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Abstract

In this paper, we consider a new epidemiological model with delay and relapse phenomena.
Firstly, a basic reproduction number R0 is identified, which serves as a threshold parameter
for the stability of the equilibria of the model. Then, beginning with the delay-free model, the
global asymptotic stability of the equilibria is obtained through the construction of suitable
Lyapunov functions. For the delay model, the stability of the positive equilibrium and the
existence of the local Hopf bifurcation are discussed. Furthermore, the application of the nor-
mal form theory and center manifold theorem is used to determine the direction and stability
of these Hopf bifurcations. Finally, we shed light on corresponding biological implications
from a numerical perspective. It turns out that time delay affects the stability of the positive
equilibrium, leading to the occurrence of periodic oscillations and disease recurrence.
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1 Introduction

Infectious diseases are illnesses caused by pathogenic microorganisms, such as viruses, bacteria,
parasites, and fungi, that can be transmitted from one individual to another through direct or
indirect contact, leading to a wide range of symptoms and potentially severe consequences. To
gain deeper insights into the dynamics of disease transmission, mathematicians have dedicated
their efforts to constructing infectious disease models, enabling insightful predictions of infection
spread and meticulous evaluations of the efficacy of control measures. One of the most basic SIR
models was posed by Kermack and McKendrick in 1927 [15] and 1932 [16]:

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI,

where S, I, and R are respectively the densities of susceptible, infective, and recovered individuals,
β is the transmission coefficient, that is, the average number of effective contacts of an infective
individual per unit time, βSI is the total number of individuals infected by infective individuals per
unit of time, and γ is the recover rate of infective individuals. rate at which infective individuals
recover.

It has been well-acknowledged that some diseases, including Herpes simplex virus type 2 and
tuberculosis in adults [3, 19, 25], can have the ability to establish latent infections: lie dormant in
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the body for a long period of time and reactivate later to induce relapse. Furthermore, as time
elapses, the initial immune response triggered by the initial infection may gradually wane, which
can also increase the likelihood of disease recurrence and subsequent reinfection of the individ-
ual. To our best knowledge, Tudor [22] firstly investigated the concept of relapse by proposing a
compartmental model (later recognized as the SIRI model) incorporating bilinear incidence and
constant population size (i.e. N = S + I + R, where N is constant). Building upon Tudor’s
work, Moreira and Wang [18] further extended the model by incorporating an incidence term that
depended on the size of the susceptible class. Since then, a lot of SIRI epidemic models described
by ordinary differential equations, functional differential equations and reaction diffusion equation
with free boundary problem have been proposed and analyzed. We refer van den Driessche et al.
[5], van den Driessche and Zou [6], Wang and Shu [27], Xu [28], Yang et al. [32], Vargas-De-León
[24], Ding et al.[7] and Zhao et al.[33]to cite a few.

Incidence plays an important role in the modelling of epidemic dynamics. In many epidemic
models, besides the bilinear incidence rate βSI, the standard incidence rate βSI/N is also fre-
quently used. We refer Castillo-Garsow et al. [2], Wang and Yang [26], Fan [10], et al. Especially,
in 2013, Vargas-De-León [24] presented an epidemiological model with relapse and disease-induced
death, which was expressed as follows:

dS

dt
= Λ− βSI

S + I +R
− µS,

dI

dt
=

βSI

S + I +R
− (α+ γ + µ)I + ηR,

dR

dt
= γI − (µ+ η)R,

where Λ is the recruitment rate of susceptibles corresponding to births and immigration, µ is the
natural death rate of population, α is the disease-induced death rate, γ describes the rate that
the infectious individuals become non-infectious individuals and η denotes the rate that the non-
infectious individuals are reverted to the infectious state. By employing suitable combinations of
well-known functions, namely common quadratic and Volterra-type functions, as well as a compos-
ite Volterra-type function, they successfully constructed the Lyapunov functions and proved the
conditions for the global stability of the steady states in epidemiological models with relapse.

Noticing that certain diseases do not confer complete immunity on individuals who have re-
covered from a previous infection. Instead, they may experience temporary and limited or no
immunity limited/no immunity. Based on these considerations, Chen [4] formulated the following
SIRS model: 

dS

dt
= Λ− Sf(I)− µS + γ1I + η2R,

dI

dt
= Sf(I)− (µ+ γ1 + γ2 + δ)I + η1R,

dR

dt
= γ2I − (µ+ η1 + η2)R,

(1.1)

to study the global stability of the disease-free equilibrium and the global stability of the endemic
equilibrium. In (1.1), the incidence rate is characterized by a nonlinear function f(I), γ1 is the
rate for infectious individuals recovering with no immunity, γ2 is the rate for infectious individuals
recovering with temporary immunity, η1 and η2 are respectively the relapse rate and temporary
immunity rate, and δ is the additional death rate for infectious individuals.

Due to time delay plays a critical role in infectious disease models, investigating the ways
in which infectious diseases are affected by the time delay has become a hot subject. Time de-
lay in epidemic transmission may have a small impact [17], but sometimes it can also it is also
can significantly alter system dynamics, potentially leading to the occurrence of Hopf bifurca-
tion [1]. For example, in 2004, Greenhalgh et al. [11] studied the Hopf bifurcation in two SIRS
density-dependent epidemic models and found that although the Hopf bifurcation was theoretically
supported, it did not appear to occur for realistic parameter values. As an extension, Enatsu et
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al.[8] investigated the stability of delayed SIR models with a class of nonlinear incidence rates, they
showed that the stability of endemic equilibrium would be lost as the length of the delay increases
past a critical value. In 2014, Xu [29] considered a delayed SIRI model (with f(S, I) = βSI),
he established and established the global stability of the disease-free equilibrium and the endemic
equilibrium by using LaSalle invariance principle and suitably constructing Lyapunov functionals.
Although enormous efforts have been devoted to the study of models with delay [20, 23, 31] or
relapse [9, 30], to our best knowledge, the study of the epidemic model including both delay and
relapse remains open.

