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Abstract: In this paper, we consider the inverse problem for identifying the source
term and initial value simultaneously in a space-fractional Allen-Cahn equation. This
problem is ill-posed, i.e., the solution of this problem does not depend continuously on
the data. The fractional Tikhonov method is used to solve this problem. Under the
a priori and the a posteriori regularization parameter choice rules, the error estimates
between the regularization solutions and the exact solutions are obtained, respectively.
Different numerical examples are presented to illustrate the validity and effectiveness
of our method.
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1 Introduction

In recent years, fractional Allen-Cahn equation (ACe) have attracted wide attentions.
The ACe was originally proposed by Allen and Cahn [1], which is a phase model that
simulates the anti-phase boundary motion of a crystalline solid. And the ACe is widely
used in various interface problems, for example, vesicle membranes, the nucleation of
solids and the motion by mean curvature and so on [2-4]. Recently, more and more
people pay attention to the fractional differential equations [5-8]. In particular, the
space fractional Allen-Cahn equation (SFACe) is a class of the fractional differential
equations, which can be seen as a fractional analogue of the classic ACe. Currently, most
research is focused on numerical solutions to this equation. In [9], Zhang et al. proposed
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energy stability of high-order implicit Runge-Kutta schemes for the SFACe. In [10], Hou
et al. constructed a fully discretized Crank-Nicolson scheme for fractional-in-space ACe.
And then the nonlinear iteration is required during the solution process. Moreover, He
et al. [11] proved that a spatial fourth-order maximum principle preserving operator
splitting scheme for the multi-dimensional fractional ACe. For more research on the
SFACe, we can refer to the literatures [12,13].

Compared to the above problems, the study on inverse problem of SFACe is still
limited. Especially, the problem of simultaneous inversion of the source term and
initial value in a SFACe involve only a few. By reading [16], we know most of the
inverse problems are ill-posed, we need to use regularization method to resolve this
problem. We can refer to some regularization methods for diffusion equation to solve
inverse problem of SFACe. In [14], Yang et al. made use of the Landweber iterative
method to identify a space-dependent source for the time-fractional diffusion equation.
In [17-19], Yang et al. identified the unknown source for fractional diffusion equation in
frequency domain by using different regularization methods. In [15], Yang et al. applied
Landweber regularization method to identify the unknown source of the time-fractional
inhomogeneous diffusion equation.

In this paper, we consider the following space-fractional Allen-Cahn equation:

au(gx,t) =2Lou(z,t) + f(x), x€Q, tec(0,T),

u(z,0) = ( ), zel,

u(w,t) = z€om i€ (0,1, .
u(z, tg) = (x), T €8, 1 €(0,7],

u(l’,T) — (ZL‘), T € Q7

where Q = (a,b)%, d = 1,2, 0 < a < 1 is the order of a fractional derivative and
the parameter ¢ is a positive constant. And L, denotes the Riesz fractional derivative
operator. In one-dimension, it is given by

o0 1 %3
Lou = Wu =5 (:05(71)(QD§‘U +2 Diu) := Co (o DSu 44 Dyu), (1.2)
here, Co = —3 L cos(%T). The left and right-sided Riemann-Liouville fractional deriva-

tives ,Dyu and , Dy u are defined by
Lod "
oDou = ——— ——>—=d(,
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respectively, where I'(-) is Gamma function. Similarly, in two-dimension, the fractional
derivative operator L, can be defined as
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where g2zu = Co(oDjju +y Difu).
One will see the relationship between this operator and Laplace is as [21]

—(=A)2u = Co(4 DU 45 Dfu) = Lou.

If the initial value ¢(x) and source term f(x) are known, we can figure out u(z,t) by
solving the initial boundary value problem (1.1), this is the direct problem. But, now
o(z) and f(z) are unknown and need to be determined. The inverse problem is: recover
the initial value u(z, 0) = ¢(x) and source term f(x) from a pair of measurements (g, h).
Because the measurements are error-prone, we remark the measurements with error as
¢’ (x) and hd(x) and satisfy

l9° (@) = g(@)l| 2 () <6, (1.3)

11°(z) = (@) 12() < 0. (1.4)

In our paper, we use the fractional Tikhonov regularized to identify the source term
and initial value of problem (1.1). In [22], Klann firstly posed the fractional Tikhonov
method in 2008. In [23], Xue et al. used the fractional Tikhonov method to identify the
source of a time-fractional diffusion equation. Compared with the standard Tikhonov
method, its numerical fitting effect is more better.

The rest of this paper is organized as follows. Section 2 presents some important
lemmas used in this paper. The ill-posedness about the simultaneous inversion of the
source term and initial value problem is deduced in Section 3. Section 4 constructs the
fractional Tikhonov regularization method. In Section 5, error estimations under two
regularization parameter choice rules are obtained. Numerical examples are given in
Section 6. In the final Section, we give a brief conclusion.

2 Preliminaries

Throughout this paper, we use the following lemmas.

Lemma 2.1 For 0 <ty <T and o > 0, then

—e2 )%, —g2) o
752/\ng e n — e n P
¢ < (7 e (21)

Proof: For 0 <ty < T, we have
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Thus, we have
6752)\%150(1 _ e*EQA%(TftQ))

e—aQA%T‘
82)\%(1—' — t()) -

To the power of p on both sides of the above equation, we obtain
—e®Ajto _ o=’ AqT

e )p.
(T — t0)€2)\%

e~ ATy <

Then we complete the proof.

