that

B0 = {(u(t), ut(t), v(t), vt(t)) ∈ H : ‖(u(t), ut(t), v(t), vt(t))‖H ≤ R}

is a bounded absorbing set of semigroup {S(t)}t≥0 corresponding to (1.5)-(1.6). From the

above proof, it is easy to see that dissipativity of the semigroup is independent of p and q.

In order to prove the asymptotic smoothness of the dynamical system (H, S(t)), we

need first to establish the following estimates.

Theorem 3.3 There exist T0 > 0 and a constant C > 0 independent of T such that for

any pair (u1, v1) and (u2, v2) of strong solutions for (1.5)-(1.6), we have the following

relation for T ≥ T0,

TEm(t) +

∫ T

0
Em(t)dt

≤ C(R)
{∫ T

0
‖ξt‖2dt+

∫ T

0
‖ζt‖2dt+

∫ T

0
(D(t, ξt), ξt)dt

+

∫ T

0
(D(t, ζt), ζt)dt+

∫ T

0
|(D(t, ξt), ξt)|dt+

∫ T

0
|(D(t, ζt), ζt)|dt

+

∫ T

0
‖4ξ‖ · ‖ξt‖dt+

∫ T

0
‖∇ζ‖ · ‖ζt‖dt+

∫ T

0
‖4ξ‖2dt

+

∫ T

0
‖∇ζ‖2dt+

∫ T

0
dt

∫ T

t
‖4ξ‖ · ‖ξt‖dτ +

∫ T

0
dt

∫ T

t
‖∇ζ‖ · ‖ζt‖dτ

+
∣∣∣ ∫ T

0
(‖u1‖qu1 − ‖u2‖qu2, ξ)dt

∣∣∣+
∣∣∣ ∫ T

0
(‖v1‖qv1 − ‖v2‖qv2, ζ)dt

∣∣∣
+
∣∣∣ ∫ T

0
(‖u1‖qu1 − ‖u2‖qu2, ξt)dt

∣∣∣+
∣∣∣ ∫ T

0
(‖v1‖qv1 − ‖v2‖qv2, ζt)dt

∣∣∣
+
∣∣∣ ∫ T

0
dt

∫ T

t
(‖u1‖qu1 − ‖u2‖qu2, ξt)dτ

∣∣∣
+
∣∣∣ ∫ T

0
dt

∫ T

t
(‖v1‖qv1 − ‖v2‖qv2, ζt)dτ

∣∣∣},

(3.23)

where ξ(t) = u1(t)− u2(t), ζ(t) = v1(t)− v2(t) and

Em(t) =
1

2

(
‖ξt‖2 + ‖4ξ‖2 + ‖ζt‖2 + ‖∇ζ‖2

)
, (3.24)

D(t, ξt) = ‖u1t‖pu1t − ‖u2t‖pu2t, D(t, ζt) = ‖v1t‖pv1t − ‖v2t‖pv2t. (3.25)

Proof. Note that ξ(t) = u1(t)−u2(t) and ζ(t) = v1(t)−v2(t) satisfy the following equality

ξtt + ξxxxx +D(t, ξt) + k2(u1 − v1)+ − k2(u2 − v2)+ + ‖u1‖qu1 − ‖u2‖qu2 = 0, (3.26)
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ζtt − ζxx +D(t, ζt)− k2(u1 − v1)+ + k2(u2 − v2)+ + ‖v1‖qv1 − ‖v2‖qv2 = 0. (3.27)

Multiplying (3.26) and (3.27) by ξt and ζt, and integrating over Ω, respectively, we obtain

1

2

d

dt
‖ξt‖2 +

1

2

d

dt
‖4ξ‖2 + (D(t, ξt), ξt) + (k2(u1 − v1)+ − k2(u2 − v2)+, ξt)

+ (‖u1‖qu1 − ‖u2‖qu2, ξt) +
1

2

d

dt
‖ζt‖2 +

1

2

d

dt
‖∇ζ‖2 + (D(t, ζt), ζt)

− (k2(u1 − v1)+ − k2(u2 − v2)+, ζt) + (‖v1‖qv1 − ‖v2‖qv2, ζt) = 0,

(3.28)

then

d

dt
Em(t) + (D(t, ξt), ξt) + (D(t, ζt), ζt) = −(k2(u1 − v1)+ − k2(u2 − v2)+, ξt)

+ (k2(u1 − v1)+ − k2(u2 − v2)+, ζt)

− (‖u1‖qu1 − ‖u2‖qu2, ξt)− (‖v1‖qv1 − ‖v2‖qv2, ζt).

