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Abstract
Vaccines are an effective tool in the fight against infectious diseases. However, mathematical models
of SARS-CoV-2 focus on the macroscopic situation, while articles on vaccines focus on effectiveness
and safety. We develop four mathematical models to investigate the immune system and the micro-
dynamics of antigens and viruses in individuals injected with mRNA vaccines. We first theoretically
analyze the optimal model, calculate all equilibria, and prove that the disease-free equilibrium is
globally asymptotically stable while the others are unstable. This suggests that after a certain period
after vaccination, the infected cells and antigens will no longer exist in vivo and will be eliminated
by the immune system over time or will die naturally. This theoretically proves the safety of the
mRNA vaccines. Then, we use the differential algebra to analyze the structural identifiability of the
models. We find that two of them are globally identifiable while the other two are unidentifiable,
but once a certain parameter is fixed, then they are identifiable as well. To select the optimal model
among four models, we use the Affine Invariant Ensemble Markov Chain Monte Carlo algorithm for
data fitting and parameter estimation. We find that the roles of memory cells in killing infected cells
and promoting immune cells and neutralizing antibodies in the process of mRNA vaccination are not
significant and can be ignored in the modeling. On the other hand, the innate immunity of the human
body plays an important role in this process. In addition, we also analyze the practical identifiability
of the parameters of the optimal model. The results show that even if the structure of the system
is globally identifiable, it does not ensure that all the parameters are practically identifiable. After
random sampling and simulating the four unidentifiable parameters, we find that only two variables,
infected cells II and antibodies, are sensitive to these unidentifiable parameters, but the results are
still within acceptable ranges. This suggests that our fitting results are generally reliable. Finally,
we simulate multiple booster injections and find that booster injections are indeed effective in main-
taining antibody levels in vivo, which could otherwise gradually die off over time. Therefore, booster
injections are beneficial to help the human body increase and maintain immunity.

Keywords: mRNA vaccine against SARS-CoV-2; mathematical model; parameter identification;
GWMCMC

1 Introduction
The discovery of SARS-CoV-2 at the end of 2019 has already caused significant health risks and economic
burdens in human life over the past three years. Although the virulence of the viruses is decreasing, we
still need to emphasize protection against the viruses. Since vaccination is an important way to prevent
and control the spread of epidemics as well as to reduce symptoms and mortality in patients, it is medically
important to investigate the effects of vaccines on the human immune system.

Vaccines against polio, encephalitis B, influenza, rabies, and HFMD are usually inactivated vaccines.
The mechanism is to kill or inactivate the infectious viruses by some physical or chemical treatment,
but keep the viruses intact, and then inject them in vivo. Although they are intact viruses, they do not
infect healthy cells. Once the body’s immune system recognizes these viruses, it responds and develops
a memory of them.

In the 1990s, scientists discovered that target proteins can be successfully detected after injecting
mRNAs into mice [24]. Subsequent experiments have shown that it is possible to inject viral mRNAs
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in vivo, guiding the cells to synthesize the corresponding antigens, thereby inducing a specific immune
response. Specifically, the mRNA vaccine injects the mRNAs of the desired antigens, rather than the
antigens themselves. Ribosomes in the cells will translate these mRNAs into the corresponding proteins,
which are the antigens. Once circulating in the bloodstream, these antigens trigger a response from the
immune system. In contrast to traditional inactivated vaccines, these antigens are active, so that they
can infect target cells and thus induce both humoral immunity and cellular immunity simultaneously.

The antigens of the mRNA vaccine against SARS-CoV-2 are the spike proteins (also known as the S
proteins) on the surface of the viruses. In an intact virus, the S proteins bind with the ACE2 receptors
on the surface of human cells to allow the viral mRNAs to enter the cell [11], thus allowing the virus
to proliferate. Therefore, if the vaccines contain only the mRNAs of the S proteins but not the viral
mRNAs, they will infect the target cells but will not be able to proliferate the viruses themselves, thus
ensuring the safety of the vaccines. In addition, we can flexibly change and optimize the mRNA sequence
to produce vaccines to counteract viral mutations.

In 2020, two mRNA vaccines against SARS-CoV-2 developed by Modena and Pfizer/BioNTech were
licensed and marketed for the first time for emergency use. This is the first time that mRNA vaccines
have been mass-vaccinated in the world. Moderna announced Phase 1 clinical trial results of its mRNA
vaccine mRNA-1273 against SARS-CoV-2 in July 2020 [18], and Pfizer/BioNTech announced Phase 1/2
clinical trial results of their vaccine BNT162b2 in August of the same year [29], and preliminary results
showed that the vaccines could produce more antibodies than patients recovering from natural infection
and that the vaccines were safe. The efficacy and safety of mRNA-1273 was further studied by L. R.
Baden et al. [4]; the efficacy and safety of BNT162b2 was further studied by Fernando P. Polack et
al. [31]; the effectiveness of a lower dose of mRNA-1273 was studied by Jose Mateus et al. [25]; The
Sheba Medical Center in Israel evaluated the efficacy of a fourth booster dose of both vaccines against
the Omicron variant [32]. All these results illustrate the effectiveness and importance of mRNA vaccines
for the prevention of SARS-CoV-2 from different perspectives.

The mRNA vaccine was urgently introduced as a result of the epidemic. Is it really safe and effective in
preventing SARS-CoV-2? And how necessary is a booster shot? The public has been skeptical about this.
Therefore, we develop a nonlinear dynamics model and simulate virtual experiments to investigate this
issue. Using the nonlinear system theory to research the interaction of the immune system with foreign
matter, such as viruses or bacteria, has been shown to have great practical significance [15, 20, 33, 37].
However, not many studies have been conducted on the dynamics of the mRNA vaccine against SARS-
CoV-2 in vivo and the dynamics of SARS-CoV-2 in vaccinated individuals. In general, due to the
complexity of the immune system, we usually simplify the process by dividing the research objects into
four groups. The first group consists of antigens, including invading viruses and bacteria, as well as tumor
antigens and viral vaccines, which are spontaneously transformed into cancer cells from normal cells in
vivo; the second group consists of immune cells, such as T cells, B cells, and macrophages; the third
group consists of immune molecules, such as lymphokines, interleukins, interferons, and tumor necrosis
factors; and the last group consists of the major histocompatibility antigens and autoantigens. We will
try to use mathematical tools to describe the complex non-linear interactions among them (or among
some of them) to study the complex behaviors in immune response and immunoregulation and the effects
of various factors on these behaviors.

The main structure of the rest is organized as follows. We establish the differential equations according
to the characteristics of the immune system and the mRNA vaccines and then theoretically analyze them
in Section 2. The structural identifiability of all the models is discussed in Section 3. The data fitting
and model selection are carried out for the clinical data in Section 4. The practical identifiability of the
optimal model is analyzed in Section 5. The sensitivity analysis of parameters is analyzed and the virtual
experiments of the optimal model are simulated in Section 6. Finally, we discuss the results of our model
in Section 7.

2 Mathematical Models
It is widely known that different assumptions about the interactions between the viruses or vaccines and
the components of the immune system in the host can lead to different mathematical models. According
to the mechanisms of the mRNA vaccine and the human immune system, we first develop the following
differential equation model to characterize the interaction between them. Based on it, assuming that
some of the immune responses can be ignored, we can obtain the other three models which are more
concise.

The diagram of the basic dynamics model (we call it the full model) is shown in Figure 2.1. The
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Fig. 2.1: Dynamics of the mRNA Vaccination

variables of the model include target cells that can be infected by the mRNAs of the S proteins in
vaccines (I1), target cells that can be infected by the antigens (I2), antigens (S), CD8+ T cells (Tk),
CD4+ T cells (Th), B cells (B), antibodies (A), memory CD8+ T cells (Tkm), memory CD4+ T cells
(Thm), and memory B cells (Bm). The system (2.1) and the system (2.2) show the dynamics of the
humoral immunity and the cellular immunity induced by vaccines of the full model. The biological
meanings of each term in the equations are shown in the appendixes (see Appendix A).

1. Humoral Immunity 

dS

dt
= pI1 − βSA− (θ1 + θ2)S,

dTh

dt
= ωhTh(πh − Th) + αhS,

dB

dt
= ωBB(πB −B) + αBS(Th + µhThm),

dA

dt
= ωAS(B + µBBm)− βSA− δAA,

dThm

dt
= γhTh + ηhThmS − δhThm,

dBm

dt
= γBB + ηBBmS − δBBm.

(2.1)

2. Cellular Immunity

dI1
dt

= −λI1(Tk + µkTkm)− δII1, t ̸= τi(i = 1, 2, . . .),

dI2
dt

= θ1S − λI2(Tk + µkTkm)− δII2,

dTk

dt
= ωkTk(πk − Tk) + αk(I1 + I2),

dTkm

dt
= γkTk + ηkTkm(I1 + I2)− δkTkm.

(2.2)

Obviously, the system (2.1) and the system (2.2) respectively characterize the two forms of immunity
induced by the mRNA vaccine. One part is the humoral immunity involving the CD4+ T cells, the B
cells, the memory CD4+ T cells, the memory B cells, and the neutralizing antibodies (system (2.1)). Like
traditional inactivated vaccines, they are stimulated to proliferate by antigens free in the blood and are
eventually neutralized by the neutralizing antibodies. The other part is the cellular immunity (system
(2.2)) consisting of the CD8+ T cells and the memory CD8+ T cells. This is the advantage of mRNA
vaccines over regular inactivated vaccines.
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Table 2.1: Sub-models

Model Assumption Biological Meaning

Model 1 Full model /

Model 2 θ2 = 0 Ignoring the killing of antigens by the innate immune system

Model 3 µi = 0 (i = k, h,B) Ignoring the killing of infected cells and the promotion of immune cells
and neutralizing antibodies by memory cells

Model 4 θ2, µi = 0 (i = k, h,B) Ignoring the killing of infected cells and antigens by the innate immune
system and memory cells

Based on the mechanism of mRNA vaccines, the full model (system (2.1) & (2.2)) contains three more
concise sub-models under different biological assumptions. Table 2.1 lists four models based on different
biological assumptions. For example, Model 3 assumes that the parameters µi = 0 (i = k, h,B) in the
full model, i.e., it assumes that the roles of memory cells in killing infected cells and promoting immune
cells and neutralizing antibodies can be ignored. Of the four models, Model 4 is the most concise,
while ignoring the roles of both memory cells and the innate immune system in killing infected cells and
antigens.

