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UNIFORMLY EXPONENTIALLY STABLE
APPROXIMATION FOR THE TRANSMISSION
LINE WITH VARIABLE COEFFICIENTS AND

ITS APPLICATION*

Bingfeng Zhang', Fu Zheng?>', and Yong He*'

Abstract We analyze an ideal transmission line, which is defined by the tele-
graph equation with variable coefficients, from the perspectives of numerical
analysis and control theory in this note. Because the spatially semi-discrete
scheme of the original system is insufficient for discussing uniform exponential
stability, we apply a similar transform to the continuous system and produce
an intermediate system that may be easily analyzed. To begin, we discuss
uniform exponential stability for the intermediate system using an so called
average central-difference semi-discrete scheme and the direct Lyapunov func-
tion approach. The proof is the same as in the continuous case. The Trotter-
Kato Theorem is used to demonstrate the stability and consistency of numer-
ical approximation scheme. Finally, we propose a semi-discrete strategy for
the original system through an inverse transform. All results on intermedi-
ate system are then translated into the original system. The numerical state
reconstruction problem is addressed as an essential application of the main
results. Furthermore, several numerical simulations are used to validate the
effectiveness of the numerical approximating algorithms.

Keywords Transmission line, Exponential stability, State reconstruction;
Semi-discretization, Average central-difference
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1. Introduction

Space semi-discretization, which converts PDEs to ODEs, is the first natural step
in the numerical discretization of PDEs. In the past decades, many researcher-
s have approached this issue from various perspectives. Mathematicians focused
primarily on the stability and consistency of the approximating algorithm and con-
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structed numerous profound discrete schemes [5,14,16,32]. The goal of physicists
was to preserve structural invariants and geometric features of a continuous sys-
tem. Several recent papers have addressed these problems for infinite-dimensional
port-Hamiltonian systems. Dirac structure is kept by using finite element or finite
difference approaches [4,27, 28].

However, when retaining control properties such as passivity, exponential sta-
bility, and observability are taken into account, a complete and elegant analysis is
required [9,10,18-20]. Banks, Ito, and Wang originally pointed out in [1] that the
wave equation with boundary damping does not inherit the exponential stability of
continuous system when discretized by the conventional finite difference and finite
element schemes. At the same time, Glowinski, Li, and Lions demonstrated in [6]
that the exact controllability property was not preserved for several discretization
processes. The issue of boundary observability of the wave equation, or the question
of whether the total energy of solutions can be uniformly calculated in terms of the
energy focused on the boundary as the net-spacing approaches zero, has recent-
ly been examined by Infante and Zuazua. Due to the presence of high frequency
spurious solutions for both finite-difference and finite-element semi-discretizations,
they came to a negative conclusion. In a subspace of solutions produced by the
low frequencies of the discrete system, a uniform bound was found [12]. In [33],
Zuazua provided a thorough analysis of the observation and control of waves that
were approximated by finite difference.

Numerous ideas were put up to get around the problem which is caused by
high frequency spurious modes. One proposal is to use the mixed finite element
method to get the uniform controllability of the conserved wave equation [4,27,28].
Tychonoff regularization [6], two-grid algorithms [25], and non-uniform numerical
meshes [2] are some other methods for damping out high frequencies. Another com-
mon method is to introduce a vanishing viscosity term over the entire domain of
the spatial variables [23,24,30]. Very recently, Liu and Guo introduced an average
operator for the time derivative of classical finite difference for the wave equation
with boundary damping and showed that the scheme uniformly preserves the ex-
ponential decay of the continuous system [17]. Using the same idea, Xu, Guo and
Zheng proposed two finite-difference schemes for uniform exponential approxima-
tions of the wave equation with local viscosity damping [7,34]. Guo and Zheng et
al. generalized the results of [7,17,34] to the coupled heat-wave system [31] and the
Schrédinger equation on L2(0,1) space [8], respectively.

In this note, we are going to study the transmission line with variable capacity
and inductance from the perspectives of numerical analysis and control theory. This
transmission line is described by the telegraph equation with variable coefficients.
The electrical transmission line, the flexible string, and the compressible fluid are
three commonly used physical systems that carry waves in engineering applications
( [4], [22], [13, Section 7.1]). Since an electrical transmission line is fundamentally
a wave, it may be numerically studied using the techniques described in cites [7,
17,31, 34]. But constructing an appropriate numerical approximating approach to
maintain exponential stability now presents some new challenges due to the variable
coefficients that arise in the space derivatives of PDEs. To the best of our knowledge,
the passivity, not even the exponential stability, of the continuous system is rarely
preserved by the standard finite-difference method for the spatial semi-discretization
of the telegraph equation.

To cope with these problems, we first apply a transform that is comparable to
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the original system and produce an intermediate system that is simple to study. For
the intermediate system, an average central-difference semi-discretization method
is suggested (see section 4). Then, using a strategy similar to that used in the
continuous example, we study the uniform exponential stability of discrete systems.
We also show how the discrete system is uniformly exponentially stabilized under
the boundary feedback control (see Remark 3.1). Second, the Trotter-Kato Theo-
rem illustrates the consistency and stability of numerical approximating algorithms.
Finally, a discretization scheme for the original system is proposed through another
similar transform. The final step is to convert every result from the intermediate
system into the primary system. The numerical approximations of the state recon-
struction problem are also presented as an application of the main results. We also
perform a number of numerical simulations to demonstrate the effectiveness of the
numerical approximating strategies.

Thus, the contribution of this work is four-fold:

e Propose a novel approach to study the numerical solution of PDE with variable
coefficients.

e Extend the results of uniform exponential stability of [30] and [7,17,34] from
simple models to more complex systems.

e Provide demonstration to study uniform exponential stability of other com-
plex models described by PDEs such as wave-wave coupled equations, beam
equations and so on.

e The results of uniform exponential stability have potential applications in
uniform controllability, the approximation of control problem and the state
reconstruction etc.