(3.29)

Integrating over [t, T ] to (3.29), we get that

Em(T ) +

∫ T

t
(D(t, ξt), ξt)dτ +

∫ T

t
(D(t, ζt), ζt)dτ

= Em(t)−
∫ T

t
(k2(u1 − v1)+ − k2(u2 − v2)+, ξt)dτ

+

∫ T

t
(k2(u1 − v1)+ − k2(u2 − v2)+, ζt)dτ

−
∫ T

t
(‖u1‖qu1 − ‖u2‖qu2, ξt)dτ −

∫ T

t
(‖v1‖qv1 − ‖v2‖qv2, ζt)dτ.

(3.30)

Multiplying (3.26) and (3.27) by ξ and ζ, and integrating over Ω, respectively, we obtain

d

dt
(ξt, ξ) +

d

dt
(ζt, ζ)− ‖ξt‖2 + ‖4ξ‖2 − ‖ζt‖2 + ‖∇ζ‖2

+ (D(t, ξt), ξ) + (D(t, ζt), ζ) = −(k2(u1 − v1)+ − k2(u2 − v2)+, ξ)

+ (k2(u1 − v1)+ − k2(u2 − v2)+, ζ)− (‖u1‖qu1 − ‖u2‖qu2, ξ)

− (‖v1‖qv1 − ‖v2‖qv2, ζ),

(3.31)
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and integrating over [0, T ], it leads to

2

∫ T

0
Em(t)dt− 2

∫ T

0
‖ξt‖2dt− 2

∫ T

0
‖ζt‖2dt+ (ξt, ξ)|T0 + (ζt, ζ)|T0

+

∫ T

0
(D(t, ξt), ξ)dt+

∫ T

0
(D(t, ζt), ζ)dt

= −
∫ T

0
(k2(u1 − v1)+ − k2(u2 − v2)+, ξ)dt

+

∫ T

0
(k2(u1 − v1)+ − k2(u2 − v2)+, ζ)dt

−
∫ T

0
(‖u1‖qu1 − ‖u2‖qu2, ξ)dt−

∫ T

0
(‖v1‖qv1 − ‖v2‖qv2, ζ)dt.

(3.32)

By using continuously embedding theorem and (2.1), we have

|(ξt, ξ)| ≤ ‖ξt‖‖ξ‖ ≤
1

2
(‖ξt‖2 + ‖ξ‖2) ≤ CEm(t), (3.33)

|(ζt, ζ)| ≤ ‖ζt‖‖ζ‖ ≤
1

2
(‖ζt‖2 + ‖ζ‖2) ≤ CEm(t). (3.34)

Therefore, we infer that

2

∫ T

0
Em(t)dt ≤ C5(Em(T )− Em(0)) + 2

∫ T

0
‖ξt‖2dt+ 2

∫ T

0
‖ζt‖2dt

−
∫ T

0
(D(t, ξt), ξ)dt−

∫ T

0
(D(t, ζt), ζ)dt

−
∫ T

0
(k2(u1 − v1)+ − k2(u2 − v2)+, ξ)dt

+

∫ T

0
(k2(u1 − v1)+ − k2(u2 − v2)+, ζ)dt

−
∫ T

0
(‖u1‖qu1 − ‖u2‖qu2, ξ)dt−

∫ T

0
(‖v1‖qv1 − ‖v2‖qv2, ζ)dt.

(3.35)

Setting t = 0 in (3.30), we have

Em(0) = Em(T ) +

∫ T

0
(D(t, ξt), ξt)dt+

∫ T

0
(D(t, ζt), ζt)dt

+

∫ T

0
(k2(u1 − v1)+ − k2(u2 − v2)+, ξt)dt

−
∫ T

0
(k2(u1 − v1)+ − k2(u2 − v2)+, ζt)dt

+

∫ T

0
(‖u1‖qu1 − ‖u2‖qu2, ξt)dt+

∫ T

0
(‖v1‖qv1 − ‖v2‖qv2, ζt)dt.