It is easy to see that none of the four models in Table 2.1 based on different biological assumptions
has an infection equilibrium whose variables are all positive, and all of them have 8 disease-free equilibria
(see Appendix A). We have obtained the following theorem about the stabilities of the 8 disease-free
equilibria.

Theorem 2.1 In the case of a single vaccination, the disease-free equilibrium of four systems of vacci-
nation Model 1-Model 4

E1(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, πk, πh, πB , 0,

γkπk

δk
,
γhπh

δh
,
γBπB

δB

)T

is unconditionally globally asymptotically stable, while the other equilibria Ei(i = 2, . . . , 8) are unstable.

The details of the proof are shown in the last chapter of the paper (see Appendix A). In fact, Model
2, Model3 and Model 4 are obtained from Model 1 with some cuts. Take Model 3 as an example,
since the memory immune cells Tkm, Thm, Bm are not involved in the immunization process, we can ignore
them in the proof. Therefore, the expressions of the equilibria Ei, i = 1, 2, . . . , 8 and the proof are more
concise. Here, we only show the proof of the most complex sub-model Model 1. The proofs of the other
three sub-models are the simplified versions of it, so we do not repeat them. This theorem implies that
the mRNA vaccines are safe to some extent because there is no risk that a vaccinated individual will
become infected with the viruses as a result of vaccination. This result also suggests that the level of
antibodies will decrease with time until antibodies are completely eliminated. Multiple vaccinations may
be necessary to maintain a certain level of antibodies in the absence of the viruses. We will prove this
hypothesis through numerical simulations later.

3 Identifiability Analysis of Models
We collect the data of CD8+ T cells Tk, CD4+ T cells Th, neutralizing antibodies A, memory CD8+
T cells Tkm, memory CD4+ T cells Thm and memory B cells Bm in individuals injected with mRNA
vaccines mRNA-1273 or BNT162b2 from the literature [13, 22, 39]. Details about these data can be
found in Appendix B. We plan to use these clinical data to estimate the parameters of each of the four
models mentioned above (see Table 2.1) and do model selection. To ensure the reliabilities of parameter
estimation and model selection, first, we need to analyze the structural identifiability of the models.

Structural identifiability analysis assumes that the measured data are ideally free of interferences and
errors. The structure of a model is said to be unidentifiable if an infinite number of combinations of
parameters can be fitted to the data. The structure of a model is said to be locally identifiable if only a
finite number of parameter combinations can be fitted to the data. The structure of a model is said to be
globally identifiable if there is only one unique combination of parameters that can fit the data. For the
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data observed, assuming that they are free of noise errors, the predictions of the unidentifiable and locally
identifiable cases can be greatly different, even though models with different parameter combinations can
fit the observations well. Therefore, the fact that the structure of a model is identifiable from the data
is a prerequisite for the reliability of the parameter estimation. In contrast, although the structure is
found to be unidentifiable, even if the parameter estimation fails, we can reveal useful information about
the relationship between the parameters. This makes the structural identifiability analysis of models an
important factor to consider in immunological modeling [9]. However, structural identifiability analysis
has been neglected in the majority of modeling studies in systematic biology.

To determine whether the parameters of the four built models are identifiable in the ideal case (noise-
free data), we use differential algebra to test the structural identifiability of the models, and the following
are the strict definitions of structural identifiability [27]:

Definition 3.1 Global identifiability: A system structure is said to be globally identifiable if for any
admissible input u(t) and any two parameter vectors θ1 and θ2 in the parameter space Θ, the system
outputs y(u, θ1) = y(u, θ2) holds if and only if θ1 = θ2.

Definition 3.2 Local identifiability: A system structure is said to be locally identifiable if for any pa-
rameter vector θ within an open neighborhood of some point θ∗ in the parameter space Θ, the system
outputs y(u, θ1) = y(u, θ2) holds if and only if θ1 = θ2.

The key to the differential algebra method is the computation of the characteristic set. By deriving,
substituting, and eliminating the unknown state variables, the final equation containing only the output
variables and unknown parameters is called the input-output equation. Analyzing the coefficients of these
equations reveals the identifiability of the parameter structure of the model [5]. The state variables we
collecte from the literature are the concentrations of CD8+ T cells Tk, CD4+ T cells Th, neutralizing
antibodies A, memory CD8+ T cells Tkm, memory CD4+ T cells Thm and memory B cells Bm. Based
on the clinical data, we analyze the structural identifiability of each of the above four models (see Table
2.1) by differential algebra. Here, we only show the analysis of Model 3. Since the three kinds of
memory immune cells do not appear in the equations of the other variables, we can ignore them during
our analysis, only using the data of Tk, Th, A.

Theorem 3.3 The structure of all parameters of Model 3 is globally identifiable if the initial values of
all variables and the clinical data Tk, Th, A are known.

Proof. For simplicity, we merge the corresponding humoral immunity and cellular immunity of Model
3 into one model and express them in a simpler derivative notation, which yields the following system.

I ′1 = −λI1Tk − δII1, t ̸= τi (i = 1, 2, . . .),

I ′2 = θ1S − λI2Tk − δII2,

S′ = pI1 − βSA− (θ1 + θ2)S,

T ′
k = ωkTk(πk − Tk) + αk(I1 + I2),

T ′
h = ωhTh(πh − Th) + αhS,

B′ = ωBB(πB −B) + αBSTh,

A′ = ωASB − βSA− δAA.

(3.1)

First, we define the following partial ordering relation [5].

Tk < Th < A < T ′
k < T ′′

k < . . . < A < A′ < . . . <
I1 < I2 < S < B < I ′1 < I ′2 < . . . < I ′′1 < I ′′2 < . . . ,

(3.2)

The largest one in an equation is the leader, and the equations are reordered according to their leaders
from smallest to largest and shifted to the same side of the equations, resulting in
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T ′
k − ωkTk(πk − Tk)− αk(I1 + I2) = 0, (leader : I2) (3.3a)

T ′
h − ωhTh(πh − Th)− αhS = 0, (leader : S) (3.3b)

A′ − ωASB + βSA+ δAA = 0, (leader : B) (3.3c)

I ′1 + λI1Tk + δII1 = 0, (leader : I ′1) (3.3d)

I ′2 − θ1S + λI2Tk + δII2 = 0, (leader : I ′2) (3.3e)

S′ − pI1 + βSA+ (θ1 + θ2)S = 0, (leader : S′) (3.3f)

B′ − ωBB(πB −B)− αBSTh = 0. (leader : B′) (3.3g)

Then, we calculate the input-output equations.

1. Since (3.3g) contains the leader B of (3.3c), from (3.3c) we get

B = A′+βSA+δAA
ωAS ,

B′ = A′′+βS′A+βSA′+δAA′

ωAS − (A′+βSA+δAA)S′

ωAS2 .
(3.4)

By substituting (3.4) into (3.3g) and simplifying it, we get

ωASA
′′ + βωAS

2A′ + ωAδASA
′ − ωAS

′A′ − ωAδAS
′A− ωAωBπBSA

′

+ωBA
′2 + 2βωBSAA′ + 2ωBδAAA′ − βωAωBπBS

2A+ β2ωBS
2A2

+2βωBδASA
2 − ωAωBπBδASA+ ωBδ

2
AA

2 − αBω
2
AS

3Th = 0. (leader : S′)
(3.5)

2. Since (3.3c), (3.3f), and (3.5) contain the leader S of (3.3b), from (3.3b) we get

S = 1
αh

(ωhT
2
h − ωhπhTh + T ′

h),

S′ = 1
αh

(2ωhThT
′
h − ωhπhT

′
h + T ′′

h ).
(3.6)

By substituting (3.6) into (3.3c) and simplifying it, we get

αhA
′ − ωAωhT

2
hB + ωAωhπhThB − ωAT

′
hB + βωhT

2
hA− βωhπhThA

+βT ′
hA+ αhδAA = 0. (leader : B)

(3.7)

By substituting (3.6) into (3.3f) and simplifying it, we get

2ωhThT
′
h − ωhπhT

′
h + T ′′

h − pαhI1 + βωhT
2
hA− βωhπhThA+ βT ′

hA
+(θ1 + θ2)ωhT

2
h − (θ1 + θ2)ωhπhTh + (θ1 + θ2)T

′
h = 0. (leader : I1)

(3.8)

By substituting (3.6) into (3.5) and simplifying it, we get

−αhβωAωBω
2
hπBT

4
hA− α2

hωAωBωhπBδAT
2
hA− 2αhβ

2ωBωhπhThT
′
hA

2

−2α2
hβωBωhπhδAThA

2 − 2α2
hβωBωhπhThAA′ + α2

hωAωBωhπBπhThA
′

−2αhβωAωhπhThT
′
hA

′ − α2
hωAωhπhThA

′′ + 2αhβωAωBω
2
hπBπhT

3
hA

−αhβωAωBω
2
hπBπ

2
hT

2
hA− 2αhβωAωBωhπBT

2
hT

′
hA+ α2

hωAωBωhπBπhδAThA
+2αhβωAωBωhπBπhThT

′
hA+ α2

hωAT
′
hA

′′ − α2
hωAT

′′
hA

′

−2αhβ
2ωBω

2
hπhT

3
hA

2 + αhβ
2ωBω

2
hπ

2
hT

2
hA

2 − 2αhβωAω
2
hπhT

3
hA

′

+2αhβ
2ωBωhT

2
hT

′
hA

2 + 2α2
hβωBωhδAT

2
hA

2 + αhβωAω
2
hπ

2
hT

2
hA

′

+2α2
hβωBωhT

2
hAA

′ − α2
hωAωBωhπBT

2
hA

′ + 2αhβωAωhT
2
hT

′
hA

′

−2α2
hωAωhδAThT

′
hA− α2

hωAωhπhδAThA
′ − αhβωAωBπBT

′2
h A

−α2
hωAωBπBδAT

′
hA+ α2

hωAωhπhδAT
′
hA+ αhβ

2ωBω
2
hT

4
hA

2

+6αBω
2
Aω

2
hπhT

4
hT

′
h − 3αBω

2
Aω

2
hπ

2
hT

3
hT

′
h + αhβωAω

2
hT

4
hA

′

+3αBω
2
AωhπhT

2
hT

′2
h + α2

hωAωhδAT
2
hA

′ + 2α2
hβωBδAT

′
hA

2

−2α2
hωAωhThT

′
hA

′ + 2α2
hβωBT

′
hAA

′ − α2
hωAωBπBT

′
hA

′ + α2
hωAωhπhT

′
hA

′

+3αBω
2
Aω

3
hπhT

6
h − 3αBω

2
Aω

3
hπ

2
hT

5
h + αBω

2
Aω

3
hπ

3
hT

4
h − 3αBω

2
Aω

2
hT

5
hT

′
h

−3αBω
2
AωhT

3
hT

′2
h + αhβ

2ωBT
′2
h A2 + 2α3

hωBδAAA′ + βαhωAT
′2
h A′

+α2
hωAδAT

′
hA

′ + α3
hωBA

′2 − αBω
2
Aω

3
hT

7
h + α3

hωBδ
2
AA

2

−αBω
2
AThT

′3
h + α2

hωAωhT
2
hA

′′ − α2
hωAδAT

′′
hA = 0. (leader : A′′)

(3.9)
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3. Since (3.3e) contains the leader I2 of (3.3a), from (3.3a) we get

I2 = 1
αk

(ωkT
2
k − ωkπkTk + T ′

k − αkI1),

I ′2 = 1
αk

(2ωkTkT
′
k − ωkπkT

′
k + T ′′

k − αkI
′
1).