Lemma 2.2 For A\, > A1 >0, n=2,3,---,e>0and 0 <ty <T, then

1— 6—52)\%150 1 1— e—EQA%T 1
g2\ — ey g2 e T ey
6—62)\%150 S 1’ 6—52)\%T S 1.

Proof: The proof is simple, we omit the proof.

Lemma 2.3 [20] If the constants B > 0 and b > a > 0, we have the inequality for the
variable t > 0,
e b—a, a
< (
1+ ptb b ‘b—a

)i (2.2)

Lemma 2.4 For xz > 0, we have
ze P <1 —e" <. (2.3)

Proof: Let
filx)=1—e* —xe ™.

Taking the derivative of function f;(z) yields
filx)=e " —e " +xe” ™ >0.

Similarly, we have
folz)=x—1+¢€"

Taking the derivative of function fo(z) yields
falz)y=1—e*>0.

Thus
’ ze P <1 —e" <.

Then we complete the proof.



Lemma 2.5 For constants D >0, 4t >0,0<8<1,e>0,T >0, s >0, we have

B+1-p
(B+1-p)D\"pT1
e2sT(B+1-p) ST —
F(s) = pe . < Dy BIpD 0<p<pB+1, (2.4)
D + pes®sT(6+1) P
b p=pB+1

Proof: For 0 < p < B+ 1, let F'(s9) =0, we obtain e=*soT(F+1) = (ﬂJrLi;p)D’ thus

M((B+;;p)D)5§_ﬁp
F(s) < F(so) = D 4 (B+1-pD
P
For p > B+ 1, we have
I
F(s) < —.
()< &

Then we complete the proof.

3 Ill-posed analysis

In this section, we give some results which are very useful for our main conclusions.
Denote the eigenvalues of the operator A as A, and the corresponding eigenfunctions
as X, satisfies (—A)X,, = A2X,,. {\,}52, are the positive zeros and satisfy

D<A <A< A3 <<\, < -+, lim M\, =-+o0. (3.1)

n——+00

Thus, (—A)2 X, = A\°X,,.
Using the separation of variables, we obtain the solution for (1.1) as follows:

s 1 — 6_82/\%t 2 oy
u(zw, t) = Z(an +e =M X, (2), (3.2)
n=1 n

where f, = (f(x), Xpn(2)), on = (¢(z), Xp(z)). (+,-) and || - || is the inner product and
norm in L?(Q), respectively.
Let t =tp and ¢t =T in (3.2), we have

> 1-— 6752)\%t0 2 a¢
Z(an +e " 00n) X (z) = g(z), (3.3)
n=1 n

O ] eENT e
Z(an +e = Spn)Xn(x) = h(.%') (3.4)

n=1
For given source term f(x) and initial function ¢(x), we can define a pair of linear
operators K; and K to solve problem (1.1):

Kl : (f7 30) = U($,t0),



Ky : (f,¢) — u(z,T).
Similarly, we can define four linear operators respectively
Ky f = u(z,ty), Kig: f—u(z,T),
Koy : o= u(x,tg), Ko:pr— u(z,T).

By the solution expression (3.3) and (3.4), we can obtain operator equations:

0 1— 8—52)\%150 0 1— 6—52)\%7“
(K1 (f)) (@) = Z anXn(x), (K12(f)(@)) = Z anXn(x),
n=1 n=1 (35)
(Ko (9))(@) = Y e =00, X, (2), (Kas(9))(2) = Y e =T, X (2).  (3.6)
n=1 n=1
Then we have the follow expressions for the operator equations
u(z,to) = (K1 (f)) () + (K (0))(x) = g(), (3.7)
u(z, T) = (Ki2(f))(x) + (Ka22(e))(z) = h(z). (3.8)
By equations (3.7) and (3.8), the solutions (f, ) of the system can be obtained:
Ky f+ Koap =g, (3.9)
Kiof + Kypp = h.

Applying operator Ky to the first equation in the system (3.9) and operator K to
the second one yield:
Kog K11 f + Ko Ko10 = Kaag, (3.10)

Ko Kiof + Ko1 Kogp = Kath. (3.11)
By subtracting (3.10) and (3.11), we have
(K21 K12 — Koo K1) f = Ka1h — Kaag.

Similarly, we apply operator Kjo to the first equation in the system (3.9) and K1 to
the second one,
KK f + Ki2Ka19 = Kiag, (3.12)

K11 Kiof + K11 Kop = Ky1h. (3.13)
We obtain the result as follows

(Ko1 K12 — Koo K1) = K129 — K11 h.

So, (3.9) is equivalent to the system

{Kf:Kmh—ng, (3.14)

I(Q = K29 — Kq1h,

6



where K = K21K12 - K22K11.
Using the properties of singular values, the singular values of the operator Kii,
K9, K91, K99 are obtained as follows

1 — e~ Anto 1 — =0T
khn=————, kio=—5—7—
2 ’ 2 )
2N 2N
_g2)a _ 2\«
kgl =e ¢ )\"to, ]{222 =e ¢ A"T.