(3.36)
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Moreover, thanks to the monotonicity of D, integrating (3.30) from 0 to T given

TEm(T )−
∫ T

0
Em(t)dt ≤

∫ T

0
dt

∫ T

t
(k2(u1 − v1)+ − k2(u2 − v2)+, ξt)dτ

+

∫ T

0
dt

∫ T

t
(k2(u1 − v1)+ − k2(u2 − v2)+, ζt)dτ

+

∫ T

0
dt

∫ T

t
(‖u1‖qu1 − ‖u2‖qu2, ξt)dτ

+

∫ T

0
dt

∫ T

t
(‖v1‖qv1 − ‖v2‖qv2, ζt)dτ.

(3.37)

According to |(u1 − v1)+ − (u2 − v2)+| ≤ L|(u1 − v1) − (u2 − v2)| (L > 0 is a suitable

constant), ‖(u, ut, v, vt)‖H ≤ R and (2.1), we have

|(k2(u1 − v1)+ − k2(u2 − v2)+, ξ)|
≤ Lk2‖(u1 − v1)− (u2 − v2)‖ · ‖ξ‖
= Lk2‖ξ − ζ‖ · ‖ξ‖ ≤ C(R)‖4ξ‖2,

(3.38)

Similarly, then

|(k2(u1 − v1)+ − k2(u2 − v2)+, ζ)| ≤ C(R)‖∇ζ‖2, (3.39)

|(k2(u1 − v1)+ − k2(u2 − v2)+, ξt)| ≤ C(R)‖4ξ‖ · ‖ξt‖, (3.40)

|(k2(u1 − v1)+ − k2(u2 − v2)+, ζt)| ≤ C(R)‖∇ζ‖ · ‖ζt‖. (3.41)

Hence, combining with (3.35)-(3.36), then (3.23) holds. �

Now, we are ready to prove the main result of this section that the dynamical sys-

tem (H, S(t)) corresponding to (1.5)-(1.6) in the space H is asymptotically smooth.

Theorem 3.4 The dynamical system (H, S(t)) generated by the problem (1.5)-(1.6) in

the space H is asymptotically smooth.

Proof. By Theorem 3.1, we know that B0 is a bounded absorbing set of semigroup S(t) re-

lated to (1.5)-(1.6) in the space H. By the definition of bounded absorbing set there

exists t0 ≥ 0 such that S(t)B0 ⊂ B0 for all t ≥ t0. Let B =
⋃
t≥t0 S(t)B0. It is clear

that B is a closed bounded forward invariant set for the dynamical system (H, S(t)) in

the space H. Therefore, for any bounded set B, we have S(t)B ⊂ B0 for t ≥ t(B), i.e., for

all t ≥ t0 + t(B), we have S(t)B ⊂ B, hence B is also an bounded absorbing set for this

system. Let (u1, v1) and (u2, v2) be two weak solution of (1.5)-(1.6) corresponding to two

different initical datas in the invariant set B, then(
u1(t), u1t(t), v1(t), v1t(t)

)
= S(t)y0,

(
u2(t), u2t(t), v2(t), v2t(t)

)
= S(t)y1. (3.42)
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Since all term of (2.13) are continuous with respect to the distance d given by the energy

norm ‖ · ‖E , it satisfies the condition of Theorem 2.12. Let T > 0, according to the energy

equaliy (2.4), we have∫ T

0
(D(u1), u1t)dt+

∫ T

0
(D(v1), v1t)dt+

∫ T

0
(D(u2), u2t)dt+

∫ T

0
(D(v2), v2t)dt

+

∫ T

0
(‖u1‖qu1, u1t)dt+

∫ T

0
(‖v1‖qv1, v1t)dt+

∫ T

0
(‖u2‖qu2, u2t)dt

+

∫ T

0
(‖v2‖qv2, v2t)dt ≤ CB.

(3.43)