The structure of this paper is as follows. In section 2, the transmission line
system is introduced and some results about exponential stability and exact ob-
servability of the intermediate system are presented. In section 3, the uniform
exponential stability and uniform observability of discrete systems are obtained. In
section 4, the stability and consistence of the numerical approximating algorithm
are derived from the Trotter-Kato Theorem. In section 5, a semi-discrete scheme
of the original system is proposed through a similar transformation. The uniform
exponential stability of the original system is proved and convergence analysis of the
discretization scheme is made based on the result of section 4. In section 6, several
numerical simulations are provided to support the theoretical analysis. In section 7,
the state reconstruction problems, both in the continuous case and discrete cases,
are solved. In section 8, a number of numerical simulations are performed to demon-
strate the effectiveness of the numerical approximations of the state reconstruction
problem. In section 9, we give some concluding remarks.

2. Results of continuous model

In this section, we introduce the model discussed in this paper and present some
known results about the exponential stability of the continuous system. Consider
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the transmission line on the spatial interval [0, 1]:

20t x) = — 2 (4e2),

26t x) = — ax(c(f ))),t>0,
V(t,00=0, V(t,1)=RI(t1), R>0
Q(0,2) = Q%x), ¢(0,z) = ¢"(x).

Here Q(t,x) is the charge at position = € [0,1] and time ¢t > 0, and ¢(t, ) is the
magnetic flux at position = and time t. C(z) is the distributed capacity and L(z)
is the distributed inductance. The voltage and the current are given by V = Q/C
and I = ¢/L, respectively. V(¢t,1) = RI(t,1) is the boundary feedback and R is
the feedback gain constant.(Q%(+), ¢%(+)) € [L?(0,1)]? is initial configuration of the
transmission line model. The energy of this system is given by

1 T 2 T 2
E(t) = %/O |¢(Ltéx)) + |Qg<’x))| de. (2.2)

It follows from the exercises 7.1 and 9.1 of [13] that the system (2.1) is exponentially
stable with respect to the energy F(t). In order to study the uniform exponential
stability in a convenient manner, we begin from the following system on V and I:

€ (0,1),

C(x)Vi(t, ) = —I.(t,x), = € (0,1),
L(2)I(t,x) = —V,(t,z), t >0,

(2.3)
V(t,0) = V(t,1) = RI(t,1),
V(0,z) = (x), 1(0,z) = I%(x).
The energy of the system (2.3) is also given by
B(t) = /0 C@IV(t,2)? + L@)|I(t, 2)*dz (2.4)

and has different expression in light of V.= Q/C and I = ¢/L. To give some
clues in discrete case, we apply the method of Lyapunov function to obtain the
exponential stability of the continuous system (2.3). For this purpose, we assume
that the capacity function C(x) and the inductance function L(z) satisfy:

Hy: C(z) >0, L(x) > 0, Vz € [0, 1];

Hs: C(z), L(z) € C*0,1] and C(z) < K, L(z) < K for some positive constant
K;

Hs: C'(z) >0, L'(x) > 0, Vz € [0,1].

It should be pointed out that Hj is not applied in the proof of the main result,
see for instance Theorem 3.1. It is only used in the method of Lyapunov function to
verify the exponential stability of the continuous system. If one applies the method
of [13, Lemma 9.1.3], Hs is also useless.

Theorem 2.1. Under the conditions Hi-Hs, for any VO(-), I°(-) € L?[0,1], there
exist two constants M and w such that the energy of the solution to the system (2.3)
satisfies

E(t) < Me “'E(0). (2.5)
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Proof: It is easy to see that

d = 1 I I(t,x)dz = I :
aE(t) 77/0 Vt,x) I (t, x) + Vy(t,2)I(t,x)de = —[V (¢, x) (t,QJ)HO

= —R|I(t,1)%. (2.6)

Introduce the auxiliary function

p(t) = —/O xC(x)L(z)V (¢, z)I(t, z)dx

and Lyapunov function F(t) = E(t) + ep(t). Here € € (0,1/K) is a parameter. On
one hand, we have |p(t)] < KE(t) by using condition Hy and Cauchy inequality
and F'(t) is equivalent to E(t):

(1 - Ke)E(t) < F(t) < (1 + Ke)E(1). (2.7)

The parameter 0 < ¢ < 1/K ensures that F(¢) is positive definite. On the other
hand, we have

%p(t) = [L()+C(1)R|I(t, 1)|2—2E(t)—/0 xC'(2)|V (t, ) +aL (x)|I(t, z)|*dzx
—%p(t), (2:8)

It follows from the above equality and assumption Hj3 that

2
ot < PEZOE 1 e — o), (29)

By differentiating F'(t) and using (2.6), (2.7) and (2.9), we obtain

d d

d €
— = — — < — —
GF®O =G E@+eqpt) <R

(L(1) + CA)R?)

2_
. 1(t,1)

€
F(t
1+ Ke ®)
Finally, choosing € to ensure R — (e(L(1) + C(1)R?)) /2 > 0 and applying the
comparison principle (see Section 3.1 of [15]) and (2.7), we get

E(t) < Me “'E(0)

with M = (1 4+ Ke)/(1 — Ke) and w = ¢/(1 — Ke). Therefore we obtain the
exponential stability of the system (2.3) and complete the proof of the theorem.
O

For convenience in the convergence analysis, we rewrite the exponential stability
of the system (2.3) in the language of semigroup of bounded linear operators.

Remark 2.1. Let H = [LQ(O, 1)]2 be the state space and define the inner prod-
uct on H by: (m,m)u = [y C(x)V(2)V(z) + L(z)I(z)(z)dz, Ym = (V,I),i =
(V,I) € H. Define the system operator A on H through:
" _ 1 Ay
A p( ) _ Cla) dm‘l( ) ’ (2.10)
@)\~ ()
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D(4) = € [H'(0, ) :p(0) = 0, p(1) = Rq(1) b (2.11)

Thus, the system (2.3) can be transformed into abstract Cauchy problem

d Vitz)) V(t,x) V(0,x) VO(x)
At \ 1(t,2) I(t,2) 1(0, z) 1°(x)

A routine method as given in Theorem 3.1.11 of [29] can be applied to show that
the operator A generates a contractive semigroup 7'(¢) on H. This means that the
system (2.3) has a unique solution for any V°(-), I°(-) € L?*(0,1). Theorem 2.1 fur-
ther implies that the semigroup T'(¢) is exponentially stable under the assumptions
}11—}[37 i.e.

1T < Me™",

here || - || g is the norm induced by the inner product on H.