Thus, it is easy to obtain the singular values of operator K as follows

e~ Ao _ o—e*AqT

k= . 1
g2\ (3.15)

Now, the problem (1.1) becomes the following operator equation

Kf(x) = n(x), (3.16)

where n(z) = Ko1h(x) — Ka2g(x). From the operator K, we obtain

1
f n ; - (1. X)

So, we can obtain

o0

g2\
F@) = e g (karhn = 2agn) X (@), (317)

n=1

2\
QD(IE) = Z 6762)‘%1}0 o 6752)\%7* (kl?gn - kllh?’b)X’ﬂ<x)7 (318)

n=1

where g, = (9(z), Xn(x)), hn, = (h(x), Xy, (z)). Since 1/k — oo as n — 0o, the problem
is ill-posed, that is, the solution does not persistently depend on the given data.
Next, we define the priori boundary of f(x) and p(x),

[ee)

@D Layr = O X5TP|(f(2), Xn)[?)

n=1

N|=

<E, p>0, (3.19)

[e.e]

2y« 1
le@)l(p(-rLaye = Q_ & M P|(p(2), Xa)[)F < E, p>0, (3.20)

n=1

where E > 0 is a constant.



4 The fractional Tikhonov regularization method

In this section, we use the fractional Tikhonov regularization method to solve the
problem (1.1) and give the fractional Tikhonov regularization solution.

Since the inverse problem is ill-posed, we use the fractional Tikhonov regularization
method to solve it. This kind of idea was proposed by Hochstenbach in [25]. It is a
penalized least-squares problem of the following form

i, {Hﬁf* Iy + ull £17}, (4.1)
feL?(
where || - ||y is a weighted seminorm as ||z||y = HY%ZH, for any z. The problem (4.1)

has a unique solution f,, for all positive values of the regularization parameter pu.
We propose to let
B—1
Y =(K'K) = (4.2)

for a suitable value of 0 < 8 < 1, and if 8 < 1, we define Y with the aid of the
Moore-Penrose pseudo-inverse of K*K. The seminorm || - ||y allows the parameter 3 to
be chosen to improve the quality of the computed solution of (4.1). We refer to (4.1)
with Y given by (4.2) as the fractional Tikhonov regularization. When § =1 it is the
standard Tikhonov regularization, then Y is the identifying matrix.

The normal equation associate with the Tikhonov minimization problem (4.1) with
Y defined by (4.2) is given by

(K*K)"3" 4 uD)f, = (K°K) 2

(4.3)

the solution of (4.3) is uniquely determined for any x> 0 and 5 > 0. By the singular
values of the linear operator K, we can obtain

(6752)\%%_6752A%T )5

o
2)\04
x) = Z g ——v (k21ln — ka2gn) Xn(2), (4.4)
=1 ( - thzAi i T)BH +p
—e22%t_ —e2NoT
) =Y — " (brag — b X (o), (4.5)
=1 (— e )P+

where 0 < 8 < 1 is the order of the fractional Tikhonov regularization solution. For
the noisy data, we have the fractional Tikhonov regularized solution

—e )\ t, —e )\ T
. (e 502)\2 )6 s 5
Z 2 a¢ 2 ar (lehn - kQQQn)Xn(x)7 (46)
O R B+1
n:l 52)\04 ) + 1%
=2ty _o—e2AQT 3
u(@) = i S—— (kr2gp, — k1ih)) Xn(x) (4.7)
Pull) = PGty _o—2AaT 129y, — R11hy, ) Xn (). :

n=1 (& o VB 4+



5 Error estimation

5.1 The priori regularization parameter choice rule of the
source term
Theorem 5.1 Let f(x) be given by (3.17) and fg(x) be given by (4.6). Suppose that

f(x) satisfies a priori bound condition (3.19) and the assumptions (1.3), (1.4) hold.
Choosing the regularization parameter:

52+
(E)erl 0<p<,8+].,
(E)B+27 pZB—"la
then we obtain the following error estimate:
1 p
(cH+ec)Eriiortt, 0<p<p+1,
1£52(2) = f()] < s (5.2)

(c+ ) EFv26+2, p> 41,

((B+17P)(§*to)ﬁ+1 )%'%

]
1 p3g 1
= B+1 = =
where ¢ : 25+1B , €1t T BT C2 = gy
P

Proof: By the triangle inequality, we have
12 (@) = F@) < [ fa(@) = fu@)ll + [ fulz) = f()]].

Firstly, we give an estimate for the first term. From (4.4), (4.6) and lemma 2.2, we
have

12 (x) = ful@)]

0o (6752)‘%t076782>‘%T)ﬂ
2y 5 5
= > o e (R2uhn = kaagn) = (kathn = ka2gn))] X (@)
n=1 ( 52)\04 )/B—i_ + M
( e~ ¢ 2)\o nto_ e € )\ T),B 00
2)\04 5
< sup| — (I ) E21(hy = b ) X ()] + 1| D k22(g5 — gn) Xn(2)]])
nZl (6752)‘n7;02;\§_52k T 5_"_1 +M nzl 71 Tl n nzl n n n
< Sllp ‘A I? H Z n - II ’ H + H Z qn (]rl n )”) < sup ‘A(H)‘Q() (53)
n=1 n=1 nzl
here A(n) (S
where n)= o Y .
(6782)\,”1;02;%—52)\nT)ﬂ+1+u

Applying lemma 2.3, we obtain

(67€2>‘%t07€752>\%T)B
e2\e
e— 22ty _e—e2AGT

( EQAC! )ﬂ+1 + /’l’