Step 1: Energy reconstruction

From (3.23), we define

ΦT (u1, v1, u2, v2) =

∫ T

0
‖4ξ‖ · ‖ξt‖dt+

∫ T

0
‖∇ζ‖ · ‖ζt‖dt+

∫ T

0
‖4ξ‖2dt+

∫ T

0
‖∇ζ‖2dt

+

∫ T

0
dt

∫ T

t
‖4ξ‖ · ‖ξt‖dτ +

∫ T

0
dt

∫ T

t
‖∇ζ‖ · ‖ζt‖dτ

+
∣∣∣ ∫ T

0
(‖u1‖qu1 − ‖u2‖qu2, ξ)dt

∣∣∣+
∣∣∣ ∫ T

0
(‖v1‖qv1 − ‖v2‖qv2, ζ)dt

∣∣∣
+
∣∣∣ ∫ T

0
(‖u1‖qu1 − ‖u2‖qu2, ξt)dt

∣∣∣+
∣∣∣ ∫ T

0
(‖v1‖qv1 − ‖v2‖qv2, ζt)dt

∣∣∣
+
∣∣∣ ∫ T

0
dt

∫ T

t
(‖u1‖qu1 − ‖u2‖qu2, ξt)dτ

∣∣∣
+
∣∣∣ ∫ T

0
dt

∫ T

t
(‖v1‖qv1 − ‖v2‖qv2, ζt)dτ

∣∣∣},
(3.44)

furthermore,

ΦT (u1, v1, u2, v2) ≤ CT,B
{∫ T

0
‖4ξ‖ · ‖ξt‖dt+

∫ T

0
‖∇ζ‖ · ‖ζt‖dt+

∫ T

0
‖4ξ‖2dt+

∫ T

0
‖∇ζ‖2dt

+

∫ T

0
‖(‖u1‖qu1 − ‖u2‖qu2)‖ · ‖ξ‖dt+

∫ T

0
‖(‖v1‖qv1 − ‖v2‖qv2)‖ · ‖ζ‖dt

+

∫ T

0
‖(‖u1‖qu1 − ‖u2‖qu2)‖ · ‖ξt‖dt+

∫ T

0
‖(‖v1‖qv1 − ‖v2‖qv2)‖ · ‖ζt‖dt

}
.

(3.45)

By Cauchy inequality and compact embedding theorem, we arrive at∫ T

0
‖4ξ‖ · ‖ξt‖+

∫ T

0
‖4ξ‖2dt ≤ Cκ

∫ T

0
‖4ξ‖2dt+

κ

2

∫ T

0
‖ξt‖2dt+

∫ T

0
‖4ξ‖2dt

≤ CB,κ
∫ T

0
‖A1−αξ‖2dt+ κ

∫ T

0
Em(t)dt,

(3.46)

15



and∫ T

0
‖∇ζ‖ · ‖ζt‖dt+

∫ T

0
‖∇ζ‖2dt ≤ Cκ

∫ T

0
‖∇ζ‖2dt+

κ

2

∫ T

0
‖ζt‖2dt+

∫ T

0
‖∇ζ‖2dt

≤ CB,κ
∫ T

0
‖A

1
2
−βζ‖2dt+ κ

∫ T

0
Em(t)dt,

(3.47)

where 0 < α < 1
2 , 0 < β < 1

4 .

According to the Sobolev and Hölder inequalities, it yields∣∣(‖u1‖qu1 − ‖u2‖qu2)
∣∣ =

∣∣(‖u1‖qu1 − ‖u1‖qu2 + ‖u1‖qu2 − ‖u2‖qu2)
∣∣

≤ ‖u1‖q|u1 − u2|+
∣∣‖u1‖q − ‖u2‖q

∣∣|u2|,
(3.48)

then

‖(‖u1‖qu1 − ‖u2‖qu2)‖2 =

∫
Ω

∣∣(‖u1‖qu1 − ‖u2‖qu2)
∣∣2dx

≤
∫

Ω

∣∣‖u1‖q|u1 − u2|+
∣∣‖u1‖q − ‖u2‖q

∣∣|u2|
∣∣2dx

≤ 2(‖u1‖2q‖u1 − u2‖2 + ‖u2‖2
∣∣‖u1‖q − ‖u2‖q

∣∣2)

≤ C(R)‖u1 − u2‖2

≤ C(R)‖A1−α̃ξ‖2,

(3.49)

similarly, we have

‖(‖v1‖qv1 − ‖v2‖qv2)‖2 ≤ C(R)‖v1 − v2‖2 ≤ C(R)‖A
1
2
−β̃ζ‖2. (3.50)