(3.10)

By substituting (3.10) into (3.3e) and simplifying it, we get

2ωkTkT
′
k − ωkπkT

′
k + T ′′

k − αkI
′
1 + (λTk + δI)(ωkT

2
k − ωkπkTk + T ′

k − αkI1)
−αkθ1S = 0. (leader : I ′1)

(3.11)

4. Since (3.3a), (3.3d), and (3.11) contain the leader I1 of (3.8), from (3.8) we get

I1 = 1
pαh

[βωhT
2
hA− βωhπhThA+ (θ1 + θ2)ωhT

2
h − (θ1 + θ2)ωhπhTh

+2ωhThT
′
h + βT ′

hA− ωhπhT
′
h + (θ1 + θ2)T

′
h + T ′′

h ],

I ′1 = 1
pαh

[βωhT
2
hA

′ + 2βωhThT
′
hA− βωhπhThA

′ − βωhπhT
′
hA

+2(θ1 + θ2)ωhThT
′
h − (θ1 + θ2)ωhπhT

′
h + 2ωhT

′2
h + 2ωhThT

′′
h

+βT ′
hA

′ + βT ′′
hA− ωhπhT

′′
h + (θ1 + θ2)T

′′
h + T ′′′

h ].

(3.12)

By substituting (3.12) into (3.3a) and simplifying it, we get

pαhT
′
k − pαhωkπkTk + pαhωkT

2
k − αkβωhAT 2

h + αkβωhπhThA
−(θ1 + θ2)αkωhT

2
h + (θ1 + θ2)αkωhπhTh − 2αkωhThT

′
h − αkβT

′
hA

+αkωhπhT
′
h − (θ1 + θ2)αkT

′
h − αkT

′′
h − pαkαhI2 = 0. (leader : I2)

(3.13)

By substituting (3.12) into (3.3d) and simplifying it, we get

λβωhTkT
2
hA− (θ1 + θ2)λωhπhTkTh − βωhπhδIThA− λβωhπhTkThA

+T ′′′
h + 2ωhThT

′′
h + βT ′′

hA− ωhπhT
′′
h + λTkT

′′
h + 2ωhT

′2
h + βT ′

hA
′

+(θ1 + θ2)T
′′
h + δIT

′′
h + (θ1 + θ2)δIT

′
h + 2βωhThT

′
hA− βωhπhThA

′

−βωhπhT
′
hA+ (θ1 + θ2)λTkT

′
h + (θ1 + θ2)ωhδIT

2
h + 2ωhδIThT

′
h

+βδIT
′
hA− ωhπhδIT

′
h + λβTkT

′
hA− λωhπhTkT

′
h + βωhδIT

2
hA

−(θ1 + θ2)ωhπhδITh + (θ1 + θ2)λωhTkT
2
h + 2λωhTkThT

′
h

+βωhT
2
hA

′ + 2(θ1 + θ2)ωhThT
′
h − (θ1 + θ2)ωhπhT

′
h = 0. (leader : A′)

(3.14)

By substituting (3.6) and (3.12) into (3.11) and simplifying it, we get

−2αkβωhThT
′
hA+ αkβωhπhThA

′ + αkβωhπhT
′
hA− (θ1 + θ2)λαkωhTkT

2
h

−2λαkωhTkThT
′
h − λαkβTkT

′
hA+ λαkωhπhTkT

′
h − αkβωhδIT

2
hA

+(θ1 + θ2)αkωhπhδITh + pθ1αkωhπhTh − pθ1αkT
′
h + λαkβωhπhTkThA

−λαkβωhTkT
2
hA+ (θ1 + θ2)λαkωhπhTkTh + αkβωhπhδIThA− pθ1αkωhT

2
h

+pαhωkδIT
2
k − αkβT

′
hA

′ − (θ1 + θ2)αkδIT
′
h + 2pαhωkTkT

′
k − pαhωkπkT

′
k

+pλαhωkT
3
k + pλαhTkT

′
k − αkT

′′′
h − 2αkωhThT

′′
h − αkβT

′′
hA

+αkωhπhT
′′
h − λαkTkT

′′
h − αkδIT

′′
h + pαhT

′′
k − (θ1 + θ2)αkT

′′
h

+pαhδIT
′
k − 2αkωhT

′2
h − 2αkωhδIThT

′
h − αkβδIT

′
hA+ αkωhπhδIT

′
h

−pλαhωkπkT
2
k − pαhωkπkδITk − αkβωhT

2
hA

′ − 2(θ1 + θ2)αkωhThT
′
h

+(θ1 + θ2)αkωhπhT
′
h − (θ1 + θ2)λαkTkT

′
h − (θ1 + θ2)αkωhδIT

2
h = 0. (leader : A′)

(3.15)

5. Since (3.15) contains the leader A′ of (3.14), by (3.14) we get A′, and substitute it into (3.15) and
simplify it, we get

λαhωkT
3
k − λαhπkωkT

2
k + αhωkδIT

2
k − αhωkπkδITk − θ1αkωhT

2
h

+θ1αkωhπhTh + λαhTkT
′
k + 2αhωkTkT

′
k − αhωkπkT

′
k + αhδIT

′
k

−θ1αkT
′
h + αhT

′′
k = 0. (leader : T ′

h)
(3.16)

6. Finally, the equations (3.16), (3.9), (3.14), (3.8), (3.13), (3.3b), (3.7) in order can not be further
simplified. They form the characteristic set of (3.3), where the first three equations contain only
the output variables Tk, Th, A and their derivatives of each order, and thus form the input-output
equations. Despite their complicated form, we only need to extract some coefficients for testing.
Before that, to ensure good results, the three equations are normalized by eliminating the coefficient
α2
hωAωh of T 2

hA
′′ in (3.9) and the coefficient αh of T ′′

k in (3.16). Since the coefficient of T ′′′
h in (3.14)

is already 1, no further processing is needed.
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Let another set of parameters u = (u1, u2, . . . , u17) (corresponding to the parameters in Table 8.1
in order) satisfy the input-output equations. Extracting the coefficients of T ′′

hA, ThT
3
h , T

4
hA, T ′′2

h A2 from
(3.9), the coefficients of ThT

′′
h , T

′′
hA, TkT

′′
h , ThA

′, T 2
hA, T

2
h from (3.14), and the coefficients of T 3

k , T
2
k , T

′
k, T

2
h

from (3.16), we get the following equations

− δA
ωh

= −u10

u13
,

−αBωA

αhωh
= −u8u11

u7u13
,

βωBωhπB

αh
= u3u14u13u17

u7
,

2ωh = 2u13,

β = u3,

λ = u2,

−βωhπh = −u3u13u16,

and



βωhδI = u3u13u9,

(θ1 + θ2)ωhδI = (u4 + u5)u13u9,

λωk = u2u12,

ωk(δI − λπk) = u12(u9 − u2u15),

αh(δI − ωkπk) = u7(u9 − u12u15),

− θ1αk

αh
= −u4u6

u7
,

β2ωB

αhωAωh
=

u2
3u14

u7u11u13
.

By solving them, we get

δA = u10,
αBωA = u8u11,
ωBπB = u14u17,
ωh = u13,
β = u3,
λ = u2,
πh = u16,

and



δI = u9,
θ1 + θ2 = u4 + u5,
ωk = u12,
πk = u15,
αh = u7,
θ1αk = u4u6,
ωB

ωA
= u14

u11
.

(3.17)

In addition, we find that even if we use the coefficients of the other terms in the equations, we
cannot get a better result. Therefore, if only the clinical data Tk, Th, A are known, the parameters
p, θ1, θ2, αk, αB , ωA, ωB , πB are unidentifiable, while the structure of the rest parameters is globally iden-
tifiable.

Considering that the initial values of each variable in the model are known, the remaining four
equations of the characteristic set at t = t0 can be considered input-output equations as well. Extracting
the coefficient of T 2

hB from (3.7), the coefficient of I1 from (3.8), and the coefficient of T ′′
h from (3.13),

the following equations are obtained: 
−ωAωh = −u11u13,

pαh = u1u7,

−αk = −u6.

Meanwhile, considering (3.17), we get
ωA = u11,
αB = u8,
ωB = u14,
πB = u17,

and


p = u1,
αk = u6,
θ1 = u4,
θ2 = u5.

Thus the structure of the system (3.1) is globally identifiable, i.e., the changes of the variables are
completely known if the initial values are known.

In summary, in the case where the initial values of all variables are known and the variables Tk, Th, A
are output variables, there is only one unique set of parameters that can satisfy the output variables,
hence, the structure of Model 3 is globally identifiable.

Similarly, we can obtain the structural identifiability of Model 1, Model 2 and Model 4. Due
to the complicated calculations, we only give the results of structural identifiability for the other three
models, and we will not repeat the details of the proof.

Theorem 3.4 The structures of Model 1 and Model 2 are unidentifiable if the initial values of all
variables and the clinical data Tk, Th, A, Tkm, Thm, Bm are known. But as long as any one of the parameters
αB , πB , ωB , ωA, γB , µB is known, the structures of Model 1 and Model 2 are globally identifiable.
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Meanwhile, from Theorem 3.3 we can directly obtain the corresponding conclusion of Model 4.