Motivated by [4] and [24], in this paper, we are concerned with the joint effects of disease
relapse, standard incidence and the time delay describing latent period on the global dynamics of
infectious diseases. We focus on diseases with shorter courses, thereby neglecting the birth and
death of the population. To be precise, we introduce the following delay differential equations:

dS

dt
= − βS(t− τ)I(t− τ)

S(t− τ) + I(t− τ) +R(t− τ)
+ η2R,

dI

dt
=

βS(t− τ)I(t− τ)

S(t− τ) + I(t− τ) +R(t− τ)
− γI + η1R,

dR

dt
= γI − η1R− η2R,

(1.2)

where β is the disease transmission coefficient, γ is the recovery rate, η1 is the relapse rate, η2 is
the temporary immunity rate, τ estimates the latent period of the disease.

The primary goal of this paper is to offer a complete mathematical analysis of model (1.2) and
establish its global dynamics. In the next section, the basic reproduction number is identified, and
the well-posedness of the solution of an epidemic model with relapse is also given. In Section 3,
the global stability of equilibria is examined in the absence of delays. The main part is Section
4, where we establish the local stability of the positive equilibrium and the existence of a local
Hopf bifurcation. The direction and stability of the Hopf bifurcation are determined using the
center manifold theorem and the normal form theory. Finally, in Section 5, we conclude with
a brief discussion and provide biological interpretations of our main findings through numerical
simulations.

2 Well-posedness of the model (2.1)

In accordance with model (1.2), focusing on the biological relevance, we exclusively examine
solutions of the system that adhere to the subsequent initial conditions:

S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), R(θ) = ϕ3(θ),

ϕi(θ) ≥ 0, θ ∈ [−τ, 0], ϕi(0) > 0, i = 1, 2, 3,
(2.1)

where (ϕ1(θ), ϕ2(θ), ϕ3(θ)) ∈ C([−τ, 0],R3
+), which is the Banach space of continuous functions

mapping the interval [−τ, 0] into R3
+ with R3

+ = {(S, I,R) | S ≥ 0, I ≥ 0, R ≥ 0}. Denote
C+
τ = C([−τ, 0],R3

+), for all ϕ = (ϕ1, ϕ2, ϕ3) ∈ C+
τ and σ ∈ R. It follows from Theorem 3.1 in

[21] that model (1.2) has a unique solution (S, I,R) : [σ − τ,+∞] → R3
+, and for t ∈ [σ − τ, σ],

(S(t), I(t), R(t)) = (ϕ1(t − σ), ϕ2(t − σ), ϕ3(t − σ)). Hence, C+
τ is a forward invariant set of

system (1.2).

Since
d(S + I +R)

dt
= 0,

we have S + I + R ≡ N with N > 0 being the constant population size. So, model (1.2) can be
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reduced to the following equivalent one:
dI

dt
=

β

N
(N − I(t− τ)−R(t− τ))I(t− τ)− γI + η1R,

dR

dt
= γI − (η1 + η2)R,

(2.2)

which still satisfies the initial condition (2.1). To sum up, we have the following results.

Lemma 2.1 Let (S(t), I(t), R(t)) be the solution of model (1.2) with initial conditions (2.1). Then
S(t), I(t), R(t) are nonnegative and ultimately bounded for all t ≥ 0.

Obviously, all feasible solutions of model (1.2) with (2.1) are bounded and enter the region

Ω = {(S, I,R) | S ≥ 0, I ≥ 0, R ≥ 0, S + I +R = N},

where Ω is an invariant set.

Model (2.2) has a disease-free equilibrium

E0 = (0, 0).

By introducing the basic reproduction number

R0 =
β(η1 + η2)

γη2
.

Model (2.2) has a unique positive equilibrium E∗ = (I∗, R∗) with

I∗ =
N(η1 + η2)

η1 + η2 + γ
(1− 1

R0
), R∗ =

γN

η1 + η2 + γ
(1− 1

R0
)

under the condition R0 > 1.

In the next section, we will We in the next section explore the global stability of the equilibria
of model (2.2) without the time delay.

3 Dynamics of the model (2.2) without delay

This section focuses on the dynamics of the delay-free system the limiting system of (2.2), that
is 

dI

dt
=

β

N
(N − I −R)I − γI + η1R,

dR

dt
= γI − (η1 + η2)R.

(3.1)

To prepare, we introduce the following lemma that plays a key role in proving the global stability
of equilibrium states.

Lemma 3.1 (Lasalle Invariance Principle [14]) Let X∗ be an equilibrium point for X ′ =
F (X) and let L : U → R be a Liapunov function for X∗, where U is an open set containing
X∗. Let P ⊂ U be a neighborhood of X∗ that is closed and bounded. Suppose that P is positively
invariant, X ∈ P and that there is no entire solution in P −X∗ on which L is constant. Then X∗

is asymptotically stable, and P is contained in the basin of attraction of X∗.