A(n) =
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INA
=
o
X

Then, we obtain

B
where ¢ = Qﬁﬁﬁﬂ.
Then we estimate the second term by (4.4), (3.17),

[ fu(z) = f(2)] (5.6)
—e22%tg _,—e220T
B 00 (e € E()Q)\% e ) 62)\101[
- H nz:l[((e—SQA%t(;;eEQ)\%T )6+1 + [ o 6752/\%7&) _ 6782)\,0{’11
= =2ha

)(k’mhn - k229n)]Xn(x) H

= H Z[ H (k21hn - k22gn)]Xn(x)”
n=1 [( )

e—E2AFty _o—e2NGT ),8+1 + ](67€2>\%t0_6752)\%’f
Y K Y
n n
W—a%\ng
—e2X\Qtg _o—e2AFT
— 1

=sup|B(n)|E, (5.7)

n>1

|E

< sup |
n>1 (e

—e2xar

_ pe=="n TP

where B(n) = g T
2\ a )B+ +u
Ve

Applying lemma 2.4, we can infer

Me—a%\ng

752)\%150 (1_6752)\%(T7t0))

(e 62)\% )6+1 + ,u
—e2\aTp

B(n) =

ue
— 2)\a 2 \a
e ¢ ’\nt052)\f¥(T—t0)5_5 AR (T—tp) 1

MeEQA%T(ﬁ+1—p)
T (T = 1)+ pet TR

Let A\ = s, we obtain
pes”sT(B+1-p)
(T _ to),3+l 4 Meast(,B-i-l) :

B(s) =
By lemma 2.5, we deduce that

_pb
B(S)< cl/"éﬁ+17 0<p<6+17 (5 8)
e p>pB+1,
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(<ﬁ+1—p>(g—to>’3“ ) e

_ _ 1
where ¢ = C2 = FgeyFFT Then, we have

(T_t0)6+1+(ﬂ+1—p)(T—fo)5+1 ’
P

Cl,uﬁE, 0<p<pB+1,

I£ue) = f(@)] < {ME p>B+1.

Combining (5.5) with (5.9), we choose the regularized parameter p by

52t

(E)p+17 0<p</8+17
w = PRNE=!

(E) *2, p>6+1

We have
1£2(x) — f(@)]| <

The proof is completed.

5.2 The posteriori regularization choice rule of the source
term

Now we consider a posteriori regularization parameter choice rule called the Moro-
zov discrepancy principle. We can obtain a convergence rate for the fractional Tikhonov
regularization solution (4.4).

The Morozov discrepancy principle here is to find p such that

1K f(x) = (K1 (2) — K229 ()| = 716, (5.10)

where 7 > 2 is a constant. According to the following lemma, we know there exists a
unique solution for (5.10) if || Ka1h?®(x) — Kaag®(2)|| > m10.

Lemma 5.2.1 p;(p) = Hng(a:) — (Ko1h%(z) — Ka29%(x))||, the following results hold

(a) p1(p) is a continuous function;

(b) Tim p1 () = 0:
n—0

(c) lim py(p) = [[K21h’(2) — Ka29°(2)];
H—00

(d) p1(p) is a strictly increasing function over p € (0,00).

Proof: By (5.10), we have

pi(u) = [|K f(x) = (Ka1h’ (z) — K229’ (2))

11



2 2
(e—s Xty _o—e2AGT )B+1

2/\a
=l g (b b))
=1 52)\11 )BJFl + /1/
(ka1 h — kaagl)
= Z ,52 — ~ X (2)]]- (5.11)
- teoz)\fv R

Obviously, the conclusions (a), (b), (¢), (d) hold.

Lemma 5.2.2 Suppose (1.3), (1.4) and the priori bound condition (3.19) hold, we
obtain

H

(F)7™
(722)

+l ¢yt

(%) W 0<p<B

5.12
P>, (5.12)

uwo

Qq‘m 's‘m

+

ﬂ)p
B—p

S S
(T—to)P(e2A9)P=F"

o

where ¢4 := (T%to)pg—(
Proof:

ﬁa—nz __plhaly ~ k) y )

QAO‘tO e—E2AQT

€2Ao¢ )'B+1 "'I_ ,U/

wlkar (h — hy) — ka2(gS — gn)] (ka1 hy, — ka2gn)
<H§ — — H+H§ ,za — Xn(z)|l
(= t502)\§ ML) 4 g S e

e2\a
« 2y«
675 )‘ntofefs AnTe_EQ)\%Tp
e2\a
—e27g to 6—52,\ T

=26 +sup|C(n)|E. (5.13)

n>1

< 25—|—sup\
n>1 (e

|E

Using lemma 2.1, we obtain

—?At0 =P AT \ g
1 w(—5¢ )P
p
C(n) < (T—t ) e—€2\Atg _o—e2AGT B+1
0 ( 2y ) +H
) (e—s%%g;z—szan

(T_t )pl 752)\ Sto — e—sAT :
0 ﬁ( 2)\a )ﬁ+1 + ]‘

By lemma 2.3 and 0 < p < 3, we have

)p+1

C(n) < cap?,

where ¢y = (2P 578 (55 5+t
For p > 3, we have

6752)\%t0 767€2>\%T

1 lu’( 52)\04 )p+1

p
T—to) ( e—e2\qtg _e—e22Y T)5+1+H

e2\&

C(n) <(

12



—2)%¢ —e2X\oT
<pp (T
(T - to)p 2N
< K
T (T = to)P(e?A7)PF
= C5l4

Thus we obtain

B+l B+l
i {(:y)w%?p L0<p<p,
- C5 E
(7'1(—2)?7 pZ/B‘

This proof is completed.