Theorem 3.5 The structure of all parameters of Model 4 is globally identifiable if the initial values of
all variables and the clinical data Tk, Th, A are known.

Whether the model is reasonable or not, and whether the prediction results are robust or not, are
closely related to the reliability of the parameter estimation. The credibility of parameter estimation
depends on whether the structure of the model is identifiable or not. Therefore, we first analyze the
structural identifiability of the models before further research. In this section, we show that two of the
four models are globally identifiable under the available clinical data (Model 3 and Model 4) while
the other two are unidentifiable (Model 1 and Model 2). This provides theoretical support for the
following parameter estimation and model selection.

4 Data Fitting and Model Selection
We often want to use a simple model to describe the viral infection process, but we are concerned that
simplicity may overlook some important factors, which requires the modelers to select among the models
with different complexities. It is worthwhile to investigate how to select a model that best represents the
dynamic responses of the vaccines or the viruses in the hosts from a large number of models with limited
clinical data.

Japanese researcher Hirotugu Akaike proposed a model selection method in 1973: Akaike’s Informa-
tion Criterion (AIC). He pointed out that when trying to select an optimal model from a set of candidate
models, the one with the smallest AIC value [1, 2, 3] should be chosen. Common model selection criteria
are AIC and BIC, given the large numbers of parameters, we use the corrected AIC, i.e. AICc, for model
selection, which is calculated by the following formula [35]

AICc = −2 ln(L(θ̂MLE)) + 2K +
2K(K + 1)

N −K − 1
, (4.1)

where, K is the number of unknown parameters, N is the number of observations, and L is the likelihood
function. The smaller the value of AICc, the better the model.

We are going to use the Affine Invariant Ensemble Markov Chain Monte Carlo (GWMCMC) algorithm
[14] for parameter estimation. The traditional Markov Chain Monte Carlo algorithm approximates the
posterior distribution of the parameters by randomly sampling the parameter space [12]. The GWMCMC
algorithm we use is superior to the Metropolis-Hastings (M-H) algorithm and the Random Walk M-H
algorithm [7], especially when the parameters are unidentifiable. The advantage of this algorithm is that
it does not take into account the normalization of the parameters and is iterated by several walkers at
the same time. The positions of the walkers are based on the current positions of all other walkers, which
makes the estimation more accurate. Details of the algorithm can be found in the literature [14, 34]. In
this study, we assume that all known data have normally distributed noise. The meanings, prior ranges,
and sources of the parameters in the paper are given in Table 8.1.

Also, the MCMC algorithm needs to be determined whether it has converged or not. This crucial
aspect is often avoided. If the Markov Chain has not yet reached the convergence state, it means that
the result has not yet reached the target posterior distribution, and further iterations are needed to get a
better result. The existing convergence theorem can only theoretically guarantee that it will converge to
the target distribution [19] after a sufficiently long iteration, but it cannot tell us quantitatively how long
it will take. In general, we can judge whether it has converged subjectively by drawing an iterative graph.
In addition to this observation method, we can also use the method proposed by Gelman et al. [6, 10],
which utilizes the idea of analysis of variance (ANOVA) to construct an estimator V̂ of the variance σ2

and compute the potential scale reduction factor (PSRF) to determine whether it has converged.
It can be considered that the chain has converged when PSRF ≈ 1, otherwise it is necessary to

continue iterating or to look for other ways to help it converge.
Based on the above GWMCMC algorithm and convergence criteria, we first select the optimal one

among four models (see Table 2.1) using the clinical data of Moderna’s vaccine mRNA-1273 and find a
set of optimal parameter posterior distributions, optimal values, and their 95% confidence intervals for
each model.

We performed about 100 million iterations on 34 chains, with 3 million steps per chain. Since the
iterations of each chain are performed simultaneously, the iteration steps mentioned below are for a
single chain. We save the results every 10 iterations and calculate the PSRF values of each parameter for
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Fig. 4.1: Convergence of PSRF. Every line shows the PSRF of one specific parameter converging to 1
with transitions when we fit the data of mRNA-1273.

10×2n(n = 1, . . . , 17) iterations. In addition, because the result at the beginning of iteration is unstable,
to eliminate its side effect, when the number of iteration steps is more than 400 thousand steps, only the
result of the first 400 thousand steps of the current step number is taken for calculation. Here we only
show the result based on the mRNA-1273 (Figure 4.1), and it is easy to see that PSRFs are approaching
1.

The parameter estimation results of the four models are shown in Table 4.1 with respect to mRNA-
1273. For model selection, we calculate the corresponding AICc values by using the formula (4.1) and
corroborate them with the BIC values, and the results are shown in Table 4.2. Obviously, correlation
values of Model 3 are the smallest among the four models, whether the AICc value or the BIC value is
used as the criterion for model selection. This suggests that Model 3 is the most suitable of the four
models for describing the dynamics of mRNA vaccination and the clinical data collected. In addition, this
result also suggests that the killing of infected cells by memory cells and the promotion of immune cells and
neutralizing antibodies by memory cells during mRNA vaccination are not significant and can be ignored.
On the other hand, the fact that Model 4 is not selected implies that the role of the body’s inherent
innate immunity in this process cannot be ignored. The blue curves in Figure 4.2 are the fitting results
of the selected model Model 3 under the optimal parameters, and the upper arrows represent the time
points of vaccination. Finally, we perform the same process on the data of the mRNA vaccine BNT162b2
from Pfizer/BioNTech and obtain results consistent with the vaccine mRNA-1273. The fitting results
of the selected model Model 3 are shown by the brown curves in Figure 4.2. The fitting results show
that both vaccines can significantly increase the numbers of immune cells and neutralizing antibodies,
among which the increase of CD8+ T cells, CD4+ T cells, and neutralizing antibodies are more obvious
and remain at high levels on day 181. This suggests that the vaccine can enhance the immunity against
SARS-CoV-2.

Also can be seen from Figure 4.2, different variables peak at different time points. After the first
vaccination of mRNA-1273, CD8+ T cells, CD4+ T cells, and neutralizing antibodies respectively peak
on day 21, day 19, and day 26, which shows that the components of the immunity system are decreasing
on day 27, the day one gets the second vaccination. So, this may mean one can be vaccinated a little
earlier. By contrast, the day one is vaccinated with the second BNT162b2 is generally the day the effect
of vaccination peaks. The time points of the two vaccinations are better articulated than mRNA-1273.

5 Practical Identifiability Analysis
The structural identifiability discussed above is based on the premise that the data are free of noise. In
reality, data are inevitably subject to measurement and processing errors, which leads to the question
of practical identifiability, i.e., the effect of noise on fitting and estimation. A model whose structure is
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Fig. 4.2: Fitting Results with GWMCMC of Model 3. The first vaccination is injected on day 0 and
the second vaccination is injected on day 27. The blue lines and the brown dashed lines show the fitting
results of the data of mRNA-1273 and BNT162b2 respectively. Squares and diamonds represent the
processed data of two vaccines. The arrows mark the time points one is injected.

Table 4.2: List of AICc and BIC for Different Sub-models of mRNA-1273

Model Number of Parameters AICc BIC Maximum Likelihood

Model 1 26 376.73 418.04 2.86e-84

Model 2 25 377.82 417.88 1.63e-84

Model 3 14 263.73 277.74 6.27e-59

Model 4 13 318.00 331.35 1.01e-70
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Table 5.1: List of AREs of Parameters for Model 3 with Measurement Error Levels 10% and 20%. *ARE
> noise.

Parameter True Value N(0, 10%) N(0, 20%) Parameter True Value N(0, 10%) N(0, 20%)

p 0.02 0.07 0.16 αB 0.04 0.08 0.24*

λ 0.03 0.08 0.17 δI 0.03 0.07 0.14

β 0.04 0.15* 0.22* δA 0.04 0.05 0.05

θ1 0.02 0.14* 0.25* ωA 0.04 0.18* 0.27*

θ2 0.02 0.10 0.15 ωk 0.02 0.08 0.17

αk 0.01 0.07 0.16 ωh 0.03 0.09 0.17

αh 0.03 0.06 0.09 ωB 0.01 0.10 0.15

identifiable may not be practically identifiable [36]. Therefore, we simulate by exerting different levels of
noise on the data to investigate the effect of noise on the system. We assume that the data have two types
of noise: Gaussian error with standard deviations of 10% and 20%, respectively. We take the optimal
parameters obtained by GWMCMC as the real values, add 1000 sets of random errors to the dynamics
curves of variables Tk, Th, A as the error dataset, and then fit them with GWMCMC again to obtain the
optimal parameters with the noisy data. By calculating the average relative error (ARE) between these
1000 sets of optimal parameters and the true values, we present the results in Table 5.1.

ARE values can be used to quantitatively determine whether each parameter is practically identifiable
or not. Obviously, for a practically identifiable parameter, the ARE value should be close to 0, and as the
error increases, the ARE value increases. If the ARE of a parameter is large for a small error, it means
that the error in the data causes the parameter estimate to be unreliable, i.e., the parameter is sensitive
to changes in the data, and then the parameter is practically unidentifiable. However, although the
ARE value can be used to analyze the practical identifiability, there is no universal standard, so different
standards will lead to different results. Here, we refer to the method in [36], considering a parameter to
be practically identifiable when the ARE value is not larger than the noise error of our simulation, and
vice versa, it is considered practically unidentifiable.

In addition to the two errors we mentioned, we also simulated the noise-free case (assuming the noise
is 0 and repeating the previous fitting procedure). As can be seen from Table 5.1, for the true values,
the maximum ARE value for each parameter is 0.04. Considering the small number of iterations here (1
million steps), we consider this to be low enough, which suggests that the parameters can be uniquely
determined for the noise-free data, which confirms that Model 3 is globally identifiable. In addition,
we find that the parameter αB is practically identifiable at 10% noise, but becomes unidentifiable when
the noise increases to 20%. Unfortunately, the parameters β, θ1, ωA are practically unidentifiable at both
noise levels. The remaining parameters are practically identifiable at both noise levels. To investigate
how much these practically unidentifiable parameters affect the fit, we perform the following numerical
simulation. The practically identifiable parameters are fixed to the optimal values fitted by Model 3 (see
Table 4.1), and the four unidentifiable parameters αB , β, θ1, ωA are added with 10% and 20% standard
deviations of normal distribution noise. We randomly sample parameters 10 thousand times each, and
then we obtain the dynamics curves and their 95% confidence intervals of each variable in Model 3,
which are shown in Figure 5.1. As can be seen from the figure, most of the variables maintain a narrow
range under these 10 thousand samples, and only two variables, infected cells II and antibodies, have a
wider range of confidence intervals, which are within acceptable limits. This indicates that our fitting
results are generally reliable.