Theorem 3.1 If R0 ≤ 1, then E0 of model (3.1) is globally asymptotically stable.
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Proof. Define Lyapunov function V0[I,R], functional V0

V0[I,R] = I +
η1

η1 + η2
R, (3.2)

which is positive definite, and reaches the global minimum at E0. Differentiating V0[I,R] V0 with
respect to time t along the solution of model (3.1), we have

d

dt
V0[I,R]|(3.1) =

β

N
(N − I −R)I − γI + η1R+

γη1
η1 + η2

I − η1R

= − β
N

(I +R)I + βI − γI +
γη1

η1 + η2
I

= − β
N

(I +R)I +

(
β − γη1

η1 + η2

)
I

= − β
N

(I +R)I + β

(
1− 1

R0

)
I.

If R0 ≤ 1, then d
dtV0[I,R]|(3.1) ≤ 0 holds for any I,R ≥ 0. In addition, d

dtV0[I,R]|(3.1) = 0 if and

only if I = 0, R = 0. Therefore, E0 is the largest invariant set of {(I,R) ∈ R2
+ : d

dtV0[I,R]|(3.1) =
0}. It follows from LaSalle invariance principle [14] in Lemma 3.1 that E0 is global asymptotically
stable. This completes the proof. �

Regarding the stability of E∗, we have

Theorem 3.2 If R0 > 1, then the endemic equilibrium E∗ of model (3.1) is globally asymptotically
stable.

Proof. Define Lyapunov function V1[I,R] functional V1 as follows

V1[I,R] =
N

β

(
I − I∗ − I∗ ln

I

I∗

)
+
a

2
(R−R∗)2 +

Nη1R
∗

γβI∗
(R−R∗ −R∗ ln

R

R∗
), (3.3)

where a is a positive number to be determined later. Then V1[I,R] V1 is positive definite on Ω
for all I,R > 0. Direct calculation shows that the derivative of V1[I,R] V1 with respect to time t
along solutions of (3.1) is given by

d

dt
V1[I,R]|(3.1) =

N

β

(
I − I∗

I

)
β

N
I

{
−(I − I∗)− (R−R∗) +

Nη1
β

(
R

I
− R∗

I∗

)}
+ a(R−R∗) {γ(I − I∗)− (η1 + η2)(R−R∗)}

+
Nη1R

∗

γβI∗
R−R∗

R
[γ(I − I∗)− (η1 + η2)(R−R∗)]

= (I − I∗) {−(I − I∗)− (R−R∗)}
+ a(R−R∗) {γ(I − I∗)− (η1 + η2)(R−R∗)}

+
Nη1
β

(I − I∗)(R
I
− R∗

I∗
) +

Nη1R
∗

γβI∗
γI∗

(
1− R∗

R

)(
I

I∗
− R

R∗

)
= −(I − I∗)2 − (I − I∗)(R−R∗) + aγ(I − I∗)(R−R∗)

− a(η1 + η2)(R−R∗)2 +
Nη1
β

R∗
(
I

I∗
− 1

)(
RI∗

R∗I
− 1

)
+
Nη1R

∗

γβI∗
γI∗

(
1− R∗

R

)(
I

I∗
− R

R∗

)
(By choosing a =

1

γ
such that −(I − I∗)(R−R∗) + aγ(I − I∗)(R−R∗) = 0)
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= −(I − I∗)2 − η1 + η2
γ

(R−R∗)2 +
Nη1
β

R∗
(
I

I∗
− 1

)(
RI∗

R∗I
− 1

)
+
Nη1R

∗

γβI∗
γI∗

(
1− R∗

R

)(
I

I∗
− R

R∗

)
= −(I − I∗)2 − η1 + η2

γ
(R−R∗)2 +

Nη1
β

R∗
(

2− (IR∗)2 + (I∗R)2

I∗RIR∗

)
.

From the basic inequality, 2− (IR∗)2+(I∗R)2

I∗RIR∗ 6 0. Therefore, d
dtV1[I,R]|(3.1) is nonpositive definite on

Ω for any I(t) and R(t). In addition, d
dtV1[I,R]|(3.1) = 0 holds if and only if I(t) = I∗, R(t) = R∗.

From LaSalle invariance principle [14] in Lemma 3.1, E∗ is globally asymptotically stable in Ω.
This completes the proof. �

4 Stability and Hopf bifurcation of model (2.2)

In this section, our focus lies on discussing the stability of the equilibrium and the existence of
the Hopf bifurcation for model (2.2) when τ > 0. The bifurcation direction and stability of the
model are given by using the normal form theory and the central manifold theorem.

Theorem 4.1 If R0 ≤ 1 and τ > 0, then the diseases-free equilibrium E0 of model (2.2) is globally
asymptotically stable.

Proof. Define Lyapunov function functional V2[I,R] as follows

V2[I,R] = I +
η1

η1 + η2
R+ β

∫ t

t−τ
I(θ)dθ − β

N

∫ t

t−τ
(I(θ) +R(θ))I(θ)dθ, (4.1)

which is positive definite. Differentiating V2 with time t along the solution of model (2.2), we
obtain

d

dt
V2[I,R]|(2.2) =

β

N
(N − Iτ −Rτ )Iτ − γI + η1R+

γη1
η1 + η2

I − η1R

+ βI − βIτ −
β

N
((I +R)I − (Iτ +Rτ )Iτ )

= βI − β

N
(I +R)I − γη1

η1 + η2
I

= − β
N

(I +R)I + β

(
1− 1

R0

)
I,

(4.2)

where Iτ := I(t − τ), Rτ := R(t − τ). Obviously, if R0 ≤ 1, then d
dtV2[I,R]|(2.2) ≤ 0. In addition,

d
dtV2[I,R]|(2.2) = 0 if and only if I(t) = 0 and R(t) = 0. Let Γ be the largest invariant set of