Lemma 5.2.3 Let f,(x) be given by (4.4) and f/f(:c) be given by (4.6), then we have

152 (2) = ful@)] 5 (5.14)

Theorem 5.2 Let f(x) be given by (3.17) and fg(x) be given by (4.6). Suppose that
f(x) satisfies a priori bound condition (3.19) and the assumptions (1.3) and (1.4) hold.
The regularization parameter p > 0 is chosen by the Morozov discrepancy principle

(5.10). Then

1 1 p
CA)ptl o cg)Ertiorfl, 0 <p < f,
175) — f(@)l < {(“’(3—2)1 P, VSp<p (5.15)
0(7_132)6+1E6+156+1 + cg Ert1opTT, p> B,
where cg 1= (T%to)#(é% + 27'12)ﬁ.
Proof: By the triangle inequality, we have
é 0
£ (@) = F@) < 1fu(@) = ful@) |+ 1 fu(z) = f(@)]]

Firstly, we give an estimate for the second term.

= pu(karhn — kaagn)

21/, — K22
1) = F@IF =Y g X @)
e L

13



= > 11(ka1hn — kaogn)
n=1 e 1
1

—e27Qtg _p—e22Q
62)\2 i T)/3+1 _i_u](e*EQA%to—e*aQA%T )pT
' (e*€2>‘%to _emeaT A )
52)\% )P ( /\(kmh — k220m)
—5 at _e2 p+1
. (& 502)\2 AL T)m_1 i pFI Xn(x)”Q
<
<> — p(k21hy — kaagn)
—t [( 02 efskTﬁ+l oo Tp+1—
o Ao )AL+ (& A"tOQXeSQX%T)) DA
15 [e3

_ 2
e~ M\to _ o—e?ART

(3« yp( ik —Fng) e

n=1 62)‘% e—¢€ 20Qt0 _ —e20% p+1) p 25
_e2)0 [( 52)\2 - T)Bﬂ-i- ) ’ )p l
< sup((“—— 0 e~ NT g .
n>1 82)\% )ﬁe Es p)zEﬁ
[o.¢]
(O (ke ~ Kagn) 2
n—1 [( 752>‘nt0 —e €2>\ T 5+1 P+l p’#)#
2\«
oy 2% ) + M]
S sup((e ntO — 6—62)\%7‘ —p 762>\an
n>1 £2)a Je w2
o
(Sl " hn) 5t
n=1 [( R il B )2 ™
_ 2)\(152)\0‘ ) ! + ,U,]
Ssup((e SAito = NT |y 2Ty
n>1 82)\% )P“e s )QEﬁ
oo
(@3l — 1) + (g, = )
n=1 [( —2ARt0 e ART ; - )2
e2\e )’6+1 + ,u]
+22 2 k’21h _k229n) p
e—¢ A%ty _ e—¢ >‘7LT 2 p+1
=HY )P+ ]
< sup(D(n))2Er+
sup(D(w) B7T (8 + 2r) 7167,
N (D i o e
y lemma 2.1, we have
=Xt _ o=
D(n) < ( TN p (Nt AT
22 )7 (3 e LERY:
Thus Tt ) T T
0
1) = F@) < (o
< _p_
—(T—to)p+1(8+2712)2p$Eﬁ5771— o 57
_C6Ep+15p+1. (5 16)
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Combining lemma 5.2.3, we have

1
(C( c4 )p+1 +CG>E7’+1()P$1, 0 <p< 67
6] D
+66Eﬁ6ﬁ7 pZB

—
a
5
~— N
—
@
—

5.3 The priori regularization parameter choice rule of the
initial value
Theorem 5.3 Let ¢(x) be given by (3.18) and goz(a:) be given by (4.7). Suppose that

p(x) satisfies a priori bounded condition (3.20) and the assumptions (1.3), (1.4) hold.
Choosing the regularization parameter:

’@Q

(£)7#1,  O0<p<B+1,
(g)7+2, p>pB+1,

then we obtain the following error estimate:

(¢ +01)EP+15P , 0<p<fB+1,
lpb(z) — o) < L o (5.17)
( +co)EFzg5t2, p> B +1,

Proof: By the triangle inequality, we have

lep (@) = @)l < llep(@) = pu(@)]l + lpu(@) — o).
Firstly, we give an estimate for the first term. From (4.5), (4.7), we have

6752)\% to _6752 A%T

> ( v )P[(k12g5 — k11hS) — (k12gn — k11hn)]
lep () — pu@)l = || E—sv-rr— Xn(2)||
8 nzl (2 e DT VB |,

8752)\27&0 _6752)\%T )B

2)\04

< sup o = a k12 Q er n + kll hn

| a0 2 bt~ el 15
<sup|A(n)|—=—=19, 5.18
<sup| ”‘m (5.15)
here A(n) (i
where A(n) = = o .
By (5.4), the following conclusion can be drawn.

1, 1
S
lep (@) — pul@)] < C/(;)"“fi (5.19)



where ¢ = 2#513&1 i
= 2B BV

Then we estimate the second term by (4.5) and (3.18),

lpp(z) — ()]

6—62)\%t0 _e—EQA,O{T )B

2y«
7Ny

>
g2\
= || ;((e_EQA%tO_GEQA%TWH i ~ gt _ gt (F120n — kuifin) X ()

Y

o

_ I

= |l Zl [(efsQX%tofe—sQA%T efszkgtoie—sQA%T) (F12gn = k11hn) Xn(2)]|
n=

EpT )P+ + p( =2ha

<sup|B(n)|E.
n>1

By (5.8), we deduce that

(:LuﬁE, 0<p<fB+1,
copk, p=>p+1

lpu(z) — p(@)]| < {

Combining (5.19) with (5.21), we choose the regularized parameter u by

We have

lep () — o) < g
a (c’—i—cz)Eﬁém, p>p+1.