6 Parameter Sensitivity Analysis and Virtual Experiments
6.1 Parameter Sensitivity Analysis
In the previous section, we find that some of the parameters are practically unidentifiable. This suggests
that errors in observations can lead to increased errors in parameter estimation, making the fit less robust.
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Fig. 5.1: Effects of Practically Unidentifiable Parameters on the System. The red lines show the fitting
results of the data of mRNA-1273. Squares represent the processed data. The shades are the 95% CIs
with some parameters exerted noise of 10% and 20%. The arrows mark the time points one is injected.

Conversely, the question of how much a change in a parameter may affect the predicted outcome is the
parameter sensitivity analysis. This helps us to find the key parameters in the model that have a greater
impact on the results, and through this process we can see which biological factors play a more important
role in vaccination and the human immune response. In general, we can fix other factors and change a
single factor, which is called local sensitivity analysis, but in biological processes, the factors are usually
very uncertain, and they may be related to each other. Therefore, we use global sensitivity analysis [23]
to study the sensitivity of models to the parameters more comprehensively.

We use Latin Hypercube Sampling (LHS) [26] to sample the parameters, and Partial Rank Correlation
Coefficient (PRCC) values to perform the sensitivity analysis, to find out the parameters that most affect
the model. The results of the sensitivity analysis are shown in Figure 6.1. It can be seen that the three
important immune variables, CD8+ T cells Tk, CD4+ T cells Th and antibodies A are insensitive to the
parameters p, αB , δA, ωB , whereas they are sensitive to the parameters λ, θ1, θ2, αk, ωk. These parameters
are mostly related to CD8+ T cells and antigens, so we can start from these two aspects to resist the
viral infection process. In addition, we find that the parameters αh, ωh associated with CD4+ T cells
only have a significant effect on neutralizing antibodies, suggesting that although the CD4+ T cells may
not change much after vaccination, it is enough to effectively impact on the production of neutralizing
antibodies.

6.2 Injection of the Booster
One advantage of the mathematical model is that the experiments can be carried on easily with little
cost. The effects of different strategies for epidemics can be compared directly [16, 38]. For the real
vaccinations with the mRNA vaccines against SARS-CoV-2, the first vaccination is usually injected on
day 0, followed by a second vaccination on day 27. The body then produces a great quantity of antibodies
that last for a long period. Subsequent vaccinations are often called ”boosters” and are often given at
intervals of no less than 6 months.

Next, we simulate the viral and immune dynamics in vivo after the initial two vaccinations followed by
booster injections at 6-month and 12-month intervals. Figure 6.2 is a numerical simulation based on the
fitting results of Table 4.1 and Model 3 (Results of BNT162b2 are shown in Appendix C). The arrows
above the subfigures mark the time points one is injected. We find that after a period after the first two
vaccinations, the immune cells CD8+ T cells (Subfigure D) and CD4+ T cells (Subfigure E) reach certain
stable states with time, whereas the neutralizing antibodies (Subfigure F) show a continuous decline, and
if the individual does not receive new vaccinations, the level of antibodies eventually drops to 0 after about
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Fig. 6.1: Sensitivity Analysis. PRCCs for Tk, Th, A with all parameters. LHS is done 1 thousand times.
∗p < 0.05,∗∗ p < 0.01.

1 thousand days. Obviously, this simulation result is consistent with the theoretical result in Theorem
2.1. However, once the individual receives a booster injection 6 months later, all infected cells (Subfigure
A, B), antigens (Subfigure C), immune cells (Subfigure D, E), and neutralizing antibodies (Subfigure F)
increase rapidly to a peak a little lower than that of the second vaccination and then show a decreasing
trend. Infected cells and antigens decrease the fastest, immune cells the second fastest, and neutralizing
antibodies the slowest. The dynamics of the system are similar when an individual is vaccinated again
after 12 months. However, according to Theorem 2.1, if an individual does not receive a new vaccination,
the antibody level will eventually drop to 0 after a certain period. Therefore, boosters do maintain high
levels of neutralizing antibodies for some time. Compared to neutralizing antibodies, boosters do not
stimulate other immune cells as much. There are two hypotheses: one is that the immune system has
already memorized the S proteins from the vaccine, so when the S proteins reappear in vivo, they will be
bound by the rapidly produced antibodies; the other is that the antibody level is already relatively high,
and the antibodies produced previously can bind to the S proteins. Both suggest that the antibodies are
effective in stopping the viruses from proliferating and also further support the previous results of the
parameter sensitivity analysis. In conclusion, we believe that the boosters can effectively enhance the
resistance of the human body to viruses.

7 Discussion
Mathematical models are an effective means of analyzing biological processes. This paper investigates
the microdynamics of the mRNA vaccine in vivo. We first develop a model describing the dynamics of
infection in vivo after vaccination based on the characteristics of mRNA vaccines. Unfortunately, models
of vaccines are rarely studied, and there is little literature to draw on. We propose four sub-models based
on biological meanings and use the GWMCMC for data fitting and parameter estimation. Although the
parameter space is very large, the parallel computation of the GWMCMC can help the iterations converge
quickly. We obtain the optimal parameters and their 95% confidence intervals and calculate their AICc
and BIC, which show that Model 3 is the best under both criteria, i.e., the roles of memory cells can be
ignored temporarily in the immunization induced by the first two vaccinations, and the innate immune
mechanism cannot be ignored. We also calculate the PSRF to determine the convergence, and the results
show that the Markov Chain can be considered to have reached convergence.

Assuming that the observed data are free of noise, the predictions of the structurally unidentifiable
and locally identifiable cases may differ significantly, even though models with different parameter com-
binations can fit the observations well. To make the results more robust, structural identifiability analysis
of the proposed system is critical, but it is neglected in many immunological modeling processes. We
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Fig. 6.2: Injection of the Booster. The red lines show the dynamics after the boosters of mRNA-1273.
The shades are the 95% CIs with some parameters exerted noise of 10% and 20%. The arrows mark the
time points one is injected.

analyze the identifiability of the system using differential algebra. Based on immunological clinical data,
we show that all four systems are either globally identifiable or if only one parameter needs to be known,
the rest of the parameters are globally identifiable. This theoretically supports the reliability of param-
eter estimation by GWMCMC. The GWMCMC is a global optimization method that searches through
the parameter space to obtain the posterior distribution of the parameters to maximize the fit to the
data. Then we take these fitting results as the basis for model selection for the four systems and find that
Model 3 is the best model among them for the collected clinical data, i.e., this model is the most suitable
for explaining the interaction process between mRNA vaccines and the immune system. This suggests
that the roles of memory cells in killing infected cells and promoting immune cells and neutralizing an-
tibodies during mRNA vaccination are not significant and can be ignored in the modeling process. On
the other hand, the fact that Model 4 is not selected suggests that the innate immunity of the human
body plays a necessary role in this process. We first analyze the optimal model theoretically, calculate
the equilibria, and show that the disease-free equilibrium E1 is globally asymptotically stable, while the
boundary equilibria are unstable. This indicates that after vaccination, infected cells and antigens are no
longer alive, and they are all killed due to the immune system or apoptosis. This supports the theoretical
safety of mRNA vaccines.

Mathematical models play an important role in medical research. Of course, any nonlinear dynamic
model cannot take into account all factors and is only an approximate representation of the actual
situation. A good dynamic model can better describe the basic laws of the research objects. In addition,
due to the complexity of the immune system, experimental immunologists often hold different views
and interpretations on some of the phenomena, in which case theoretical analysis can help to determine
which view or interpretation is more plausible and to know which factors play a major role. Sometimes
the analysis and computation of theoretical models can lead to interesting results, which may predict a
discovery. It is of course the most desirable. Even if this is not the case, it can be used as a reference
for medical scientists to plan their experiments. Whether the result is positive or negative, we consider
it valuable.
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Appendix A. Model of the mRNA Vaccine
The biological meanings of the variables in the system (2.1) and the system (2.2) are described as follows:

1. The equation for the variable S describes the dynamics of the antigens. When a vaccine is injected,
it can only be produced by I1 (the first term on the right side of the equation). Some of these
antigens are neutralized by the neutralizing antibodies A that substitute for ACE2 receptors on
the surface of the target cells (the second term), some are killed by the innate immune system [8],
such as phagocytosis by macrophages, etc. (θ2S in the third term), the rest may infect healthy cells
(θ1S).

2. The equation for the variable I1 describes the dynamics of the target cells entered by the mRNAs
of the S proteins in the vaccine. We characterize the injection process of a multi-shot vaccine in the
form of an impulsive differential equation. This type of infected target cells produce the antigens S.
The first term on the right-hand side of the equation describes the killing of I1 by immune cells, the
CD8+ T cells Tk and the memory CD8+ T cells Tkm, while the second term describes the natural
apoptosis of these target cells.

3. The equation for the variable I2 describes the dynamics of the target cells infected by the antigens.
We assume that healthy target cells are infected by the antigens S produced by I1. The intact
viruses utilize the S proteins on their surfaces to bind to the ACE2 receptors on the surfaces of
the target cells, thereby opening the target cells and injecting the mRNAs of the intact viruses to
replicate the viruses [11]. Therefore, as long as the immune system can deal with the S proteins,
for example, by producing neutralizing antibodies that bind to these S proteins instead of ACE2
receptors, we can prevent the viruses from reproducing in vivo. So in an mRNA vaccine, the S
proteins are the antigens. Since the mRNAs in an mRNA vaccine are only the mRNAs of the S
proteins and not the mRNAs of the complete viruses, target cells infected with the S proteins will
only stimulate the immune system but will not be able to produce complete viral particles. The
first term on the right side of the equation describes the infection of healthy target cells by the
antigens S, and the second term characterizes the killing of infected target cells by the CD8+ T
cells Tk and the memory CD8+ T cells Tkm, and the third term represents the natural apoptosis of
infected target cells.