{(I(t), R(t) ∈ R2
+ : d

dtV2[I,R]|(2.2) = 0}. Then Γ = {E0}. According to LaSalle LaSalles invariance
principle [14] in Lemma 3.1, E0 is globally asymptotically stable if R0 ≤ 1. This completes the
proof. �

We now study the stability of the endemic equilibrium E∗ in the case τ > 0. Consider the
linearization of model (2.2) at equilibrium E∗,

x
′
(t) = A∗x(t) +B∗x(t− τ), (4.3)

where x(t) = (I(t), R(t))T ,

A∗ =

(
−γ η1
γ −(η1 + η2)

)
,

B∗ =

(
β − 2β

N I
∗ − β

NR
∗ − β

N I
∗

0 0

)
.
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The characteristic equation of (4.3) is formulated as (Hale [13])

det[λI −A∗ − e−λτB∗] = 0, (4.4)

i.e., ∣∣∣∣∣ λ+ γ − e−λτ
(
β − 2β

N I
∗ − β

NR
∗
)
−η1 + e−λτ βN I

∗

−γ λ+ (η1 + η2)

∣∣∣∣∣ = 0.

The eigenvalues of (4.4) at equilibrium E∗ are the roots of

λ2 +Aλ+B = e−λτ (Cλ+D), (4.5)

where

A = γ + η1 + η2, B = γη2,

C = β − 2β

N
I∗ − β

N
R∗ = β

(
1− 2

N
I∗ − 1

N

γ

η1 + η2
I∗
)

= β

(
1− 2(η1 + η2) + γ

N(η1 + η2)
I∗
)
,

D =

(
β − 2β

N
I∗ − β

N
R∗
)

(η1 + η2)− βγ

N
I∗ = (η1 + η2)C − βγ

N
I∗.

When τ = 0 , the characteristic equation (4.5) becomes

λ2 + (A− C)λ+ (B −D) = 0. (4.6)

The simple Simple calculation yields that A − C > 0, B −D > 0. Thus, both the eigenvalues of
the characteristic equation (4.6) have negative real parts. Therefore, the positive equilibrium E∗

is locally asymptotically stable at τ = 0.

By Theorem 4.4 of Hal Smith [21], for delay small enough, the characteristic roots of (4.5) are
either very near the eigenvalues of (4.6) or have more negative real parts than any of the eigenvalues
of (4.6). Hence, when the delay is small, the equilibrium E∗ is locally asymptotically stable. When
R0 > 1, for any τ > 0, zero is not a root of (4.5). Note that any complex roots to the equations
(4.5) appear in pairs, and all roots of (4.5) have negative real parts if τ = 0. Therefore, any root
of (4.5) has a negative real part for sufficiently small τ . Assume that there exists τ = τ̂ , such that
(4.6) has a pair of purely pure imaginary roots, denoted by λ = ±iω, (ω > 0). Substituting λ = iω
into (4.5), we have

−ω2 + iAω +B = (cosωτ − i sinωτ)(Cωi+D).

Separating the real and imaginary part, we have{
Cω sinωτ +D cosωτ = −ω2 +B,
Cω cosωτ −D sinωτ = Aω,

(4.7)

which leads to
ω4 + (A2 − 2B − C2)ω2 + (B2 −D2) = 0. (4.8)

Let z = ω2. Then
z2 + pz + q = 0, (4.9)

where
p = A2 − 2B − C2, q = B2 −D2.

Hurwitz criterion implies that equation (4.9) has no positive roots if p > 0, q > 0. Hence, τ̂ doesn’t
exist, and all solutions of equation (4.9) have a negative real part and E∗ is locally asymptotically
stable for any τ > 0. Therefore, we have the following theorem.

Theorem 4.2 If R0 > 1, p > 0, and q > 0, then the endemic equilibrium E∗ of model (2.2) is
locally asymptotically stable for any τ > 0.
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Theorem 4.3 If R0 > 1 and q < 0, then there exists a τ̂ > 0 such that equation (4.8) has a pair
of conjugate purely imaginary roots ±iω̂ when τ = τ̂ . Moreover, the endemic equilibrium E∗ of
model (2.2) is locally asymptotically stable if τ < τ̂ .

Proof. It is obvious that if q < 0, then equation (4.9) has a positive root, denoted by z. Then

τn =
1

ω

[
arccos

(AC −D)ω2 +BD

C2ω2 +D2
+ 2nπ

]
,

where n ∈ Z+. Let
τ̂ = τ0.

When τ = τ̂ , equation (4.9) has a pair of conjugate purely imaginary roots. Note that all roots
of equation (4.9) have negative real part if τ = 0, and all roots of equation (4.9) have negative
real part if τ < τ̂ , which follows from the continuous dependence of the solution on τ . Thus, E∗ is
locally asymptotically stable. �

We next aim to determine the circumstances under which the equilibrium E∗ turns into an
unstable one, leading to the occurrence of a Hopf bifurcation. This is equivalent to identifying
conditions that ensure the characteristic equation (4.9) possesses a root with a negative real part
and a pair of conjugate purely imaginary roots. Furthermore, we will validate the transversal
condition necessary for the existence of the Hopf bifurcation.

Theorem 4.4 Suppose R0 > 1 and q < 0. Then there exists a τ̂ > 0, such that there is a Hopf
bifurcation of model (2.2) from equilibrium E∗ as τ passes through the critical value τ̂ if τ > τ̂ .