By Hölder inequality and compact embedding theorem, we infer to∫ T

0
‖(‖u1‖qu1 − ‖u2‖qu2)‖ · ‖ξ‖dt+

∫ T

0
‖(‖u1‖qu1 − ‖u2‖qu2)‖ · ‖ξt‖dt

≤ Cκ
∫ T

0
‖(‖u1‖qu1 − ‖u2‖qu2)‖2dt+ κ

∫ T

0
Em(t)dt

≤ CB,κ
∫ T

0
‖A1−α̃ξ‖2dt+ κ

∫ T

0
Em(t)dt,

(3.51)

similarly,∫ T

0
‖(‖v1‖qv1 − ‖v2‖qv2)‖ · ‖ζ‖dt+

∫ T

0
‖(‖v1‖qv1 − ‖v2‖qv2)‖ · ‖ζt‖dt

≤ CB,κ
∫ T

0
‖A

1
2
−β̃ζ‖2dt+ κ

∫ T

0
Em(t)dt.

(3.52)
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Therefore, combining with (3.46)-(3.47) and (3.51)-(3.52), for any κ > 0, choosing δ =

min{α, α̃}, δ̃ = min{β, β̃}, we have

ΦT (u1, v1, u2, v2) ≤CB,κ(T )

∫ T

0
‖A1−δξ‖2dt+ CB,κ(T )

∫ T

0
‖A

1
2
−δ̃ζ‖2dt

+ 4κ

∫ T

0
Em(t)dt.

(3.53)

In line with Lemma 2.4, let H0(s) = C
− 2
p+2

p s
2
p+2 , p ≥ 0, it is a strictly increasing, concave

function, and H0 ∈ C(R+) with the property H0(0) = 0 such that

H0

(
(‖u+ v‖p(u+ v)− ‖u‖pu, v)

)
≥ H0(Cp‖v‖p+2) = ‖v‖2, ∀u, v ∈ V2 × V1. (3.54)

Hence, by Jensen inequality, it follows that

∫ T

0
‖ξt‖2dt ≤

∫ T

0
H0(D(t, ξt), ξt)dt

≤ TH0

( 1

T

∫ T

0
(D(t, ξt), ξt)dt

)
= H0

(∫ T

0
(D(t, ξt), ξt)dt

)
,

(3.55)

where H0(s) = TH0( sT ). Similarly, we have

∫ T

0
‖ζt‖2dt ≤ H0

(∫ T

0
(D(t, ζt), ζt)dt

)
. (3.56)

By Cauchy’s inequality and Sobolev’s embedding theorem, there exists a small constan-

t η for 0 < η < 1
2 such that

|(D(t, ξt), ξ)| ≤ ‖ξ‖
(∫

Ω
(‖u1t‖pu1t − ‖u2t‖pu2t)

2dx
) 1

2

≤ C‖ξ‖
(
‖u1t‖2pu2

1t − ‖u2t‖2pu2
2t)

2
) 1

2

≤ CB‖ξ‖ ≤ CB‖A1−ηξ‖,

(3.57)

Similarly,

|(D(t, ζt), ζ)| ≤ CB‖A
1
2
−η̃ζ‖, 0 < η̃ <

1

2
. (3.58)
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Therefore, combining with (3.53)-(3.58) and Theorem 3.3, we have

TEm(T ) +
1

2

∫ T

0
Em(t)dt ≤ CB

{
(H0 + I)

( ∫ T

0
(D(t, ξt), ξt)dt+

∫ T

0
(D(t, ζt), ζt)dt

)
+

∫ T

0
‖A1−ηξ‖dt+

∫ T

0
‖A

1
2
−η̃ζ‖dt

+ CB,T

∫ T

0
‖A1−δξ‖2dt+ CB,T

∫ T

0
‖A

1
2
−δ̃ζ‖2dt

}
.

(3.59)

Step 2: Handling of the damping

Denote ω = min{η, δ}, ω̃ = min{η̃, δ̃}, from (3.59) we get that

Em(T ) ≤CB,T (H0 + I)
(∫ T

0
(D(t, ξt), ξt)dt+

∫ T

0
(D(t, ζt), ζt)dt

)
+ CB,T

∫ T

0
‖A1−ωξ‖dt+ CB,T

∫ T

0
‖A

1
2
−ω̃ζ‖dt

≤CB,T (H0 + I)
(∫ T

0
(D(t, ξt), ξt)dt+

∫ T

0
(D(t, ζt), ζt)dt

)
+ CB,T

(
sup
t∈[0,T ]

‖A1−ωξ(t)‖+ sup
t∈[0,T ]

‖A
1
2
−ω̃ζ(t)‖

)
.