4. The equations for the variables Tk, Th and B describe the dynamics of the CD8+ T cells, the CD4+
T cells and the B lymphocytes, respectively. The first term of each equation describes the growth
of the immune component, while the second term characterizes the stimulation of the proliferation
of each component by the infected target cells (I1 and I2), the antigens S, and the CD4+ T cells,
respectively.

5. The equation for the variable A describes the dynamics of neutralizing antibodies. The first term
describes the interaction of the lymphocytes B and the memory lymphocytes Bm with the antigens
S stimulating the production of more neutralizing antibodies A. The second term describes the
consumption of neutralizing antibodies as a result of binding to the antigens S, and the third term
represents the natural apoptosis of neutralizing antibodies.

6. The equations for the variables Tkm, Thm and Bm represent the memory CD8+ T cells, the memory
CD4+ T cells and the memory B cells respectively. The first term of each equation describes the
eventual transformation of a fraction of lymphocytes into the corresponding memory lymphocytes,
the second term represents the rapid proliferation of the corresponding memory cells when stimu-
lated by infected target cells or antigens, and the third term represents the natural apoptosis of the
memory cells.

Here we have ignored other details and intermediate processes, such as the involvement of plasma cells,
antigen-presenting cells, etc. [17, 30]. For the sake of practicality, it is also assumed that the vaccine is
injected in a pulsatile manner. To do this, we need to add the following conditions:

I1(τ
+
i ) = I1(τi) + I1i, t = τi (i = 1, 2, . . .).
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Table 8.1: Parameters of the System (2.1) & (2.2)

Parameter Biological Meaning Prior Ranges/Values Source

p Proliferation rate of antigens [1.9e2, 2.3e2] Estimated

λ Killing rate of CD8+ T cells against infected cells [7e− 2, 1.5e− 1] Estimated

β Binding rate of antibodies and antigens [7e− 14, 1.5e− 13] Estimated

θ1 Infection rate of cells by antigens [2e− 2, 6e− 1] Estimated

θ2 Killing rate of innate immunity against antigens [1.5e− 1, 6e− 1] Estimated

αk Stimulation of CD8+ T cells by infected cells [4e− 7, 1.2e− 6] Estimated

αh Stimulation of CD4+ T cells by antigens [2e− 6, 5e− 6] Estimated

αB Stimulation of B cells by antigens and CD4+ T cells [8e− 8, 3.5e− 6] Estimated

δI Apoptosis rate of infected cells [8e− 3, 1.4e− 2] Estimated

δA Apoptosis rate of neutralizing antibodies [8e− 3, 1e− 1] Estimated

ωA Growth rate of neutralizing antibodies [2e2, 3e3] Estimated

ωk Growth rate of CD8+ T cells [2e− 1, 5e− 1] Estimated

ωh Growth rate of CD4+ T cells [8e− 3, 3e− 2] Estimated

ωB Growth rate of B cells [7.5e− 2, 1.2e− 1] Estimated

πk Carrying capacity of CD8+ T cells 0.3 [21, 39]

πh Carrying capacity of CD4+ T cells 9 [21, 39]

πB Carrying capacity of B cells 211 [28]

γk Differentiation rate of memory CD8+ T cells / /

γh Differentiation rate of memory CD4+ T cells / /

γB Differentiation rate of memory B cells / /

ηk Proliferation rate of memory CD8+ T cells / /

ηh Proliferation rate of memory CD4+ T cells / /

ηB Proliferation rate of memory B cells / /

δk Apoptosis rate of memory CD8+ T cells / /

δh Apoptosis rate of memory CD4+ T cells / /

δB Apoptosis rate of memory B cells / /

µk Ratio of effect of memory CD8+ T cells / /

µh Ratio of effect of memory CD4+ T cells / /

µB Ratio of effect of memory B cells / /

This equation represents the increase of I1 due to the injection of a new vaccine at the moment of
τi (i = 1, 2, . . .), where I1(τi) denotes the number of target cells infected in the original system at the
moment of τi, and I1i denotes the number of target cells newly infected by the mRNAs of the S proteins in
the newly injected vaccine. The meanings of the parameters in the system (2.1) & (2.2) are summarized
in Table 8.1.

Considering the equilibria of the dynamic model of the vaccine in vivo. Letting both (2.1) and (2.2)
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be 0, it is easy to know that there are 8 equilibria as follows:

E1(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, πk, πh, πB , 0,

γkπk

δk
,
γhπh

δh
,
γBπB

δB

)T

,

E2(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, 0, πh, πB , 0, 0,

γhπh

δh
,
γBπB

δB

)T

,

E3(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, πk, 0, πB , 0,

γkπk

δk
, 0,

γBπB

δB

)T

,

E4(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, πk, πh, 0, 0,

γkπk

δk
,
γhπh

δh
, 0

)T

,

E5(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, πk, 0, 0, 0,

γkπk

δk
, 0, 0

)T

,

E6(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, 0, πh, 0, 0, 0,

γhπh

δh
, 0

)T

,

E7(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, 0, 0, πB , 0, 0, 0,

γBπB

δB

)T

,

E8(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T
.

We obtain the following conclusion about these equilibria.

Theorem 2.1 In the case of a single vaccination, the disease-free equilibrium of four systems of vacci-
nation Model 1-Model 4

E1(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, πk, πh, πB , 0,

γkπk

δk
,
γhπh

δh
,
γBπB

δB

)T

is unconditionally globally asymptotically stable, while the other equilibria Ei(i = 2, . . . , 8) are unstable.

Proof. First, we prove it is locally asymptotically stable. For simplicity, denote

Z = (I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm)T ,
Y = (I∗1 , I

∗
2 , S

∗, T ∗
k , T

∗
h , B

∗, A∗, T ∗
km, T ∗

hm, B∗
m)T = Z +E1,

and we get a transformed model

dI∗1
dt

= −λπkI
∗
1 − λµkγkπk

δk
I∗1 − δII

∗
1 − λµkI

∗
1T

∗
km − λI∗1T

∗
k ,

dI∗2
dt

= −λπkI
∗
2 − λµkγkπk

δk
I∗2 − δII

∗
2 + θ1S

∗ − λµkI
∗
2T

∗
km − λI∗2T

∗
k ,

dS∗

dt
= pI∗1 − θ1S

∗ − θ2S
∗ − βS∗A∗,

dT ∗
k

dt
= αkI

∗
1 + αkI

∗
2 − ωkπkT

∗
k − ωkT

∗2
k ,

dT ∗
h

dt
= αhS

∗ − ωhπhT
∗
h − ωhT

∗2
h ,

dB∗

dt
= αBπhS

∗ + αBµhγhπh

δh
S∗ − ωBπBB

∗ − ωBB
∗2 + αBµhS

∗T ∗
hm + αBS

∗T ∗
h ,

dA∗

dt
= ωAπBS

∗ + ωAµBγBπB

δB
S∗ − δAA

∗ + ωAµBS
∗B∗

m + ωAS
∗B∗ − βS∗A∗,

dT ∗
km

dt
= ηkγkπk

δk
I∗1 + ηkγkπk

δk
I∗2 + γkT

∗
k − δkT

∗
km + ηkT

∗
kmI∗1 + ηkT

∗
kmI∗2 ,

dT ∗
hm

dt
= ηhγhπh

δh
S∗ + γhT

∗
h − δhT

∗
hm + ηhT

∗
hmS∗,

dB∗
m

dt
= ηBγBπB

δB
S∗ + γBB

∗ − δBB
∗
m + ηBB

∗
mS∗.

(8.1)
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So the disease-free equilibrium E1 of the system (2.1) & (2.2) is equivalent to the equilibrium 0 of the
system (8.1), and they have the same stability. It is easy to write the coefficient matrix of the linearized
system of the system (8.1) at 0 as follows:

−a1 0 0 0 0 0 0 0 0 0
0 −a1 θ1 0 0 0 0 0 0 0
p 0 −(θ1 + θ2) 0 0 0 0 0 0 0
αk αk 0 −ωkπk 0 0 0 0 0 0
0 0 αh 0 −ωhπh 0 0 0 0 0
0 0 a2 0 0 −ωBπB 0 0 0 0
0 0 a3 0 0 0 −δA 0 0 0

ηkγkπk

δk

ηkγkπk

δk
0 γk 0 0 0 −δk 0 0

0 0 ηhγhπh

δh
0 γh 0 0 0 −δh 0

0 0 ηBγBπB

δB
0 0 γB 0 0 0 −δB


where, a1 = λπk + λµkγkπk

δk
+ δI , a2 = αBπh + αBµhγhπh

δh
, a3 = ωAπB + ωAµBγBπB

δB
.

We can get its characteristic equation

(λ∗ + a1)
2(λ∗ + θ1 + θ2)(λ

∗ + ωkπk)(λ
∗ + ωhπh)(λ

∗ + ωBπB)(λ
∗ + δA)(λ

∗ + δk)(λ
∗ + δh)(λ

∗ + δB) = 0.

Since the parameters are all positive real numbers, the eigenvalues are all negative real numbers, so it can
be known that the zero solution of (8.1) is locally asymptotically stable, i.e., the disease-free equilibrium
E1 of (2.1) & (2.2) is locally asymptotically stable.

Then we prove that E1 is globally attractive. Denote the space

U = R∗ ×R∗ ×R∗ ×R+ ×R+ ×R+ ×R∗ ×R∗ ×R∗ ×R∗,

where, R+ denotes all positive real numbers, and R∗ = R+ ∪ {0}. The following shows that the domain
of attraction of E1 is U by analyzing the equations one by one of the original system (2.1) & (2.2).

First, we take arbitrary x(t0) ∈ U, and denote x(ti) = (I
(i)
1 , I

(i)
2 , S(i), T

(i)
k , T

(i)
h , B(i), A(i), T

(i)
km, T

(i)
hm,

B
(i)
m )T the point when t = ti when the system started from x(t0).

I Considering
dI1
dt

= −δII1 − λI1(Tk + µkTkm) ≤ −δII1.

Then,
I1 ≤ I

(0)
1 e−δI(t−t0) ≜ x1(t).

So, for x1, for ∀ϵ1 ∈ (0, I
(0)
1 ], ∃t1 = t0 − 1

δI
ln ϵ1

I
(0)
1

≥ t0, s.t.∀t > t1, ||x1(t)|| < ϵ1.
Also, because dI1

dt |I1=0 = 0, we can know I1 ≥ 0, so, ||I1(t)|| < ϵ1 when t > t1.