Proof. For τ sufficiently close to τ̂ , by the implicit function theorem, the eigenvalue of (4.5) can
be set as λ(τ) = ξ(τ) + iω(τ). As τ increases and passes through τ̂ , the eigenvalue passes through

the imaginary axis, and ξ(τ̂) = 0, ω(τ̂) = ω̂. We claim that d(Reλ)
dt |τ=τ̂ > 0. Calculating the

derivative of equation (4.9) with respect to τ , we obtain

(2λ+A)
dλ

dτ
= Ce−λτ

dλ

dτ
− (Cλ+D)e−λτ (λ+ τ

dλ

dτ
).

This gives
dλ

dτ
=

−λ(Cλ+D)e−λτ

2λ+A+ (τ(Cλ+D)− C)e−λτ
,

thus[
d(Reλ)

dτ
|τ=τ̂

]−1
=

2λ+A+ (τ(Cλ+D)− C)e−λτ

−λ(Cλ+D)e−λτ
|τ=τ̂

=
1

Z
(A cos ω̂τ̂ − 2ω sin ω̂τ̂ +Dτ̂ − C + i(A sin ω̂τ̂ + 2ω̂ cos ω̂τ̂ + Cω̂τ̂))

=
1

Z
(2ω̂4 + (A2 − 2B − C2)ω̂2)

=
1

Z
(2z2∗ + (A2 − 2B − C2)z∗),

(4.10)

where ω̂2 = z∗ and
Z = C2ω̂4 +D2ω̂2 > 0. (4.11)

Since
z2∗ + (A2 − 2B − C2)z∗ + (B2 −D2) = 0 (4.12)

and B2 −D2 < 0, we have 2z2∗ + (A2 − 2B − C2)z∗ = z2∗ + [z2∗ + (A2 − 2B − C2)z∗] > 0. Thus,

d(Reλ)

dt
|τ=τ̂> 0.

This completes the proof. �
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Remark 4.1 By Theorem 4.4, we can conclude that if there exist p, q such that z2∗ + pz∗ + q = 0
and 1

Z (2z2∗ + pz∗) > 0, then periodic solutions are bifurcated near the positive equilibrium E∗.

From Remark 4.1, model (2.2) occurs Hopf bifurcation at the equilibrium E∗(I∗, R∗) when
τ = τj(j = 0, 1, 2, · · · ). Next, we shall establish the explicit formulae determining the direction,
stability, and period of these periodic solutions bifurcating from equilibrium E∗(I∗, R∗) at these
critical values of τ by using the normal theory and the center manifold [12]. Without loss of
generality, we denote any one of these critical values τ = τn(n = 0, 1, 2, · · · ) by τ̂ , at which model
(2.2) has a pair of purely imaginary roots ±iω, where the corresponding values of ω are is ω̂ when
τ̂ = τn, and model (2.2) occurs a Hopf bifurcation at E∗(I∗, R∗).

Let x(t) = I(τt)− I∗, y(x) = R(τt)−R∗ and t = sτ , denoting s as t. Then model (2.2) can be
rewritten as (

ẋ(t)
ẏ(t)

)
= τA1

(
x(t)
y(t)

)
+ τB1

(
x(t− 1)
y(t− 1)

)
+ F (xt, yt, τ), (4.13)

where

A1 =

(
−γ η1
γ −(η1 + η2)

)
, B1 =

(
β
N (N − I∗ −R∗)− β

N I
∗ − β

N I
∗

0 0

)
,

and

F = τ

(
β
N (−x2(t− 1)− x(t− 1)y(t− 1)) + β

N (N − I∗ −R∗)I∗ − γI∗ + η1R
∗

γI∗ − (η1 + η2)R∗

)
.

Let τ̂ be the critical value of τ where model (2.2) undergoes a Hopf bifurcation at E∗. Assume
τ = τ̂ + h, then h = 0 is the Hopf bifurcation value of model (2.2).

Choose the phase space C = C([−1, 0], R2). Define L(h) : C → R2, model (2.2) be locally
expressed as

ẋ(t) = L(h)φ+ f(h, φ), (4.14)

L(h)φ = (τ̂ + h)A1φ(0) + (τ̂ + h)B1φ(−1), φ ∈ C.

From the Riesz representation theorem, there exists a matrix whose components are bounded
variation functions η(θ, h) : [−1, 0]→ R2, θ ∈ [−1, 0], such that the linearized system of (4.14) is

L(h)φ
.
=

∫ 0

−1
dη(θ, h)φ(θ), φ ∈ C. (4.15)

Select η(θ, h) = (τ̂ + h)A1δ(θ)− (τ̂ + h)B1δ(θ + 1), where

δ(θ) =

{
1, θ = 0,

0, θ 6= 0.

For φ ∈ C1([−1, 0], R2), the corresponding infinitesimal generator A(h) of (4.15) gives

A(h)φ =

{
φ̇(θ), θ ∈ [−1, 0),∫ 0

−1 dη(t, h)φ(t), θ = 0.

Define

R(h)φ =

{
0, θ ∈ [−1, 0),

F (φ, τ̂ + h), θ = 0,

then (4.14) is equivalent to the abstract ordinary differential equation

φ̇ = A(h)φ+R(h)φ. (4.16)
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Next, we analyze the abstract equation (4.16). For ϕ ∈ C1([0, 1], (C2)∗), where (C2)∗ is a two-
dimensional complex row vector space, we define formal adjoint operator of A(h) as

A∗ϕ(s) =

{
−ϕ̇(s), s ∈ (0, 1],∫ 0

−1 ϕ(−t)dη(t, 0) = τ̂ϕ(0)A1 + τ̂ϕ(1)B1, s = 0.