The proof is completed.

(5.20)

(5.21)

5.4 The posteriori regularization choice rule of the initial

value

The Morozov discrepancy principle is used to find p as follows:

1K @) (x) = (Ki29°(x) = Kuh’ (@) = 729,

(5.22)

where 5 > ﬁ is a constant. According to the following lemma, we know there exists
1

a unique solution for (5.22) if || K129°(2) — K11h%(x)|| > 726.

Lemma 5.4.1 po(p) = ]\chi(x) — (K12¢° (x) — K11R%(2))||, the following results hold

(a) pa2(p) is a continuous function;

(b) lim pa(j1) = 0;
pn—0

16



() lim pa(p) = [Ki2g’ (x) — Kunh(a)l;

(d) p2(p) is a strictly increasing function over p € (0,00).

Lemma 5.4.2 Suppose (1.3), (1.4) and the priori bound condition (3.20) hold, we

obtain

612 %(%)ﬁ7 0<p<187
,u_l 72 52)\%
N ( 5 (02 )%7 p Z B
2)\(12
Proof:
(k129 — k11ho)
90 = IIZ _62)\% S et X ()]
o )P+
< ol 74312 (95 — gn) — k11 (RS — ) p(ki2gn — k11hn)
- H Z e—e20Gtg _e—2AFT B+1 |+ H Z 762>\°‘t0 e—E2AGT B+1
52)\a ) + M 52)\01 ) + H
8—52/\0‘150 6—52)\ T —EQAapT
——0+ sup] Bt ‘ |E
— 2 a —e22Qt —e2X\QT
>\ n>1 (6 502)\2 )5+1+M
= 0 +sup|C(n
%a ng!(ﬂ
From the previous analysis of C(n), we obtain
(—y )T (B)5T, 0<p< B,
—1 2 2\
H - cs FE
T27522)\<1¥ 50 p Z B

This proof is completed.

(5.23)

Xo(@)]

(5.24)

Lemma 5.4.3 Let ¢, (x) be given by (4.5) and goZ(x) be given by (4.7), then we have

11 P
c’( = )p+1Ep+15p+1,

T — —2—
2 62)\‘13‘

o (2) = u (@)l <

To——2
2 szk‘f‘

Proof: Using lemma 5.4.2 and (5.19), we have

\m%m—%@msa@wha

1

, . 11 p
c( 4 )p+1Ep+15p+1,

T 2aa
5 )\1

2\«
e>\1

17

1 1 B
/ Cr Bx1 Bx1 SBL1
( by )BT EAFL A

B

1 1
J(—S, )P EFFSA,  p> 8.

0<p<p,

p>pB.

0<p<B,

(5.25)



Theorem 5.4 Let o(x) be given by (3.18) and Lpz(:c) be given by (4.7). Suppose that
() satisfies a priori bound condition (3.20) and the assumptions (1.3) and (1.4) hold.

The regularization parameter p > 0 s chosen by the Morozov discrepancy principle
(5.22). Then

1 1
(¢ (—Sg)7HT + ¢r)E7r167+1, 0 <p< B,

2 o
E)\l

lep () — o) < (5.26)

11 B 1 P
d(—55—)F+1EB+1§F+T + 7 Eptigpl, p > f3,

T2«
5)\1

_p_ _pP
where ¢y 1= (Tito)pﬂ ((52%)2 + 27-22)2p+2.

Proof: By the triangle inequality, we have

lep (@) = (@)l < llep(@) = pu(@)]l + lpu(@) — o).

Firstly, we give an estimate for the second term.

p(ki2gn — k11hn)
e—2AGtg _o—e2NAT

—e2)\o¢ - 2 ar
1 [( EpY )AL+ pl (== nso%\;l —)

hE

lou(@) = e(@)]* = |l

Xn(2)|?

n

_ H i( N(kl2gn - kllhn) )ﬁ
o —e20%tg _o—e2 QT —e20%tg _o—e22NQT
= (e € ;OZA;{ c ),B—i—l + p) (& € 202)\;% € )
—£2X%0 —e2)oT

_ (6 —e )pjfl( p(ki2gn — k11hn)

2 —e2XQty _,—209T
X () 4

p(k12gn — k11hy) - E .
< (Z(( c—2ATty _o—2ART 511 e~ 2ATty _o—2AGT )P+ )P ptl
n=1 [( Y ) + ,u]( e2A\a )
00 -2\t _ —e2NeT  _ _
NNE Poe Yot plkr2gn — Krihn) 1) )
52)\04 efEQA%tofe_EQA%T B+1
; (R AT 541y
—e2A\qto _ ,—2A0T  _,  _2)\@

3
—_

< su
B nzli« 62)\%

. (i(( p(ki2gn — k11hn) 2 M)L

200ty _e2har
o (e ey

< sup(D()Est (3 (i Zht) 5,

el O AR

< SI;II(D(n))2Ep2?
. (2 i(ﬂ(k12(9n - gg,) + kll(hfl — hn)) 9

—e20%tg _o—e20QT
o (T )P )
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B 5
+22 (k129 — k11h3) 9y P