3. Uniform exponential stability

Firstly, we introduce the spacial semi-discretization scheme for the system (2.3).
For this purpose, let N € N be a positive integer and h = 1/(N + 1) mesh size.
Insert N + 2 points and N + 1 points, denoted by y; = ih (i =0,1,--- ,N 4+ 1) and
zj=(+1/2)h (j=0,1,---,N) respectively, in the domain [0,1]. If let f; be the
value of any continuous function f(z) at the node y; = ih (i = 0,1,--- ,N + 1),
then the notations

fg+1 f]
h b)

fiv1+f;

6a:fj - 2

oLf; =
denote the central difference operator of f,(z) and the average operator of f(x) at
the node z;, respectively. Inspired by the works of [7,17,23,24,30], we propose the
following semi-discretization scheme for (2.3)

Cig0yVi(t) = —0.1;(t), Ljg011;(t) = =8, Vj(t), j=0,1,--- N,

Vo(t) =0, Vnii(t) = RInta(t), (3.1)
V(0,y:) = VO(y;) = VO, I(0,y:) =~ I°(y;) =10, i=0,1,---N + 1.

We call this semi-discretization scheme as average central-difference method since
the average operator and central-difference operator are applied for the temporal
derivative and spatial derivative, respectively.
The energy of (3.1) is
2
1 j(t)‘ :| )

2
50|+

which is discrete counterpart of the energy F(t).
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Definition 3.1. If there exist two constants M and w independent of ¢ and h such
that

Eh(t) < Mef‘*’tEh(()),
then we call that the system (3.1) is uniform exponentially stable.

The state space of the discrete system (3.1) is Hy = [RN+1]2 with the inner
product

N
((Prs ), (un,vn))y =h Y [Cﬁ%pﬁ%w + Lj%qy‘f%vj} ;
7=0

for all (ph7(Ih)7 (uhavh) S HN Here Phn = (p17"' apN+1)7 qdh = ((]07"' 7(1N) S
RN+, (up,vp) and (pp, qn) are the same type of vectors. Moreover, set artificially

k=R pg=uy=0, dn+1 = kpn+1, and vy 41 = kun41, to unify the notations
of 5%pj and 6,u; etc.

To verify the uniform exponential stability of the system (3.1), we will follow
every step of the proof of Theorem 2.1. However, we need the following lemma
additionally.

Lemma 3.1. Let {u;}N 51, {0} N5 and {w;}Y5Y be sequences consisting of real
numbers, then we have

N

Z

1 1
1 ; Uit1 — ;) (Vig1 + v3) (Wig1 + w; +Z ; Uit1 — ;) (Vip1 — ;) (Wig1 — wy)
1 1
+Z z;(uzurl + ui) (Vig1 —vs) (Wig1 + w; +1 Z Uit1 + u) (Ve ;) (Wi — w;)
1= Z

= UN+1UNF1WN+1 — UgVpWo

Proof: Extracting the factors from the first two terms and the remaining terms
respectively and using simple algebraic operations, we obtain

N

1
Left = 5 Z[(Ui_H — ui)(U¢+1wi+1 + ’LUZ‘UZ‘) + (Ui+1 + ui)(vi+1wi+1 — ’LUZUZ)}
=0

Breaking the brackets in right hand side of the identity above and eliminating the
cross terms, one has

N
Z Uit — W) (Vip1 Wit 1 + wiv;) + (Uig1 + ui) (Vig1wip1 — wiv;)]
1=0

N | =

[
.MZ

[}

(Uit 10i41Wig1 — UVW;) = UNF1UNH1WN +1 — UgUoWO-

i—
We complete the proof of the lemma by the identities above. O

Theorem 3.1. Under the assumptions Hy and Hs, the semi-discretized system
(3.1) is uniform exponentially stable.
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Proof: Firstly, differentiating the energy E},(t) with respect to time ¢ along the
solution to (3.1), we have

=

= —% Z[(Vj+1(t) = Vi) €1 () + L;0)) + (L1 () = L)) (Vi (8) + V(1))

N
= _% Z(x/j+1(t)fj+1(t) —Vit)1; (1) = =V 1 (D In42(t) = Vo) Do(B)].  (3:2)

This means that d
T En(t) = —R[In1(t)]*. (3.3)

Secondly, assume that ¢ is a parameter and define Lyapunov functions by Fj,(t) =
Ep(t)+epn(t). Here pp(t) are auxiliary functions given by pp(t) = —h Z;V:o CjLjd1y;
01 V;(t)d11;(t). On one hand, it is easy to see that |pn(t)| < KEp(t). This implies
that Lyapunov functions Ly (t) are equivalent to the discrete energy Ej(t), i.e.

(1 — EK)Eh(t) < Fr(t) < (1 + EK)Eh(t). (3.4)

The parameter 0 < ¢ < 1/K ensures that Lyapunov functions F}(t) are positive
definite.

On the other hand, differentiating the auxiliary function pp(t) and applying
(3.1), we derive

N
d
ot hZC 01961 1;(0)8.T;(8) + 1> Lid1y;61Vi(1)8,V;(t)

Jj=0 Jj=0

Li(yj1 + i) L1 () — L;(#) (L1 () + 1; (1))

I
=

<
Il
o)

+ Ci(yjt +y5) Vit () = Vi) (Viga (8) + V5 (1)- (3.5)

=~ =

<
Il
o

Using yn+1 =1, yo =0, yj41 —y; = h and Lemma 3.1, we obtain

N
S Ly + ) (Ta ) ~ L)L (0 + L)
7=0

h )2 [In+1(t)?
=—§2Lj|fj+1(t)— _*ZLM LOF+Iv—F—" (36

and

1 il + 8 Vi (0 = Vi) Vi1 (0) + V3 0)
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N N
h h 2 Vi B2
e SN MR ATILEES et R T0] RN ML )
=0 =0
Combining (3.5) and (3.6)-(3.7), we get
(1) < alIngi(8)]* — En(t), (3.8)

&90
in which @ = (1/2) (Ly + CyR?). Note that the inequality (3.8) is a perfect
counterpart of inequality (2.8).

Finally, differentiating Lyapunov function Fy(¢) and using (3.3)-(3.4) and (3.8),
we have

d d

CR(1) = SE(0) + e sonlt) < — (R — o) (6 )P — - Filh).

d 1+ Ke
Choosing ¢ to ensure R — e > 0 and applying the comparison principle and (3.4),
we get

Ey (t) < M€7WtEh(0).