Here, for φ ∈ C([−1, 0], C2) with ϕ ∈ C([0, 1], (C2)∗), the bilinear form suitable for a complex
vector is

〈ϕ, φ〉 = ϕ(0)φ(0)−
∫ 0

−1

∫ θ

0

ϕ(ξ − θ)dη(θ, 0)φ(ξ)dξ.

Since

〈ϕ(s), A(0)φ(θ)〉 = ϕ(0)A(0)φ(θ)−
∫ 0

−1

∫ θ

ξ=0

ϕ(ξ − θ)dη(θ)A(0)φ(ξ)dξ

= ϕ(0)

∫ 0

−1
dη(θ)φ(θ)−

∫ 0

−1

∫ θ

ξ=0

ϕ(ξ − θ)dη(θ)φ̇(ξ)dξ

= ϕ(0)

∫ 0

−1
dη(θ)φ(θ)−

∫ 0

−1
[ϕ(ξ − θ)dη(θ)φ(ξ)]θξ=0

+

∫ 0

−1

∫ θ

ξ=0

dϕ(ξ − θ)
dξ

dη(θ)φ(ξ)dξ

=

∫ 0

−1
ϕ(−θ)dη(θ)φ(0)−

∫ 0

−1

∫ θ

ξ=0

[
−dϕ(ξ − θ)

dξ

]
dη(θ)φ(ξ)dξ

= A∗ϕ(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0

A∗ϕ(ξ − θ)dη(θ)φ(ξ)dξ

= 〈A∗ϕ(s), φ(θ)〉,

A(0) and A∗ are adjoint operators which satisfies 〈ϕ,Aφ〉 = 〈A∗ϕ, φ〉.
Recalling that ±ωτ̂ is a pair of an eigenvalues of A(0), which is also an eigenvalue of A∗, we

come to the following conclusion.

Lemma 4.1 q(θ) = (1, α1)>eiŵτ̂θ is the eigenvector of operator A on iŵτ̂ , q∗(s) = D(1, α2)eiŵτ̂s

is the eigenvector of operator A∗ on −iŵτ̂ , and 〈q∗, q〉 = 1, 〈q∗, q̄〉 = 0, where

α1 =
γ

iω̂ + (η1 + η2)
, α2 =

β
N I
∗eiω̂τ̂ − η1

iω̂ − (η1 + η2)
,

and

D =
1

1 + α1ᾱ2 + τ̂ e−iω̂τ̂ ( βN (N − I∗ −R∗)− β
N I
∗ − α1

β
N I
∗)
.

Proof. Let q(θ) = (1, α1)>eiŵτ̂θ be an eigenvector of operator A on iŵτ̂ , it follows from Aq(0) =
iŵτ̂ q(0) that α1 satisfies the following equation

τ̂A1

(
1
α1

)
+ τ̂B1

(
e−iŵτ̂

α1

)
= iω̂τ̂

(
1
α1

)
.

Substituting the A1, B1, we obtain

τ̂

(
−γ η1
−γ −(η1 + y2)

)(
1
α1

)
+ τ̂

(
β
N (N − I∗ −R∗)− β

N I
∗ − β

N I
∗

0 0

)(
1
α1

)
= τ̂

(
iω̂
α1iω̂

)
,

and hence

α1 =
γ

iω̂ + (η1 + η2)
.
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Following a similar procedure, we have

α2 =
η1 − β

N I
∗e−iω̂τ̂

η1 + η2 − iω̂
.

Since

q(0) = (1, α1)>, q̄∗(0) = D(1, α2),

we get

〈q∗, q〉 = q̄∗(0)q(0)−
∫ 0

−1

∫ 0

ξ=0

q̄∗(ξ − θ)dη(θ, 0)q(ξ)dξ

= D(1 + α1ᾱ2)−
∫ 0

−1

∫ 0

ξ=0

D(1, ᾱ2)e−iŵτ̂(ξ−θ)dη(θ, 0)(1, α1)>eiŵτ̂ξdξ

= D(1 + α1ᾱ2)−D(1, ᾱ2)

∫ 0

−1
dη(θ, 0)θeiŵτ̂θ(1, α1)>

= D

[
1 + α1ᾱ2 + τ̂ e−iω̂τ̂ (

β

N
(N − I∗ −R∗)− β

N
I∗ − α1

β

N
I∗)

]
.

The equality 〈q∗, q〉 = 1 requires

D =
1

1 + α1ᾱ2 + τ̂ e−iω̂τ̂ ( βN (N − I∗ −R∗)− β
N I
∗ − α1

β
N I
∗)
.

The proof of 〈q∗, q̄〉 = 0 has been given in Hassard et al. [12], we are not going to repeat it. The
proof is completed. �

Using the same notations as in [12], we calculate the coordinates to describe the center manifold

C0 at h = 0. Let µt = (µ
(1)
t , µ

(2)
t )> be the solution of (4.14) when τ = τ̂ . Define

z(t) = 〈q∗(s), µt(θ)〉

and
W (t, θ) = (W (1)(t, θ),W (2)(t, θ))> = µt(θ)− 2Re{z(t)q(θ)}. (4.17)

On the center manifold C0, one has

W (t, θ) = W (z(t), z̄(t), θ),

where the W (z, z̄, θ) can be expressed in the form of power series of z and z̄ as following,

W (z, z̄, θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+W30(θ)

z3

6
+ · · · . (4.18)

The flow of (4.14) on the center central manifold is determined by the following equation

ż(t) = iŵτ̂ z(t) + q̄∗(0)F (0,W (z, z̄, 0) + 2Re{zq(0)}) .
= iŵτ̂ z(t) + q̄∗(0)F0(z, z̄), (4.19)

where
F0(z, z̄) = F (0,W (z, z̄, 0) + 2Re{zq(0)}).