(3.60)

Let Q0(s) = (H0 + I)−1
(

s
2CB,T

)
be a strictly increasing, convex function and (H0 +

I)−1(s) ≤ s for any s ≥ 0. From (3.59) we infer that

Q0(Em(T )) =(H0 + I)−1
(Em(T )

2CB,T

)
≤(H0 + I)−1

{1

2
(H0 + I)

( ∫ T

0
(D(t, ξt), ξt)dt+

∫ T

0
(D(t, ζt), ζt)dt

)
+

1

2

(
sup
t∈[0,T ]

‖A1−ωξ(t)‖+ sup
t∈[0,T ]

‖A
1
2
−ω̃ζ(t)‖

)}
≤1

2

{∫ T

0
(D(t, ξt), ξt)dt+

∫ T

0
(D(t, ζt), ζt)dt

}
+

1

2

{
sup
t∈[0,T ]

‖A1−ωξ(t)‖+ sup
t∈[0,T ]

‖A
1
2
−ω̃ζ(t)‖

}
.

(3.61)
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Setting t = 0 in (3.30), and combining with (3.40)-(3.41) and (3.49)-(3.50), we achieve∫ T

0
(D(t, ξt), ξt)dτ +

∫ T

0
(D(t, ζt), ζt)dτ

=Em(0)− Em(T )−
∫ T

0
(k2(u1 − v1)+ − k2(u2 − v2)+, ξt)dτ

+

∫ T

0
(k2(u1 − v1)+ − k2(u2 − v2)+, ζt)dτ

−
∫ T

0
(‖u1‖qu1 − ‖u2‖qu2, ξt)dτ −

∫ T

0
(‖v1‖qv1 − ‖v2‖qv2, ζt)dτ

≤Em(0)− Em(T ) + CB,T

(
sup
t∈[0,T ]

‖A1−ωξ(t)‖+ sup
t∈[0,T ]

‖A
1
2
−ω̃ζ(t)‖

)
,

(3.62)

then

Em(T ) + 2Q0(Em(T ))

≤ Em(0)− Em(T ) + CB,T

(
sup
t∈[0,T ]

‖A1−ωξ(t)‖+ sup
t∈[0,T ]

‖A
1
2
−ω̃ζ(t)‖

)
.

(3.63)

Since ξ(t), ζ(t) are uniformly bounded in D(A), D(A
1
2 ) with D(A) ↪→↪→ D(A1−ω) ↪→↪→

V0, D(A
1
2 ) ↪→↪→ D(A

1
2
−ω̃) ↪→↪→ V0, respectively. Exploiting the interpolation inequality

we obtain

‖A1−ωξ(t)‖ ≤ ‖ξ(t)‖η1D(A) · ‖ξ(t)‖
1−η1 ≤ CR‖ξ(t)‖1−η1 , 0 < η1 < 1, (3.64)

and

‖A
1
2
−ω̃ζ(t)‖ ≤ ‖ζ(t)‖η2

D(A
1
2 )
· ‖ζ(t)‖1−η2 ≤ CR‖ζ(t)‖1−η2 , 0 < η2 < 1. (3.65)

Therefore

Em(T ) + 2Q0(Em(T ))

≤ Em(0) + CB,T

(
sup
t∈[0,T ]

‖ξ(t)‖ς + sup
t∈[0,T ]

‖ζ(t)‖ς
)
.

(3.66)

for any ς ∈ (0, 1]. This implies that

‖S(T )y1 − S(T )y2‖2H

≤ 2[I + 2Q0]−1
{1

2
‖y1 − y2‖2 + CB,T

(
sup
t∈[0,T ]

‖ξ(t)‖ς + sup
t∈[0,T ]

‖ζ(t)‖ς
)}

≤ 2[I + 2Q0]−1
{1

2

(
‖y1 − y2‖+ CB,T ( sup

t∈[0,T ]
‖ξ(t)‖ς + sup

t∈[0,T ]
‖ζ(t)‖ς)

1
2
)2}

.