M and w are the same as in the proof of Theorem 2.1. Therefore we obtain uniform
exponential stability of the system (3.1) and complete the proof of the theorem.
O

At the end of this section, we explain the boundary feedback control mechanism
of our numerical scheme.

Remark 3.1. Let V;,(t) = (Vi(t), -+, Va1 (t) " and In(t) = (Io(t), -, In(t))"
be the unknown variables of (3.1). We solve V{(t) from (3.1) by letting j = 0
in the first equation of (3.1) since Vy(¢t) = 0. Using V/(¢), we can solve Vy(t) by
letting j = 1 in the first equation of (3.1). Repeating this process, we can separate
all components of V//(t). But we obtain I} (t) by the converse process in view of
Int1(t) = kVnya(t). That is the last component I (¢) is the starting point of
solving I} (t) from the second equation of (3.1). Thus we obtain the equivalent form
of the discrete system (3.1)

SO @I 0)T = (B(®), -+, Byaalult), DoVa(t). -, DxVi(t)" (39)
in which
Bt = 2220,
5.1, (t)

BJ+1Ih(t) = —2T - Bj.[h(t), ] = 1, e 7N - 1,

RV () = In(t)

Bni1In(t) = WO — BNIn(2),
0z VN (t
DyVi(t) = =2 JJVV( ) _ kB 1In(t),
0 Vi(t )
Dlvh(t) =-2 ‘[/:( ) _DiJerh(t)’ 7,:0,]_7... ’N_l

satisfy the recursion relations and are all mappings from RY*! to R.
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If you track the feedback control kVx1(t), which corresponds to kBy411p(t),
in the dynamical system (3.9), you can find out that it firstly enters into the channel
I (t) and then every channel of the system (3.9) one by one. This is caused by the
average operator for the time derivative. Without the average operator, the semi-
discretization scheme (3.1) degenerates into the classical central difference scheme
and the feedback control only appears in one channel. Furthermore, it has been
pointed out that there is no uniform exponential stability for this approximating
scheme in [30]. More information is given in section 6. This is the main mechanism
of boundary feedback control uniformly exponentially stabilizes the discrete system.
This has the same effect with the mixed finite element method in [21].

4. Convergence analysis

We will show that the solution to the system (3.1) converges to the corresponding
solution of the system (2.2) in the sense of Trotter-Kato.

For every n = 1,2,--- , there exist bounded linear operators P, : X — X,, and
FE, : X, — X satisfying

(A1) There exist two positive constants M; and M, such that || F,| < M; and
[Pl < Mo,

(A2) ||EnPrx —x|| > 0asn — oo forall z € X,

(A3) P,E, = I,, where I, is the identity operator on X,,.

The notation B € G(M,w, X) with M > 1 and w € R, means that B is the in-
finitesimal generator of a Cop-semigroup S(¢), ¢t > 0, satisfying || S(t)|| < Me“". The
Trotter-Kato Theorem for approximating a linear Cy-semigroup S(¢) on a Banach
space X is as follows.

Theorem 4.1. (Trotter-Kato [11]). Assume that (Al) and (A3) are satisfied.
Let B resp. B, be in G(M,w, X) resp. in G(M,w, X,) and let S(t) and S, (t) be
the semigroups generated by B and B, on Banach spaces X and X, , respectively.
Then the following statements are equivalent

(a) There exists a Ao € p(B) N[, —, p(By) such that, for all x € X,

|En(Xo — Bp) ' Puz — (Mo — B) " 'z|| = 0, as n — oo. (4.1)
(b) For every x € X and t > 0,
|1EnSn(t)Prz — S(t)z|| = 0, as n — oo (4.2)
uniformly on bounded t-intervals.

Note that the assumption B,, € G(M,w, X,,), or equivalently ||S,,(¢)|, < Me“*,
n=1,2,---, usually is called the stability property of the approximations, whereas
statement (a) is called the consistency property of the approximations. However,
one may face some major difficulties when one applies Theorem 4.1 to perform
convergence analysis. The most difficult one is how to verify the consistency prop-
erty (a). The following property, which can replace (a) by a condition involving
convergence of the operators B, to B in some sense, is useful in this part [11].

Proposition 4.1. Assume that the assumptions of Theorem 4.1 are satisfied. Then
statement (a) of Theorem 4.1 is equivalent to (A2) and the following two statements:

(C1) There exists a subset D C D(B) such that D = X and (Aol —B)™'D = X
for a Ao > w.
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(C2) For all uw € D there exists a sequence (Up)neN with T, € D(B,,) such that

lim E,u=u, lim E,B,u= Bu. (4.3)
n—oo n—oo
Now we give the convergence analysis of our systems. In light of (3.9), the
approximating operators Ay are obviously defined by

Bign Dops,

Ph Bap, ) . P
Av M) = T | withBau = | 1 [ bpu=| ¢ | W[ € Hy.(49)

dh Dpy, qhn
Bntian Dnpn

By the same operations as in (3.2), one has

N
Dn Dn
<AN ) > ——hy [%Pﬁz%‘ +00pj01q;| = —klpn41|* <0.

dh dh Jj=0

N
This means that Ay € G(1,0, Hy). However it follows from Remark 2.1 that A
generates some contractive semigroup, i.e. A € G(1,0, H). This shows that the
discrete scheme of (3.1) is stable.
Let xs be the characteristic function of the set S and define the extension
operators Ey : Hy — H:

N
B bn) Zizo(éépi>x(yi,yi+ﬂ
N - )
N
dn Ei:O(CS%Qi)X(yivyiJrl]
Choose the dense subset D £ D( )N(C?[0,1])? of H. For any (u(-),v(-))" € D,
set W= (u(y1), -, ulyns1)) ', 0 = v( 0), =+, v(yn))" and U = (w,0)". By
u(yo) =u(0) =0 and v(l) = v(yNH) = (yNH) = ku(1), it is easy to see
B T ZN (u(y@+1)+U(yz )X[y“yi“]
EnU = EyN ( )+ ,
v Sl () )y
and
— N (v(yit1)—v(yi)
- By i= (7 Xlyi,vi
ExANT = Ex _ ZNO hC; ) (Wi yital
Cu Zi:O (%[W) X[yiayi+1]
Furthermore, we have:
u u(x
Ey [uw@)
v v(z)