Therefore, the next aim is to find the coefficients in W (z, z̄, θ), and the equation restricted to the
central manifold. Equation (4.19) can be rewritten as

ż(t) = iŵτ̂ z(t) + g(z, z̄), (4.20)

with

g(z, z̄) = q̄∗(0)F0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · . (4.21)
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Thus, the normal form restricted on the central manifold can be obtained by figuring out g20, g11, g02
and g21. It follows from (4.17) that

µt(θ) = W (t, θ) + 2Re{z(t)q(θ)} = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · ·+ z(t)q(θ) + z̄(t)q̄(θ).

Thus, we obtain

x(t) = z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ · · · ,

y(t) = zα1 + z̄ᾱ1 +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ · · · ,

x(t− 1) = ze−iŵτ̂ + z̄eiŵτ̂ +W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄ +W

(1)
02 (−1)

z̄2

2
+ · · · ,

y(t− 1) = zα1e
−iŵτ̂ + z̄α1e

iŵτ̂ +W
(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz̄ +W

(2)
02 (−1)

z̄2

2
+ · · · .

According to (4.21), comparing the coefficients of these two expressions directly yields:

g20 =[−2
β

N
(1 + α1)e−2iŵτ̂ ]Dτ̂, g11 = [−2

β

N
(1 + α1)]Dτ̂, g02 = [−2

β

N
(1 + α1)e2iŵτ̂ ]Dτ̂,

g21 =− β

N
[2(2 + α1)e−iŵτ̂W

(1)
11 (−1) + (2 + α1)eiŵτ̂W

(1)
20 (−1) + 2e−iŵτ̂W

(2)
11 (−1) + 2eiŵτ̂W

(2)
20 (−1)]Dτ̂.

To further specify g21, we combine (4.16), (4.17) and (4.19) to reach

Ẇ = u̇t − 2Re{ż(t)q(θ)}
= A(0)W (t, θ) +R(0)ut − 2Re{q∗(0)F0(z(t), z(t))q(θ)}

=

{
A(0)W (t, θ)− 2Re{q∗(0)F0(z(t), z(t))q(θ)}, θ ∈ [−1, 0),

A(0)W (t, θ)− 2Re{q∗(0)F0(z(t), z(t))q(0)}+ F0(z(t), z(t)), θ = 0,
.
= A(0)W (t, θ) +H(z(t), z(t), θ),

(4.22)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (4.23)

Expanding the above series and comparing the coefficients, one has

(A− 2iŵτ̂)W20(θ) = −H20(θ), AW11(θ) = −H11(θ), · · · . (4.24)

For θ ∈ [−1, 0), it follows from Ẇ that

H(z, z̄, θ) = −(gq(θ) + ḡq̄(θ)). (4.25)

Comparing the coefficients with (4.23),(4.25) offers

H20(θ) = −(g20q(θ) + g02q(θ)), (4.26)

and

H11(θ) = −(g11q(θ) + g11q(θ)). (4.27)

From (4.26) , and (4.27) and the definition of A(0), we have

Ẇ20(θ) = 2iŵτ̂W20(θ) + g20q(θ) + g02q(θ).
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Note that q(θ) = q(0)eiŵτ̂θ, it follows from the method of constant variation that

W20(θ) =
ig20
ωτ̂

q(0)eiωτ̂θ +
ig02
3ωτ̂

q(0)e−iωτ̂θ + e2iωτ̂θE1.

Similarly, from (4.22) , and (4.27) and the definition of A(0), we have

W11(θ) =
ig11
ωτ̂

q(0)eiωτ̂θ +
ig11
ωτ̂

q(0)e−iωτ̂θ + E2.

In what follows, we shall seek appropriate E1 and E2 in order to obtain W20,W11, so that we can
finally figure g21. By the definition of A(0) and (4.22), we know that∫ 0

−1
dη(θ)W20(θ) = 2iω̂τ̂W20(0)−H20(0),

and ∫ 0

−1
dη(θ)W11(θ) = −H11(0).

Note that q(θ) is the eigenvalue of A(0) and the connection E1 with W20 as well as the definition
of A(0), we have∫ 0

−1
dη(θ)W20(θ) =

ig20
ŵτ̂

∫ 0

−1
dη(θ)q(0) +

iḡ02
3ŵτ̂

∫ 0

−1
dη(θ)q̄(0) +

∫ 0

−1
dη(θ)e2iŵτ̂θE1

= −g20q(0) +
ḡ02
3
q̄(0) +

∫ 0

−1
dη(θ)e2iŵτ̂θE1.

Hence,

−g20q(0)− ḡ02q̄(0) + (2iω̂τ̂ I −
∫ 0

−1
dη(θ)e2iω̂τ̂θ)E1 = H20(0).

Similarly,

−(g11q(0) + ḡ11q̄(0))−
∫ 0

−1
dη(θ)E2 = H11(0),

and hence

H(z, z̄, 0) = −(g20q(0) + ḡ02q̄(0))
z2

2
− (g11q(0)− ḡ11q̄(0))zz̄ + F0(z, z̄) + · · · .