(3.67)
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Choosing ς
′ ∈ (0, 1

2 ], we have

‖S(T )y1 − S(T )y2‖H

≤
√

2

[
[I + 2Q0]−1

{1

2

(
‖y1 − y2‖+ CB,T ( sup

t∈[0,T ]
‖ξ(t)‖ς

′
+ sup
t∈[0,T ]

‖ζ(t)‖ς
′
)
)2}] 1

2

.
(3.68)

Let r(s) =
√

2
(

(I + 2Q0)−1( s
2

2 )
) 1

2
, and

%TB
(
{Sτy1}, {Sτy2}

)
= CB,T ( sup

t∈[0,T ]
‖u1(t)− u2(t)‖ς

′
+ sup
t∈[0,T ]

‖v1(t)− v2(t)‖ς
′
). (3.69)

So we conclude that

‖S(T )y1 − S(T )y2‖H ≤ r
(
‖y1 − y2‖+ %TB({Sτy1}, {Sτy2})

)
. (3.70)

It is clear that the function r satisfies all the requirements of Theorem 2.12. Final-

ly, according to the similar proof in [3] we get that the pseudometric %TB of all solution for

(1.5)-(1.6) is precompact in the interval [0, T ]. Hence, the dynamical system (H, S(t)) is

asymptotically smooth. �

Thanks to Theorem 3.1 and Theorem 3.4, we deduce the main result of this paper as

the following theorem.

Theorem 3.5 The dynamical system (H, S(t)) generated by the problem (1.5)-(1.6) in

the space H possesses a compact global attractor A.

4 Fractal dimension and generalized exponential attractor

In this section, we mainly prove the quasi-stability of the dynamical system (H, S(t)) as-

sociated to (1.5)-(1.6) to give the finite fractal dimension of attractors, and further obtain

the existence of the generalized exponential attractor Aexp with finite fractal dimension in

a larger space H̃ ⊇ H. Firstly, we are going to prove that the dynamical system (H, S(t)) is

quasi-stable on any bounded positively invariant set in H.

Lemma 4.1 The dynamical system (H, S(t)) generated by the problem (1.5)-(1.6) is quasi-

stable in a bounded positively invariant set B ⊂ H.

Proof. According to Definition 2.14, we only need to verify inequalities (2.13) and (2.14).

From (3.29), we have

d

dt
Em(t) + (D(t, ξt), ξt) + (D(t, ζt), ζt) = −(k2(u1 − v1)+ − k2(u2 − v2)+, ξt)

+ (k2(u1 − v1)+ − k2(u2 − v2)+, ζt)

− (‖u1‖qu1 − ‖u2‖qu2, ξt)− (‖v1‖qv1 − ‖v2‖qv2, ζt),

(4.1)
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where ξ(t) = u1(t)− u2(t), ζ(t) = v1(t)− v2(t), by virtue of (3.40)-(3.41), we achieve at

| − (k2(u1 − v1)+ − k2(u2 − v2)+, ξt)|

≤ C(R)‖4ξ‖‖ξt‖ ≤ C(R)(
1

2
‖4ξ‖2 +

1

2
‖ξt‖2)

≤ C(R)Em(t),

(4.2)

similarly, we have

|(k2(u1 − v1)+ − k2(u2 − v2)+, ζt)| ≤ C(R)Em(t). (4.3)

According to (2.3), it follows that

(D(t, ξt), ξt) + (D(t, ζt), ζt) ≥ Cp‖ξt‖P+2 + Cp‖ζt‖P+2 ≥ 0, (4.4)

using Hölder inequality, the embedding V2 ↪→ L2(q+1)(Ω) and V2 ↪→ Lp+2(Ω), it yields

| − (‖u1‖qu1 − ‖u2‖qu2, ξt)| = (q + 1)

∫
Ω
|θu1 + (1− θ)u2|q|ξ||ξt|dx

≤ (q + 1)22q(‖u1‖q2(q+1) + ‖u2‖q2(q+1))‖ξ‖2(q+1)‖ξt‖

≤ CB‖ξ‖2(q+1)‖ξt‖p+2 ≤ CB(‖ξ‖22(q+1) + ‖ξt‖2p+2)

≤ CB,REm(t),

(4.5)

similarly,

| − (‖v1‖qv1 − ‖v2‖qv2, ζt)| ≤ CB,REm(t). (4.6)

Together with (4.1)-(4.6), we conclude that

d

dt
Em(t) ≤ 2C(R)Em(t) + 2CB,REm(t) ≤ C(R,B)Em(t), (4.7)

in line with the Gronwall lemma, we get that

Em(t) ≤ eC(R,B)tEm(0), (4.8)

in addition, we see that (2.13) holds with a(t) = eC(R,B)t, where a(t) is locally bounded on

[0,∞] because of the boundedness of B ⊂ H. On the other hand, by virtue of the proof of

the Theorem 3.4, we claim from (3.67) that

‖S(T )y1 − S(T )y2‖2H

≤ 2[I + 2Q0]−1
{1

2
‖y1 − y2‖2 + CB,T ( sup

t∈[0,T ]
‖ξ(t)‖ς + sup

t∈[0,T ]
‖ζ(t)‖ς)