N u(y; u(y; N

Zi:o |: = +1)2+ . )} X[yi,yi+1] - Zi:O u(x)x[yi,yiJrl]
N v(yit1)+v(ys

S [ (W +1)2 (y )}

1=0

N
Xlyi,yit1] — Zi:o v(x)x[yi,ywrl]
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12N o luyin) — u() + u(yi) — u(@)]X (o)
2\ 2N (i) — o(@) + 0(5:) — (@) Xiyg0 )

1[N ol (€851) Wit — @) + 0 (€@ = Y3 Xysyssa]

2\ SN (€0 ) i1 — ) + V(€)@ = 1) Xyrpar]

in which the mean value Theorem is applied and u(x), v(z) € C1[0,1] imply that
[u' (&), [/ (&4 1)1, [0'(§7)| and [v'(&f )| are uniformly bounded with respect to
1 =0,1,--- ,N. Let T be their common upper bound and so we have

2 2
N
< F2h2 Zi:o X[yixyH»l]

2|
=

5
SN~—

En —

— 0, as N — oo.

_ - 2 N
v v(l') N Zi:O X[yi7y11+1] N
Similarly, for Exy Ay — A we obtain
u u(z)
EnAn —A
v v(z)
N [o(y; )—v(y; v (x
o Zi:o | by +}1LC1; fy.) + C((JL))} Xy yit1]
N _u( it1)—u(ys) u’(x)
> im0 I T L((z)} Xlyiryi+1]
N [V () v (z
B > im0 I ot cgz))] Xlyi yit1]
B N _u/(’ﬂf ) o' (x
Zi:o | L:rl + L((x))} Xlyiryit1]
N C@)[v' (i) v (@)]—[C(x)—Ci]v'(z)
_ Zi:O - C;C(x) Xlyi yi+1]
N L(z)[u(ni ) —u'(x)] = [L(z)—Li]u'(z)
> im0 = L.L(x) Xyi»yit1]
U u(x
By the same idea as above, we can show that Ex Ay —A @) converges
v v(x)

to zero as N — oo since C(z), L(z) € C*[0,1] and u(z), v(z) € C?[0,1]. Therefore,
the statement (b) in Proposition 4.1 holds.

Finally, construct the projecting operators Py : H — Hp in light of the expres-
sions of the extensions Ex by

u(z) IBo(x)
P u(x) - Itu(x) o B
N = , with I"u(x) =2
v(x) I*v(x)

Inu(x) I{v(z)

and

Y1 Yit1
Iu(z) = h_l/ u(z)dz, Ilu(r) = h_l/ u(r)dr — I} u(z), i=1,2,--- N

Yo Yi
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Yj+1

YN+1
IZo(z) = hil/ v(x)dr — kINu(z), 1]27)(.7:) = hfl/ v(z)dz — Ij4qv(x),
YN Yi

j=0, -, N—1.

It is easy to show that En and Py satisfy (A1) and (A43).
To prove that Ey and Py satisfy (A2), we firstly assume (u(z),v(x)) € D(A).
With this assumption we have

N i N w
EnPy ’U,(Z,E) —pt Zi:o fyli o u(x)dxx[yi,yﬁl] _ Zi:O u(ez )X[yi»yi+1]
N i1 N v ’
’U(],‘) Zi:O yyl v ’U(x)dxx[yz‘,yﬁl] Zi:o 1)(91- )X[yiyyi+1]
and
N
u(x u(x —olu(0}) —u(x s
ENPN ( ) . ( ) _ Z;O[ ( ) ( )]X[ylxy1+1] - 0’ as ]\[_> 0,
v(x) v(x) 2i—ol0(07) — (@)X 1y, yii1)

here 6% and 0! are chosen such that f;j“ w(z)dz = u(6¥)h and fy‘zi“ v(r)dr =
v(07)h when the mean value theorem is applied, and the continuity of u(z) and v(z)
on the internal [0,1] is applied in the last step. Thus combing this result and the
density of D(A) in the state space H, we obtain (As). Moreover, let (V? 1) € H
be the initial value of (2.3) and set (V4 (0),1,(0))" = Py(V?, I°)T be the initial
data of (3.1), then (As) implies that (V},(0),1,(0)) convergent to (V°,1°) in the
sense of

En(Vi(0), I,(0) T = (V0,19 T, as N — oo.

In a word, we have completed the verification of (A;)-(As) and (C1)-(Cs) and
this means that the solutions to the discrete systems (3.1) strongly converge to the
solution of (2.2), i.e., as N — oo,

wlz w wlz
EnSn(t)Pyn —S5(t) -0, V € H. (4.5)

5. Return to the original system (2.1)

Now, all results for the systems (2.3) and (3.1) are going to be translated into the
system (2.1) and its semi-discretized systems, respectively. Recall that the state
space H and the system operator A corresponding to (2.3) have defined in Remark
2.1. Similarly, we introduce the state space Hp and the system operator Ao for the
system (2.1). The space Ho is [L?(0,1)]? with the inner product given by:
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for V(p(-),q()) T,(u(-),v(-)) T € [L?(0,1)]%. Define the system operator Ao on Hp
through

_d (@)
o) < (), )
v(x) _H(L(I))
D(Ap) = ul) € [L2(0,1)]% : u(0) = 0, u(1) = Rv(1) . (5.2)

Thus, the system (2.1) can be transformed into abstract Cauchy problem

a (et _, (o) Qo) _ (@@

At \ 4t,2) o(t, 7) 6(0,7) °(z)

Furthermore, the relations V = Q/C and I = ¢/L determine a mapping ¥ : Hp —
H given by

V(z) Qo) _ (e 0 ) (Q@w)  (Qw) € Ho

I() o(x) 0 1) \o@) o(x)
The operators A, Ap and ¥ have following basic properties.

Proposition 5.1. The operators A, Ao and ¥ satisfies:

(1)The operator ¥ is an isometric isomorphism from Hy to H.

(2)Let =1 be the inverse operator of W, then the operators A and Ao are
similar, i.e. Ao = UW™1AW.