II When t ≥ t1, considering

dS

dt
= pI1 − (θ1 + θ2)S − βSA ≤ pϵ1 − (θ1 + θ2)S.

Then,

S ≤ pϵ1
θ1 + θ2

+ (S(1) − pϵ1
θ1 + θ2

)e−(θ1+θ2)(t−t1) ≤ pϵ1
θ1 + θ2

+ S(1)e−(θ1+θ2)(t−t1) ≜ x2(t).

So, for x2, for ∀ϵ2 > 0, we define arbitrary small positive numbers ϵ1 < min{ (θ1+θ2)ϵ2
p , I

(0)
1 }, and

we get ∃t2 = t1 − 1
θ1+θ2

ln( ϵ2
S(1) − pϵ1

S(1)(θ1+θ2)
) > t1, s.t.∀t > t2, ||x2(t)|| < ϵ2. Obviously, S ≥ 0, so

||S(t)|| < ϵ2 when t > t2.

III When t ≥ t2, considering

dI2
dt

= θ1S − δII2 − λI2(Tk + µkTkm) ≤ θ1ϵ2 − δII2.
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Then,
I2 ≤ θ1ϵ2

δI
+ (I

(2)
2 − θ1ϵ2

δI
)e−δI(t−t2) ≤ θ1ϵ2

δI
+ I

(2)
2 e−δI(t−t2) ≜ x3(t).

So, for x3, for ∀ϵ3 > 0, we define arbitrary small positive numbers ϵ2 < δIϵ3
θ1

, ϵ1 < min{ (θ1+θ2)ϵ2
p ,

I
(0)
1 }, and we get ∃t3 = t2 − 1

δI
ln( ϵ3

I
(2)
2

− θ1ϵ2
I
(2)
2 δI

) > t2, s.t.∀t > t3, ||x3(t)|| < ϵ3. Obviously, I2 ≥ 0, so
||I2(t)|| < ϵ3 when t > t3.

IV When t ≥ t3, considering

dTk

dt
= αk(I1 + I2) + ωkπkTk − ωkT

2
k ≤ αk(ϵ1 + ϵ3) + ωkπkTk − ωkT

2
k .

Then,

Tk ≤
tanh

[
(t−t3)

√
ωk(ωkπ

2
k
+4αk(ϵ1+ϵ3))

2
+ arctanh

(
ωk(2T

(3)
k

−πk)√
ωk(ωkπ

2
k
+4αk(ϵ1+ϵ3))

)]√
ωk(ωkπ

2
k + 4αk(ϵ1 + ϵ3)) + ωkπk

2ωk

≜ x
(u)
4 (t).

It is easy to know x
(u)
4 (t)− πk ≤

√
ωk(ωkπ2

k+4αk(ϵ1+ϵ3))+ωkπk

2ωk
− πk.

On the other hand, considering
dTk

dt
≥ ωkπkTk − ωkT

2
k .

Then,

Tk ≥
T

(3)
k πke

ωkπk(t−t3)

T
(3)
k eωkπk(t−t3) + πk − T

(3)
k

≜ x
(l)
4 (t).

Obviously, ∀ϵ∗4 > 0, ∃T4 > t3, s.t.∀t > T4, |eωkπk(t−t3)| > 1
ϵ∗4

and

tanh

[
(t−t3)

√
ωk(ωkπ2

k+4αk(ϵ1+ϵ3))

2 + arctanh

(
ωk(2T

(3)
k −πk)√

ωk(ωkπ2
k+4αk(ϵ1+ϵ3))

)]
− 1| < ϵ∗4.

So, for x
(u)
4 and x

(l)
4 , for ∀ϵ4 > 0, we define arbitrary small positive numbers ϵ1 + ϵ3 < ωkϵ4

αk
(πk +

ϵ4), ϵ2 < δIϵ3
θ1

, ϵ1 < min{ (θ1+θ2)ϵ2
p , I

(0)
1 }, and we get ∃t4 > T4, s.t.∀t > t4, ||x(u)

4 (t) − πk|| <

ϵ4, ||x(l)
4 (t)− πk|| < ϵ4. so ||Tk(t)− πk|| < ϵ4 when t > t4.

V When t ≥ t4, considering

dTh

dt
= αhS + ωhπhTh − ωhT

2
h ≤ αhϵ2 + ωhπhTh − ωhT

2
h .

Then,

Th ≤
tanh

[
(t−t4)

√
ωh(ωhπ2

h
+4αhϵ2)

2
+ arctanh

(
ωh(2T

(4)
h

−πh)√
ωh(ωhπ2

h
+4αhϵ2)

)]√
ωh(ωhπ

2
h + 4αhϵ2) + ωhπh

2ωh
≜ x

(u)
5 (t).

It is easy to know x
(u)
5 (t)− πh ≤

√
ωh(ωhπ2

h+4αhϵ2)+ωhπh

2ωh
− πh.

On the other hand, considering
dTh

dt
≥ ωhπhTh − ωhT

2
h .

Then,

Th ≥
T

(4)
h πhe

ωhπh(t−t4)

T
(4)
h eωhπh(t−t4) + πh − T

(4)
h

≜ x
(l)
5 (t).

Similar to IV, for x
(u)
5 and x

(l)
5 , for ∀ϵ5 > 0, we define arbitrary small positive numbers ϵ4 >

0, ϵ1 + ϵ3 < ωkϵ4
αk

(πk + ϵ4), ϵ2 < min{ωhϵ5
αh

(πh + ϵ5),
δIϵ3
θ1

}, ϵ1 < min{ (θ1+θ2)ϵ2
p , I

(0)
1 }, and we get

∃t5 > t4, s.t.∀t > t5, ||x(u)
5 (t)− πh|| < ϵ5, ||x(l)

5 (t)− πh|| < ϵ5. So ||Th(t)− πh|| < ϵ5 when t > t5.
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VI When t ≥ t5, considering

dTkm

dt
= γkTk − δkTkm + ηkTkm(I1 + I2) ≤ γk(πk + ϵ4)− (δk − ηk(ϵ1 + ϵ3))Tkm.

Then,

Tkm ≤ γk(πk + ϵ4)

δk − ηk(ϵ1 + ϵ3)
+ (T

(5)
km − γk(πk + ϵ4)

δk − ηk(ϵ1 + ϵ3)
)e−(δk−ηk(ϵ1+ϵ3))(t−t5) ≜ x

(u)
6 (t).

On the other hand, considering

dTkm

dt
≥ γk(πk − ϵ4)− δkTkm.

Then,
Tkm ≥ γk(πk − ϵ4)

δk
+ (T

(5)
km − γk(πk − ϵ4)

δk
)e−δk(t−t5) ≜ x

(l)
6 (t).

So, for x(u)
6 and x

(l)
6 , for ∀ϵ6 > 0, we define arbitrary small positive numbers ϵ5 > 0,

γk[δkϵ4+πkηk(ϵ1+ϵ3)]
δk[δk−ηk(ϵ1+ϵ3)]

< ϵ6, ϵ4 < δkϵ6
γk

, ϵ1 + ϵ3 < min{ δk
ηk
, ωkϵ4

αk
(πk + ϵ4)}, ϵ2 < min{ωhϵ5

αh
(πh + ϵ5),

δIϵ3
θ1

},
ϵ1 < min{ (θ1+θ2)ϵ2

p , I
(0)
1 }, and we get ∃t6 > t5, s.t.∀t > t6, ||x(u)

6 (t)− γkπk

δk
|| < ϵ6, ||x(l)

6 (t)− γkπk

δk
|| <

ϵ6. So ||Tkm(t)− γkπk

δk
|| < ϵ6 when t > t6.

VII When t ≥ t6, considering

dThm

dt
= γhTh − δhThm + ηhThmS ≤ γh(πh + ϵ5)− (δh − ηhϵ2)Thm.

Then,
Thm ≤ γh(πh + ϵ5)

δh − ηhϵ2
+ (T

(6)
hm − γh(πh + ϵ5)

δh − ηhϵ2
)e−(δh−ηhϵ2)(t−t6) ≜ x

(u)
7 (t).

On the other hand, considering

dThm

dt
≥ γh(πh − ϵ5)− δhThm.

Then,
Thm ≥ γh(πh − ϵ5)

δh
+ (T

(6)
hm − γh(πh − ϵ5)

δh
)e−δh(t−t6) ≜ x

(l)
7 (t).

So, for x
(u)
7 and x

(l)
7 , for ∀ϵ7 > 0, we define arbitrary small positive numbers γh[δhϵ5+πhηhϵ2]

δh(δh−ηhϵ2)
<

ϵ7, ϵ5 < δhϵ7
γh

, γk[δkϵ4+πkηk(ϵ1+ϵ3)]
δk[δk−ηk(ϵ1+ϵ3)]

< ϵ6, ϵ4 < δkϵ6
γk

, ϵ1 + ϵ3 < min{ δk
ηk
, ωkϵ4

αk
(πk + ϵ4)}, ϵ2 < min{ δh

ηh
,

ωhϵ5
αh

(πh + ϵ5),
δIϵ3
θ1

}, ϵ1 < min{ (θ1+θ2)ϵ2
p , I

(0)
1 }, and we get ∃t7 > t6, s.t.∀t > t7, ||x(u)

7 (t) − γhπh

δh
|| <

ϵ7, ||x(l)
7 (t)− γhπh

δh
|| < ϵ7. So ||Thm(t)− γhπh

δh
|| < ϵ7 when t > t7.

VIII When t ≥ t7, considering

dB

dt
= αBS(Th + µhThm) + ωBπBB − ωBB

2 ≤ αBϵ2(πh + ϵ5 + µh(
γhπh

δh
+ ϵ7)) + ωBπBB − ωBB

2.

Then,

B ≤ πB

2
+

1

2ωBδh
tanh

[
(t− t7)G

2δh
+ arctanh

(
δhωB(2B

(7) − πB)

G

)]
G ≜ x

(u)
8 (t),

where, G =
√

ωBδh(4αBϵ2(δh(µhϵ7 + πh + ϵ5) + µhπhγh) + ωBπ2
Bδh).

On the other hand, considering
dB

dt
≥ ωBπBB − ωBB

2.