}
≤ [I + 2Q0]−1‖y1 − y2‖2 + 2[I + 2Q0]−1CB,T max

t∈[0,T ]
(‖ξ(t)‖ς + ‖ζ(t)‖ς),

(4.9)
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where ς ∈ (0, 1], Q0 is defined in the previous section. Thus, we define the semi-norm as

follows

nH(ξ, ζ) = ‖ξ(t)‖ς + ‖ζ(t)‖ς . (4.10)

By using the compact embedding V2 ↪→↪→ V0 and V1 ↪→↪→ V0, we conclude that nH is a

compact semi-norm on H. Then (2.14) holds with

b(t) = [I + 2Q0]−1, c(t) = 2[I + 2Q0]−1CB,T ,

it is easy to check that

b(t) ∈ L1(R+), lim
t→∞

b(t) = 0.

Since B ⊂ H is bounded, so c(t) is locally bounded on [0,∞]. Then we conclude that the

dynamical system (H, S(t)) is quasi-stable in a bounded positively invariant set B ⊂ H by

Definition 2.14. Therefore the proof of the lemma is complete. �

From the above Lemma 4.1 we know that the dynamical system (H, S(t)) is quasi-

stable on the compact global attractor A, which is a bounded positively invariant set of

H, and Theorem 3.5 ensures that (H, S(t)) has a compact global attractor in H. Thus we

can immediately conclude the following results by Theorem 2.15.

Theorem 4.2 The compact global attractor A of the dynamical system (H, S(t)) has finite

fractal dimension.

Now, we will prove the existence of the generalized exponential attractor Aexp and it

has finite fractal dimension in a larger space H̃ ⊇ H.

Theorem 4.3 The dynamical system (H, S(t)) generated by the problem (1.5)-(1.6) pos-

sesses a generalized exponential attractor Aexp with finite fractal dimension on the space

H̃ = L2(Ω)×H−2(Ω)× L2(Ω)×H−1(Ω) ⊇ H.

Proof. It is easy to see that the dynamical system (H, S(t)) is quasi-stable in a bound-

ed positively invariant set B ⊂ H by Lemma 4.1, thus we only need to prove that

the mapping t → S(t)y is Hölder continuous on the space H̃. Indeed, we know that

S(t)y = (u(t), ut(t), v(t), vt(t)) = φ(t) for every y = φ(0) = (u0, u1, v0, v1) ∈ B. By virtue

of Theorem 3.1, there exists R > 0 such that ‖ut‖2V2 + ‖utt‖2 + ‖vt‖2V1 + ‖vtt‖2 ≤ R2, and

then

‖φt(t)‖2H̃ = ‖ut‖2 + ‖utt‖2V−2
+ ‖vt‖2 + ‖vtt‖2V−1

≤ C(‖ut‖2V2 + ‖utt‖2 + ‖vt‖2V1 + ‖vtt‖2)

≤ CB.

(4.11)
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Hence, for any 0 ≤ t1 ≤ t2 ≤ T , it follows that

‖S(t1)y − S(t2)y‖H̃ ≤
∫ t2

t1

‖φt(s)‖H̃ds ≤ CB|t1 − t2|. (4.12)

In view of Theorem 2.16, choosing τ = 1, therefore we conclude that the dynamical

system (H, S(t)) has a generalized exponential attractor Aexp ⊂ H̃ with finite fractal

dimension. �

Remark 4.4 Since the problem (1.5)-(1.6) is in one-dimensional space, and H1
0 (Ω) ⊂

Lq(Ω)(1 ≤ q ≤ ∞), the nonlocal term ‖u‖qu and ‖v‖qv don’t bring any difficulty.

Remark 4.5 If the nonlocal functions ‖u‖qu and ‖v‖qv turn into the polynomial func-

tions |u|qu and |v|qv (q ≥ 0), then all results in this paper still hold because of H1
0 (Ω) ⊂

Lq(Ω) (1 ≤ q ≤ ∞) in one-dimensional space.

Remark 4.6 When the dimension of space is bigger than 2, the exponential q of polyno-

mial functions |u|qu and |v|qv (q ≥ 0) in the equation is required to satisfy some certain

condition, see [3] for details.
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