Proof: (1) Obviously, ¥ is a linear operator from Hy to H and invertible. The

C(z) 0
inverse of ¥ is U1 = and also a linear operator from H to Hy. This
0 L(z)
implies that the operator ¥ is an isomorphism. Because the identity
2 2
u(x 1 2 2 u(x
o ()| < [ by, | (o
v(z) o C2) L(z) ()
H Ho
holds, we know that ¥ is isometric.
u(z) u(x)
(2) For any € D(A) = D(Ap), we have &1 € D(Ao)
v(x) v(x)
u(x u'(x u(x
PR ) S U N (A
v(z) v'(z) v(x)

which gives Ap = U ~1AU. O
Now, we can give exponential stability result of the original system (2.1).
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Theorem 5.1. Let the assumptions Hi-Hs hold and the semigroup on the space
Ho generated by the operator Ao be To(t), then To(t) is exponentially stable.

Proof: Recall that the semigroup 7T'(¢) given in Remark 2.1 satisfies || T(¢)||z <
Me=t for some positive constants M and w. However, it follows from Ap =
U1 AP and similar semigroup theory in [3] that Tp(t) = U=1T(¢)¥. Therefore,
from (1) of Proposition 5.1 we have

ITo o = 8T T, = |TH)]la < Me™™",

which means that T (t) is exponentially stable. O

Certainly, we can obtain Theorem 5.1 by the same method in Theorem 2.1.
However, this indirect method for obtaining exponential stability of the original
system (2.1) is important in studying the uniform exponential stability of its discrete
systems. From semi-discretization scheme (3.1) and the relations V;(t) = Q;(¢)/C;
and I;(t) = ¢;(t)/L;, we obtain semi-discretization scheme for (2.1)

Qi) _ ¢;(t
et (342) - -5 (42).
dgs () — _ Q; () -
by () =4 (98 = .
Qo(t) =0, Qn4i(t) = RCN+1LJQ1+1¢N+1@)7

The energy of discrete system (5.3) is

h i(®) ;1)\ |”
Eonlt) = 2 Z < G ) 5% < L ’
=0
Now we show that the system (5.3) is uniform exponentially stable in the sense

of Definition of 3.1. The state space of the discrete system (5.3) is Hony =: [RV 1] ?
with the inner product

2
+ L

M\»—A

((Pr qn), (tn,vn)) ON—hZ {C 616 C +L 91 51} V(Pran ). (unvn) € Hon,

in which ﬁo = ﬁo = O7 CYN+1 = k/ﬁN+1, ”JN+1 = k’ﬂNH, and k‘/ = R_lo&i_lLN_H
are used. Let Wy be matrixes of order 2N + 2 given by

1 1 1 1
Uy =d =
N lag{co 7CN7LO7 7LN}7
which is well-defined since the assumption H; is right. Using these matrixes, we
define the linear operators from Hoy to Hy by
Ph Ph Ph
=Uy s v € Hoyn.

qn qn qdh

Thus we can get the results similar to those of Proposition 5.1 and Theorem 5.1,
which are main results of this paper.
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Proposition 5.2. For any fized positive integer N, the operator ¥ n is an isometric
isomorphism from Hon to Hy .

Proof: Obviously, for a fixed positive integer N, ¥ is an isomorphism from
Hyn to Hpy since it is invertible. The inverse of Wy is \Ilfvl =diag {Cy - -, Cn,Lo; - v Ln }.
Because the identity

2 2
~ N ~ |2 ~ N2 =
Pn Pj q; Pn
v =h E il101 | = Si (2L )| =
" 2 s (Cj) (Lj> in

J
Hyn Hon

Nl

N
+0> L,
=0

holds, we know that Wy is isometric.

Theorem 5.2. Define operator Aon by the formulas Aoy = \Ilg,lAN\I/N. Then
the abstract Cauchy problem

d Qn(t) ~ Apn Qn(t) (5.4)

-\ g (t) én(t)

determined by the operator Aon is equivalent to the discrete system (5.8) without
initial data. Furthermore, the discrete system (5.8) is uniform exponentially stable
with respect to energy Eop(t).

Proof: It is easy to see that the discrete system (3.1) is equivalent to

d (Va®) — An Vi(®) (5.5)

dt In(t) I, (t)

from (3.9) and (4.4). Let Qn(t) = (Q1(t),- -, @n+41(t)), ¢n(t) = (¢o(t),-- - on (1))
and (Qn(t),¢n(t))" be state variables of the discrete system (5.3). Then we have
the identity

Va(t) Qn(t)

= ¥N

In(t) on(t)
since Vj(t) = Q;(t)/C; and I;(t) = ¢,(t)/L; for j =0,1,--- , N + 1. Substituting
the identity above into (5.5), we obtain

d Qn(t) Qn(t)

f\I/N :AN\IIN )

dt 7\ gn(t) (1)

which is equivalent to the discrete system (5.3). This means that the abstract
Cauchy problem corresponding to the discrete system (5.3) without initial data is

d ~ Ao — U ANTy . (5.6)
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That is to say Aoy = V' AnPy. Let Ton(t) and T (t) be semigroups gener-
ated by Aoy and Ay respectively, we have Tp(t) = W~ 'T(t)¥. Therefore, from
Proposition 5.2 and Theorem 3.1 we know

ITon )|l Hon = N TN (YNl Hox = TN ()Y < Me™,

which means that Ton (¢) is uniform exponentially stable, i.e. the the exponential
decay rates of Ton(t) are independent of N. But if you restate this result in the
language of energy, you can obtain that the discrete systems (5.3) are uniform
exponentially stable with respect to energy Eop(t). O

Finally, the solution to the discrete system (5.3) is convergent to the one of
the continuous system (2.1) in the meaning of Trotter-Kato Theorem. In fact,
constructing the extensions Eoy from Hoy to Ho by Eony = UV !ENUN and
the projecting operators Poy from Hp to Hon by Pon = \IIR,lEN\II7 we have the
following convergence result.