Then,

B ≥ B(7)πBe
ωBπB(t−t7)

B(7)eωBπB(t−t7) + πB −B(7)
≜ x

(l)
8 (t).
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So, for x(u)
8 and x

(l)
8 , for ∀ϵ8 > 0, we define arbitrary small positive numbers αBϵ2

ωBδh
[δh(µhϵ7+πh+ϵ5)+

µhπhγh] < ϵ8(πB + ϵ8),
γh[δhϵ5+πhηhϵ2]

δh(δh−ηhϵ2)
< ϵ7, ϵ5 < δhϵ7

γh
, γk[δkϵ4+πkηk(ϵ1+ϵ3)]

δk[δk−ηk(ϵ1+ϵ3)]
< ϵ6, ϵ4 < δkϵ6

γk
, ϵ1 + ϵ3 <

min{ δk
ηk
, ωkϵ4

αk
(πk + ϵ4)}, ϵ2 < min{ δh

ηh
, ωhϵ5

αh
(πh + ϵ5),

δIϵ3
θ1

}, ϵ1 < min{ (θ1+θ2)ϵ2
p , I

(0)
1 }, and we get

∃t8 > t7, s.t.∀t > t8, ||x(u)
8 (t)− πB || < ϵ8, ||x(l)

8 (t)− πB || < ϵ8. So ||B(t)− πB || < ϵ8 when t > t8.

IX When t ≥ t8, considering
dBm

dt
= γBB − δBBm + ηBBmS ≤ γB(πB + ϵ8)− (δB − ηBϵ2)Bm.

Then,
Bm ≤ γB(πB + ϵ8)

δB − ηBϵ2
+ (B(8)

m − γB(πB + ϵ8)

δB − ηBϵ2
)e−(δB−ηBϵ2)(t−t8) ≜ x

(u)
9 (t).

On the other hand, considering
dBm

dt
≥ γB(πB − ϵ8)− δBBm.

Then,
Bm ≥ γB(πB − ϵ8)

δB
+ (B(8)

m − γB(πB − ϵ8)

δB
)e−δB(t−t8) ≜ x

(l)
9 (t).

So, for x
(u)
9 and x

(l)
9 , for ∀ϵ9 > 0, we define arbitrary small positive numbers γB [δBϵ8+πBηBϵ2]

δB(δB−ηBϵ2)
<

ϵ9, ϵ8 < δBϵ9
γB

, αBϵ2[δh(µhϵ7+πh+ϵ5)+µhπhγh]
ωBδh

< ϵ8(πB + ϵ8),
γh[δhϵ5+πhηhϵ2]

δh(δh−ηhϵ2)
< ϵ7, ϵ5 < δhϵ7

γh
,

γk[δkϵ4+πkηk(ϵ1+ϵ3)]
δk[δk−ηk(ϵ1+ϵ3)]

< ϵ6, ϵ4 < δkϵ6
γk

, ϵ1 + ϵ3 < min{ δk
ηk
, ωkϵ4

αk
(πk + ϵ4)}, ϵ2 < min{ δB

ηB
, δh
ηh
, ωhϵ5

αh
(πh +

ϵ5),
δIϵ3
θ1

}, ϵ1 < min{ (θ1+θ2)ϵ2
p , I

(0)
1 }, and we get ∃t9 > t8, s.t.∀t > t9, ||x(u)

9 (t)− γBπB

δB
|| < ϵ9, ||x(l)

9 (t)−
γBπB

δB
|| < ϵ9. So ||Bm(t)− γBπB

δB
|| < ϵ9 when t > t9.

X When t ≥ t9, considering
dA

dt
= −δAA− βSA+ ωAS(B + µBBm) ≤ ωAϵ2(πB + ϵ8 + µB(

γBπB

δB
+ ϵ9))− δAA.

Then,

A ≤
ωAϵ2(πB + ϵ8 + µB(

γBπB

δB
+ ϵ9))

δA
+ (A(9) −

ωAϵ2(πB + ϵ8 + µB(
γBπB

δB
+ ϵ9))

δA
)e−δA(t−t9)

≜ x10(t).

So, for x10, for ∀ϵ10 > 0, we define arbitrary small positive numbers
ωAϵ2(πB+ϵ8+µB(

γBπB
δB

+ϵ9))

δA
<

ϵ10,
γB [δBϵ8+πBηBϵ2]

δB(δB−ηBϵ2)
< ϵ9, ϵ8 < δBϵ9

γB
, αBϵ2[δh(µhϵ7+πh+ϵ5)+µhπhγh]

ωBδh
< ϵ8(πB + ϵ8),

γh[δhϵ5+πhηhϵ2]
δh(δh−ηhϵ2)

<

ϵ7, ϵ5 < δhϵ7
γh

, γk[δkϵ4+πkηk(ϵ1+ϵ3)]
δk[δk−ηk(ϵ1+ϵ3)]

< ϵ6, ϵ4 < δkϵ6
γk

, ϵ1+ ϵ3 < min{ δk
ηk
, ωkϵ4

αk
(πk+ ϵ4)}, ϵ2 < min{ δB

ηB
, δh
ηh
,

ωhϵ5
αh

(πh + ϵ5),
δIϵ3
θ1

}, ϵ1 < min{ (θ1+θ2)ϵ2
p , I

(0)
1 }, and we get ∃t10 > t9, s.t.∀t > t10, ||x10(t)|| < ϵ10.

Obviously, A ≥ 0, so ||A(t)|| < ϵ10 when t > t10.
Finally, it can be shown that the domain of attraction of E1 is U. So, E1 is unconditionally globally
asymptotically stable.

For equilibria Ei(i = 2, . . . , 8), we also perform the corresponding translational transformations of the
original system, making the equilibria be 0 after transformations. Now we can calculate the characteristics
equations of the coefficient matrices of the linearized systems of the transformed systems at 0, and they
are displayed sequentially as follows:
(λ∗ + δI)

2(λ∗ + θ1 + θ2)(λ
∗ − ωkπk)(λ

∗ + ωhπh)(λ
∗ + ωBπB)(λ

∗ + δA)(λ
∗ + δk)(λ

∗ + δh)(λ
∗ + δB) = 0,

(λ∗ + a1)
2(λ∗ + θ1 + θ2)(λ

∗ + ωkπk)(λ
∗ − ωhπh)(λ

∗ + ωBπB)(λ
∗ + δA)(λ

∗ + δk)(λ
∗ + δh)(λ

∗ + δB) = 0,
(λ∗ + a1)

2(λ∗ + θ1 + θ2)(λ
∗ + ωkπk)(λ

∗ + ωhπh)(λ
∗ − ωBπB)(λ

∗ + δA)(λ
∗ + δk)(λ

∗ + δh)(λ
∗ + δB) = 0,

(λ∗ + a1)
2(λ∗ + θ1 + θ2)(λ

∗ + ωkπk)(λ
∗ − ωhπh)(λ

∗ − ωBπB)(λ
∗ + δA)(λ

∗ + δk)(λ
∗ + δh)(λ

∗ + δB) = 0,
(λ∗ + δI)

2(λ∗ + θ1 + θ2)(λ
∗ − ωkπk)(λ

∗ + ωhπh)(λ
∗ − ωBπB)(λ

∗ + δA)(λ
∗ + δk)(λ

∗ + δh)(λ
∗ + δB) = 0,

(λ∗ + δI)
2(λ∗ + θ1 + θ2)(λ

∗ − ωkπk)(λ
∗ − ωhπh)(λ

∗ + ωBπB)(λ
∗ + δA)(λ

∗ + δk)(λ
∗ + δh)(λ

∗ + δB) = 0,
(λ∗ + δI)

2(λ∗ + θ1 + θ2)(λ
∗ − ωkπk)(λ

∗ − ωhπh)(λ
∗ − ωBπB)(λ

∗ + δA)(λ
∗ + δk)(λ

∗ + δh)(λ
∗ + δB) = 0,

where, a1 = λπk + λµkγkπk

δk
+ δI . Obviously, they all have at least one positive characteristic root, so

these equilibria are unstable.
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Fig. 8.1: Injection of BNT162b2 booster. The red lines show the dynamics after the boosters of
BNT162b2. The arrows mark the time points one is injected.

Appendix B. Data
Z. Zhang’s team from the La Jolla Institute for Immunology (USA) injected two groups of 30 adults
primarily composed of white individuals with mRNA-1273 at a dose of 100µg and BNT162b2 at a dose
of 30µg, with the subjects receiving two doses of the vaccine at about 4 weeks intervals [39]. The immune
cells were measured before the first vaccination, 2 weeks, 1 month, 3.5 months, and 6 months after the
first vaccination. The geometric mean of the number of subsets of immune cells of interest was obtained.
These numbers of subsets of the CD8+ T cells and the CD4+ T cells are used in our fitting, and the results
of the fitting are then used to evaluate the different models to determine which one is more appropriate
for this clinical dataset.

Rishi R. Goel’s team from the University of Pennsylvania vaccinated 3 adult subjects with mRNA-
1273 and 42 adult subjects with BNT162b2. The interval between the two vaccinations was 4 weeks.
Clinical data were collected before the first dose, 2 weeks, 4 weeks, 5 weeks, 3 months, and 6 months
after the first dose, and a time series of the numbers of specific subsets of memory cells was given for
each subject. The team found that the mRNA vaccine induced durable immune memory. The data of
the memory CD8+ T cells, the memory CD4+ T cells, and the memory B cells in our model were taken
from the literature [13].

Carolina Lucas’s team from Yale University compared the impact of different variants of the viruses on
the immunity induced by the mRNA vaccine by vaccinating 18 test subjects between November 2020 and
January 2021. 11 adult subjects were vaccinated with mRNA-1273, and 7 adult subjects were vaccinated
with BNT162b2. Vaccination intervals were again 4 weeks. The team measured the IgG neutralizing
antibodies against S, S1, and RBD receptors before the first injection, and at 1, 4, 5, 8, and 70 days
after the first injection. These antibodies are related to the antigens in our model. Data on neutralizing
antibodies involved in the four models are taken from the literature [22].

Also, to make the results of the study more credible, we only chose the data from subjects who had
not been infected with SARS-CoV-2 in the literature, to ensure that the data come from as similar a
population as possible and that the doses of the same vaccine are the same. Finally, we extracted the
data and further processes them so that they have the same units and scale.

Appendix C. Simulation of BNT162b2 Booster
The simulation of BNT162b2 booster is shown in Figure 8.1.
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