,52/\ Qto_, N 441 p+1
2)\(1 ) +lu’]
8
Ssup(D(n))QEP“( yog + 278) PSP,
n>1 ( A )

2y«
752)\0‘1507 _e2\ap —p =€ AnTp
° 5 = n )P+le p+1
2%

where D(n) = (¢
Thus

1 _p_ 8 o\P_ 1 P
lou(@) = e < (o) (g + 2P PO, (521)

Combining lemma 5.4.3, we have

1 1
((=2=) 7T + ) EFioniT, 0<p< B,
5 T 2a
) — ()| < !
lep(z) —p()ll < (—es )ﬁEﬁ5%+C7E1’%5#, 0> B

To— —=2
2 62A‘f‘

J
S+ 2m2) %,

_p
where c; = (Tito)erl ((ngf)

6 Numerical implementation

In this section, we are going to use numerical examples and software to verify the
efficiency of our method. We solve the following direct problem to obtain g(x) and
h(z).

p au((?gg,t) = 2Lou(z,t) + f(x), req, te(0,T],
’U,( z, ) ( )7 T € Q,
u(x,t) = x €0, te(0,T] (6.1)
u(z,to) = 9(90) z e, toe (0,7,
u(z,T) = h(z), zeq.
We define
z; =iAx (i=0,1,--- M +1),t; = jAt ( =0,1,--- ,N),

where Az = ﬁ is the step size of space and At is the step size of time.
Let g(z) = 0, A =0 in [24], we can obtain

(=A)3U = C,BU,

U= (U17U27'” 7UM)T7
B = (hi,P)%):lv

Y= (‘p(‘rl)? SD(IEQ)a U ,QO(.%‘M))T,
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F = (f(x1), f(wa), -, flzar))T,

47F(1/2+§), and B is a strictly diagonally dominant symmetric positive-

definite matrix.
B é (hz',7p) 1

!
1,p=1»

where C,, =

where

~(Zi(i,p+ 1) + Zo(ip)) 5 1<p<i—2,
h «@

B 2 _Qja_Z2(Zvl 1), p=1i—1,
P —g_a—Zg(z,z—i—2), p=i+1,
and h;; satisfies:
h—o | Zu(i,M+1) .
u o iy, ot
hig+ > hip—Yi(i) = Ya(i) = ¢ 200 4 A0MED 9 << -1,

p=1,p#i h™¢ + Z1(3,1) i= M
2—a A ’ :

By a simple calculation, for a € (0,2), we have

(aa=ay 200 — P> = (Ji = p| = 1>
—(Ji = p| +1)*7°], a#l,
Z1(i, p+1)+Z2(i,p) = Z3(i, p+1)+Za(i,p) = { +[-2[i — p|n(|i — p|)

+(li = pl + DIn(li —p[+ 1)
(i —p[ = DIn(li —p| - 1)], a=1,

h_~ 2—a
—h (3 —a—2 1
Zy(i,i—1) = Z3(i,i 4+ 2) = {(101—1)(2—,1)( o ), a#l,
722 —1], a=1,

i) - {M)()[ —(-1P - 2- i, a#lL
HO = iin(2y) + 1, a=1,

7

b (M +1—0)2 — (M —i)>

e
Zy(i, M +1) = ¢ —(2—a)(M + 1 — i)', a1,
F1(E — M)In(MH=) + 1), a=1,

n =7y = En)



According to the numerical differentiation formula, we have

ou(z;,t;) 1, 1
o Saiu )
Thus, we can obtain
1 , , .
E(UJ ~U'"Y+C,BU =F, 1<j<N,

Up = .
The following iterative format can be obtained.
(I +AtC,B)UI =U"' + AtF, 1<j<N. (6.2)

Using the Tikhonov regularization method, we obtain the regularized solutions of
measurement data ¢°(x) and h’(x) with error:

) m (e_g%gg;é_s%w)ﬁ ) .

fu(x) = nz::l (6752A%1;02;\§—52/\%T)ﬁ+1 N M(k&lhn — k22g;,) Xn (),
5 S (E%QA%?QRE%QW ) 5 5

pu(r) = nZ:l (e*EQA%ta()Q;g*EQ*%T oy M(kngn — kithy) Xn(z).

m is the truncation parameter and m = 10.
We generate the noise-contaminated data by adding a random perturbation, i.e.,

9°(z) = g(x) + e - g(a)rand(size(g)), (6.3)
R (x) = h(z) + ¢ - h(z)rand(size(h)), (6.4)

here, size(g) represents the size of g in space, size(h) represents the size of h in space,
the function rand(-) generates arrays of random numbers whose elements are normally
distributed with mean 0, variance o2 = 1, and the noise level is:

1 M-+1
= g% — gl = L 02 _
1 M+1
5y = ||h® — h|| = h; — hd)2. .
2 = || | MH;( ¢) (6.6)

In general, the priori bound F is difficult to obtain, thus we choose the posteriori
parameter rule which is independent of E and let takes m = 2.1,7» = 1.1. To verify
the stability of numerical results, the following Root-mean-square deviation is defined:

2(f =102
Y= " (6.7)
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Figure 1. The exact solution f(z) and regularization solution f“i (z) for (a)a = 0.3, (b)ae = 0.7.
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Figure 2. The exact solution ¢(z) and regularization solution gai(z) for (a)ae = 0.3, (b)a = 0.7.