Theorem 5.3. As N — oo, we have

EONTON(t)PON UEl’; —To(t) UEQT; —0, V UE«T; € Hop. (5.7)

Ho
Proof: From the relation Tp(t) = $~1T'(¢)¥ of the semigroups, Proposition 5.1
and Proposition 5.2 we have

[BonTonPox ~To(0] | " | =¥~ [EwTw(OPy - T(0)¥ “E;

Ho Ho

= ||[[ENTN(t)Py — T(t)] @

H

The identities above and (4.5) imply that (5.7) holds and the proof of the theorem
is finished. ]

6. Numerical simulations for the uniform exponen-
tial stability

In this section, we show the effectiveness of our numerical approximating schemes
(3.1) and (5.5) through some numerical experiments. Recall that

1 1 1 1
N dlag{co, 7CN7 LO’ 7LN}

and Aoy = \Il;\,lAN\I/N are given in last section. Because the operators Ay and
Aoy are similar, we only give eigenvalue distributions of Ay to analyze uniformly
exponential stability of (3.1) and (5.5). For this purpose, we should express the
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operator Ay as matrix. Let Gy, = diag{0,---,0,1},

11 1

1 -11

belong to RIVFDX(N+1) - Set

BT —kGj, M7
q)N = 1 h s and QN = l 4 h
2\ kG, By h\ “m, o
Then (3.1) and (5.5) are equivalent to
d [Va(t) Vi(t)
N& =UNQpN s (61)
In(t) In(t)

in which Ay = <I>;,1\IJNQN is used. It is easy to see that @, is corresponding to
the average operator of time derivative of (3.1). If one replace By, by the identity
operator, then the classical finite difference scheme of (2.3) is easily restored from
(6.1), i.e.,

d [Va(t) Vi(t)

fl = TN , 6.2
At \ 1, (t) o In(t) 02

If C(x) = L(z) = 1, the numerical approximating scheme (3.1) degenerates to the
numerical approximating scheme (2.5) of [17].

Now we explain the significance of the discrete scheme (6.1) or (3.1). We plot
two figures in Figure 1 and Figure 2, respectively. Figure 1 depicts the maximal
real parts of Ay and UnQy for N =40:5 : 400. Figure 2 depicts the distributions
of the eigenvalues of Ay and ¥ yQxn with N = 500.

We see that the real parts of the eigenvalues of ¥y approach to zero and
those of An approach to a negative number from both figures. In both figures, we
take k = R =1, C(x) = In(1 + z) and L(z) = e*. Numerical simulation results
show that the classical finite difference scheme of (6.2) is not uniformly exponentially
stable. This is consistent with earlier research results of [30]. However, Figure 1
and Figure 2 manifest that (3.1) and (5.5) are uniformly exponentially stable and
this is in accordance with theory result of section 3.

7. State reconstruction problems

This section studies the state reconstruction of the system (2.3). Assume that the
initial value (Vy(z), In(x)) € H, as well as its orbit, is unknown. Assuming a given
time T, the output O(t) = V(¢,1) is known within the time period of [0,7] at
endpoint = 1, and it has control input I(¢,1) = u(t) at the same position. The



Uniformly exponentially stable approximation...

X without the average operator
0.2 X with the average operator )

o
T

Maximal real parts of eigenvalues

0 50 100 150 200 250 300 350 400

Figure 1. Maximal real parts of eigenvalues of the semi-discrete schemes

5000 % T T

X without the average operator
4000 X with the average operator

3000 b

2000

1000

-1000

Imaginary part
o

-2000

-3000 b

-4000 b

BXXX

-5000 ! !
-3 -2 -1 0 1 2 3

Real part

Figure 2. Maximal real parts of eigenvalues of the semi-discrete scheme with N = 500.
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forward-backward observers-based algorithm, which was introduced in [34] and [26],
is utilized to calculate the unknown initial value and those of its semi-discretization
systems. To sum up, we consider the following wave equation with collocated bound-
ary observation and control

V(t,0) =0, (7.1)

7.1. State reconstruction for the continuous system

To estimate the initial value of the system (7.1), a forward Luenberger observer is
first designed

V*(t,0) =0, (7.2)
I (t,1) = u(t) + k(VT(t,1) — O(t)),

Set
(u+(t,x),v+(t, x)) = (V+(t,$) - V(t,x),[+(t,x) - I(t,:[)))

The difference between system (7.1) and (7.2) yields a forward error system

C(z)uf (t,z) + v (t,z) =0,
L(z)vf (t,x) +uf (t,2) =0,
ut(t,0) =0, (7.3)

Secondly, build a backward Luenberger observer

C(x)Vy (tx) + I, (t,x) =0

L(x)I; (t,z) + V, (t,z) =0,
~(t,0) = (7.4)
(1) = ( ) —k(V=(t,1) — O(t)),

V(T,x) =V (T,z), I=(T,z) =1 (T, ).

5 S
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Set
(v (t,z), v (t,x) =V (T —t,x) = V(T —t,x), I (T —t,x) — I(T — t,x)).

The difference between system (7.1) and (7.4) yields a backward error system

Finally, the following results can be obtained.

Lemma 7.1. Let H be the state space defined in the Section 2. Define the operator
B on H through:

5 (P@) _ (etdi@) 70
g(x) ey 4 P()
D(4) = pi; € [H'(0,1)2: p(0) =0, p(1) = —Rg(1) p.  (7.7)
"

dt

Then, the semigroup S(t) generated by B is exponentially stable under the assump-
tions H1-Hs, 1i.e.

ISl < Me™",

here || - || is the norm induced by the inner on H.

We delete the proof of this lemma since the method of Theorem 2.1 can be
applied to prove it.

Theorem 7.1. Let T(t) be the semigroup given in Remark 2.1, S(t) be the semi-
group corresponding to (7.5) and Ky = S(¢t)T(t). Chose T sufficiently large such
that 6 == || Kr|| <1, then it holds

O I Y A (7.8)

Iy(x) I=(0,z)

Where V= (0,z) and I~(0,x) are initial values of (7.4).
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If the Neumann series is used to expand (I — Kr)~1, then (7.8) can provide an
accurate calculation formula for the initial values (Vy(z), Ip(z)).