Thus

H20(0) = −(g20q(0) + ḡ02q̄(0)) + τ̂

(
− 2β
N (1 + α1)e−2iω̂τ̂

0

)
and

H11(0) = −g11q(0)− ¯g11q̄(0) + τ̂

(
−2 βN (1 + α1)

0

)
.

From (4.24) and the definition of A,

τ̂A1W20(0) + τ̂B1W20(−1) = 2iŵτ̂W20(0)−H20(0)
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and
τ̂A1W11(0) + τ̂B1W11(−1) = −H11(0).

Therefore, we obtain

E1 =− 1

τ̂
(A1 +B−2iŵτ̂1 − 2iŵI)−1[H20(0) + 2g20q(0) +

2

3
ḡ02q̄(0)− i

ŵ
g20A1q̄(0) +

i

3ŵ
ḡ02A1q̄(0)

+
i

ŵ
g20e

−iŵτ̂B1q(0) +
i

3ŵ
ḡ02e

iŵτ̂Bq̄(0)],

E2 =− 1

τ̂
(A1 +B1)−1(H11(0) +

2

ŵ
A1Im(g11(0)q(0)) +

2

ŵ
B1Im(g11q(0)e−iŵτ̂ )),

With g21 specified, we can obtain C1(0), µ2, β2 and T2 as follows:

C1(0) =
i

2ŵτ̂
(g20g11 − 2|g11|2 −

|g02|2

3
) +

g21
2
,

µ2 = −Re(C1(0))

Reλ′(τ̂)
,

β2 = 2Re(C1(0)),

T2 = −ImC1(0) + µ2Imλ
′
(0)

ŵτ̂
.

Utilizing the results of Hassard et al. [12], we hit the following theorem.

Theorem 4.5 Suppose that τ = τ̂ and d(Reλ)
dt |τ=τ̂ 6= 0, then

(i) If µ2 > 0(µ2 < 0), then the Hopf bifurcation is supercritical (subcritical).

(ii) If β2 < 0(β2 > 0), then the bifurcating periodic solutions are stable (unstable).

(iii) If T2 > 0(T2 < 0), then the period of the bifurcating periodic solutions increases (decreases).

5 Discussions

In this paper, we introduce and analyze an epidemic model that incorporates delay and relapse
phenomena. We derive threshold dynamics for the model without delay, which is determined by
the basic reproduction number R0 = β(η1 + η2)/γη2. If R0 ≤ 1, then the disease-free equilibrium
E0 of the model (2.2) is globally asymptotically stable. Otherwise, the endemic equilibrium E∗ of
the model (2.2) is globally asymptotically stable. We also investigate the stability of the positive
equilibrium and examine the presence of local Hopf bifurcation. Assuming that R0 > 1 and q < 0.
We identify a threshold value τ̂ > 0 which signifies the occurrence of a Hopf bifurcation within the
model (2.2). The bifurcation emanates from the equilibrium E∗, as the parameter τ transgresses
the critical value τ̂ provided that τ > τ̂ . By using the principles of normal form theory and the
center manifold theorem, we effectively determine both the direction and stability characteristics
of these Hopf bifurcations.

To numerically explore our theoretical results and possible biological implications, we set

β = 0.31, γ = 0.6081, η1 = 0.0125, η2 = 0.125, N = 1. (5.1)

Hence, R0 = 0.5219 < 1. Figure 1 plots I(t) and R(t) against t when we take τ = 0, 15, 30. Both
I(t) and R(t) approach 0, implying the global asymptotically stable of E0 of model (2.2).

Regarding Theorem 4.2, we set

β = 0.5, γ = 0.3081, η1 = 0.0525, η2 = 0.125, N = 1. (5.2)

Then R0 = 2.3044 > 1 and E∗ = (I∗, R∗) = (0.2069, 0.3591). Furthermore, the coefficients in (4.9)
could be calculated as p = 0.0091 > 0 and q = 0.0013 > 0. Theoretical results in Theorem 4.2

14



0 20 40 60 80 100 120 140 160 180 200

t

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

I

τ=0

τ=15

τ=30

0 20 40 60 80 100 120 140 160 180 200

t

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R

τ=0

τ=15

τ=30

Figure 1: With parameters given in (5.1), three curves of I(t) or R(t) are plotted for τ = 0, 15 and
30, numerically verifying the results stated in Theorem 4.1.
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Figure 2: In the case of τ = 0, 2, 30, when R0 = 2.643 > 1, the endemic equilibrium E∗ of model
(2.2) is stable.

guarantee the local asymptotically stable of E∗. To verify, we in Figure 2 plot the dynamics of I
and R by taking τ = 0, 2 and 30, and we find that I(t)→ I∗ and R(t)→ R∗ as t→∞, suggesting
the local asymptotically stable of E∗.
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Figure 3: When τ = 0, 4, 11, the stable endemic equilibrium E∗ becomes unstable, and periodic
solutions appear.
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To observe the possible Hopf bifurcation stated in Theorem 4.3 and Theorem 4.4, we choose

β = 0.8, γ = 0.2081, η1 = 0.0125, η2 = 0.125. (5.3)

Then R0 = 4.2287 > 1, E∗ = (0.3038, 0.4597) and q = −2.7 × 10−3 < 0. Figure 3 plots I and R
with τ = 0, 4, which numerically verifies the local asymptotically stable of E∗ stated in Theorem
4.3. When Figure 3 increases τ to 11, and both I and R show a periodic pattern after a short
oscillation. Biologically, our results show that the inclusion of relapse, coupled with substantial
time delay, leads to recurrent infections among individuals who haven’t yet fully recovered, resulting
in oscillations in both the infected and recovered populations due to relapse.
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