(=)
67,.2 = —2 (68)
V2p
For convenience, we let M =100, N =30, e =1,d=1,Q=(0,1), Tp =0.5and T = 1.
X,,(x) and \* are the characteristic functions and eigenvalues of operator (—A)z. By
calculation, the characteristic function X, (z) = v2sin(nrz) and eigenvalues \,, = nr
can be obtained, where n =1,2,--- .

Example 1 We consider the following equations:
2 2 .
f(z) = 2\[5171(:6), o(z) = \/78ZTL(33), x € [0,1].
™ m

Table 1: Numerical results of Example 1 for different e
€ 0.05 0.01 0.001
f(z) a=03 e 0.0040 0.0039 0.0039
a=0.7 e4 0.0037 0.0035 0.0035
o) a=0.3 e9 0.0054 0.0033 0.0029
a=0.7 e-o 0.0029 0.0015 0.0012
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(a)

(a)

In Table 1, we can see when o = 0.3 and o = 0.7, the larger the noisy level, the
larger the relative error level for the exact solutions and the regularization solutions,
respectively. It can say that when the space-fractional order « is fixed a constant, as

The exact solution f(x) and its approximations

The exact solution ¢(x) and its approximations

— — —e=0.05
——k—e=0.01

08 0.9

(b)

The exact solution f(x) and its approximations

-0.5

08 09 1

Figure 3. The exact solution f(x) and regularization solution fﬁ(:c) for (a)a = 0.3, (b)a = 0.55.

15

-15

— — —e=0.05
—F—€=0.01

0.8 0.9

(b)

The exact solution ¢(x) and its approximations

15

-15

— — —¢=0.05
——F—e=0.01

0.8 0.9 1

Figure 4. The exact solution ¢(z) and regularization solution (pz(‘L) for (a)ae = 0.3, (b)a = 0.55.

the noise level increases, the numerical effect becomes worse and worse.

Figure 1 shows the exact f(z) and its Tikhonov regularization solution fg(as) for
the relative error levels € = 0.05,0.01,0.001 with various values @ = 0.3,0.7. Figure 2
shows the exact ¢(x) and its Tikhonov regularization solution cpi(ac) for the relative
error levels € = 0.05,0.01,0.001 with various values o« = 0.3,0.7.

It can be seen from Figures 1-2 that the Tikhonov regularization method is very
effective for solving the inverse problem of space-fractional Allen-Cahn equation.

Example 2 Consider the following equations:

Figure 3 shows the exact f(x) and its Tikhonov regularization solution fg(x) for the
relative error levels € = 0.05,0.01,0.001 with value a = 0.3,0.55. Figure 4 shows the
exact ¢(z) and its Tikhonov regularization solution goi(:c) for the relative error levels
e = 0.05,0.01,0.001 with value @ = 0.3,0.55. From the images, it can be seen that

4z,

—4(z — 1),

o(x) = sin(27x),
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Table 2: Numerical results of Example 2 for different e

€ 0.05 0.01 0.001
f(z) a=03 €9 0.0156 0.0130 0.0127
a=0.535 e 0.0066 0.0051 0.0050

o) a=03 e9 00212 0.0099 0.0094
a=0.535 e 0.0283 0.0163 0.0169

Tikhonov regularization method has certain limitations in handing inflection points.

Example 3 Consider the following discontinuous equations:

_Jo, [0,3),

fla) = {1, 1),
1, z€(0,%),
p(x) =<0, z e, 3),
1, z € [2,1].

Figure 5 shows the exact f(x) and its Tikhonov regularization solution fﬁ(az) for

Table 3: Numerical results of Example 3 for different ¢

€ 0.05 0.01 0.001
f(z) a=03 e 0.0517 0.0464 0.0466
a=045 e 0.0088 0.0061 0.0060

o) a=03 e9 00260 0.0158 0.0160
a=045 e 0.0860 0.0612 0.0805

the relative error levels € = 0.05,0.01,0.001 with value @ = 0.3,0.45. Figure 6 shows the
exact ¢(z) and its Tikhonov regularization solution goi(x) for the relative error levels
e = 0.05,0.01,0.001 with value o = 0.3,0.45. Obviously, this method produces large
errors when dealing with discontinuous function, but it can still be used to approximate
the exact solution.

Through the above examples, we find that from Figures 1-6, it can be seen that the
fitting results of different o are not significantly different. From Tables 1-3, it can be
seen that the smaller the relative error level, the better the approximation effect. This
indicates that regardless of how « changes in [0, 1], image fitting is relatively stable.
This also means that the fractional order Tikhonov regularization method is effective.
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Figure 5. The exact solution f(x) and regularization solution fﬁ(:c) for (a)a = 0.3, (b)a = 0.45.
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Figure 6. The exact solution ¢(z) and regularization solution cpz(m) for (a)a = 0.3, (b)a = 0.45.

0.2%

The exact solution ¢(x) and its approximations
o
>

The exact solution ¢(x) and its approximations
o
o

7 Conclusion

In this paper, we consider an inverse problem to identify simultaneously the source
term and initial value of space-fractional Allen-Cahn equation. We use the fractional
Tikhonov method to overcome the ill-posedness. The error estimations are obtained
under a priori regularization parameter choice rule and a posteriori regularization pa-
rameter choice rule, respectively. And we compare this method from error estimates
and numerical results. The numerical tests are presented to show the validity and the
advantage of the proposed schemes.
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