Vo(x) © [ V=(0,z)
= S [Kq) . (7.9)
Io(z) Z:; 17(0,z)

Theorem 7.2. Moreover, we can build an approximating sequence from any guessed
value (a9 (x), b (2)) € H of the initial values (Vo(x), Io(x)). In fact, construct
the iterative sequence as follows:

(a(”)(x),b(") ()" = KT(a(”fl)(x), b("fl)(z))T7 n € N. (7.10)

If T satisfies the condition in Theorem7.1, then when n — oo, (a™(z),b™ (x))
strongly converges to (Vo(z), Io(x)) in H. In addition, we have the following esti-
mate

la®™ (@) = Vo(@) 70,0y + 16" (@) = Io(@) 70,1

. (7.11)
<o +1[||a(0)(ac) - %(x)”%?(o,l) + Hb(o)(x) - IO(x)H%?(OJ)]'

Theorem 7.1 and Theorem 7.2 are the same with Theorem 3.1 and Theorem 3.2
of [34] respectively, you can find detailed proofs of these results in [34].

7.2. State reconstruction for the discrete system

In light of the discrete system (3.1), we discretize (7.1) as follows:

Cras,Vy(t) +6,1;(t) =0, j=0,1,2,---N +1,
Loy I;(t) + 0, V;(t) =0,

Vo(t) =0,

Inta1(t) = un(t),

On(t) = V41 (1),

Vi(0) = Vi, I;(0) = Ioj,

(7.12)

in which up(t) and Op(t) are new input and output, the other notations are the
same as those of section 3. This section mainly gives the iterative sequence for the
discrete reconstruction problem. To this end, the forward observer

Ciaoy Vi) () + 8L (1) =0, j=0,1,- N +1,
0 0
L6, 119 (1) + 6.V (t) = 0,

Iy (8) = un(t) + BV, 1) (1) = On(8)), £ €10,T]
Oy — O 70y _ 7O
Vig (0) =V 1 (0) = I;7,
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and the backward observer

Ci o VIO (1) + 6,17 (1) =0, j=0,1,- N +1,

Jdt
L, jté I(O)( £) + 5w‘/j(2) (t) =0,
V(1) =o, (7.14)

I - (8) = un(t) = KV, 1) (1) = On(1)), t € [0,T]
vO(r) = v ), 19(1) = 19(7),

J— J

are designed as before. Let(u;'(t), v;'(t)) = (Vj(g)(t) — V(%) 9 (t) — I;(t)) be the

forward error, then it can be obtained
C]jtélu (t) + 5$vj-'(t) =

L; dt61 vt (t) + 6$uj+(t)
ug (t) = 0, (7.15)
UX_H-l( )= ku}+1(t) tel0,T]

uf (0) =V — Vo, vt (0) = IV — Iy,

Il
o o

Similarly, let(u; (t),v; () = (V;(T —t) = V;(T — ), 1\°(T — t) — I;(T —t)) be
the backward error then it satisfies

Cjgdsuy (t) = dv5 (1) =0, 7 =0,1,2,---N +1,

LJ$5 vy (t) = 8,u; (t) =0,

ug (1) =0, (7.16)
v;,H(t) = —k:u]_VH(t), te [O,T]

uj (0) = V;O(T) = Vi(T), v (0) = IL2(T) = I;(T),

The state spaces of (7.12)-(7.16) are also be X}, and let
iy (8) = (ui () u (8); ooy uy gy (8), 03 (8) = (05 (8), 07 (8), e v (1)),
definition mapping

(uz; (8), 0 (1) = Fiu(8)(uyy (0), 05 (0)),  (uy, (1), 05 (1)) = Ba(t)(uy, (0), vy, (0)()' :
717
Finally, based on the above preparations, we have the following theorem.

Theorem 7.3. Let (aglo),bglo)) € X, be any guess value of initial value (Von, Iop),
construct the iterative sequence as follows:

(af.b") = Bu(T)Fi(T) (@'~ b)), ne N, (7.18)
If T is selected so that &y := || Bp(T)Fr(T)||n < 1 is true, then as n — oo,

(a,(ln),bgn)) converges uniformly strongly to (Vop, lon) in Xj with respect to the
discretization parameter h, and there is an error estimate as follows:

I(af™ = Von, b5 = Ton) 3 < 8™+ [[(af” — Vou, by — Ton) 13- (7.19)
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Proof: According to Theorem 3.1, we can know that the system (7.12) is uniformly
exponentially stable. It can be described by the space X}, and mapping F},(t) defined
above, there exist normal numbers M; and w; independent of A and t that make

IFn ()l < Mye™".

Similarly, system (7.16) is uniform exponential stability, there are normal numbers
of My and ws independent of h and ¢ that make

1Bn(t)|n < Mae™2".

On the other hand, by using the proof of Theorem 7.2 and (7.12) - (7.16), we can
know that the following relation is valid:

(Vh(_) — Von, I;(lo_) —Ion) = Bh(T)Fh(T)(aéo) — Von, bEf” — Iop).

For any n > 1, Vh(l) (t) and I f(::_t) (t) are constructed using forward observer (7.13)
and backward observer (7.14):

Cido Vi) + 0,10 (1) =0, j=0,1,2,- N +1,
:0’

Ly I (6) + 6.V (1)

Ve (1) =0, (7.20)

I((JT\L’>+1)+(t) = un(t) + k(‘/((ﬁirl)-‘r(t) = Vnia(t),
V) = v (), 170) = 1779(0).

Cris, V() + 8,1 (1) =0, j=0,1,2,--- N + 1,
Lj%%f;f)(t) + 5ij(f) (t) =0,

V" (1) =0, (7.21)
I((;\Lf)+1)7(t) = up(t) — k(v((;;ll)i(t) — Vn41(t)),
V(n) (T) = Vj(:) (T), Ij(r_L)(T) _ IJ(-Z) (T).

j_

Similarly, the following relationship can be obtained:
(VA (0) = Von, 1" (0) = Ton) = Ba(T)FW(T) (V3" (0) = Vou, 1"~ (0) = Ton).

then
(@™, (™) .= (V™ (0), 1 (0))

that’s the sequence of iterations we’re looking for. After a simple calculation
(a1 = Vons 0" = Ton) = [Bu(T)Eu(T)]" (0} = Vo, by — Ion),

the error estimate (7.19) and the convergence result can be obtained by taking the
norm in Xj on both sides

108 = Vo, 0 — Ioj) 2 = (I[S;(T)TH (D))" (aS” — Vo, 0% — Ioj) 12
< ST 2110 — Vo, 07 — L)) 12 (7.22)

J
n 0 0
§ (a8 — Voy, 08 — Ioy) |13

IN
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Then when n — oo,
1(aS™ = Vos, b5 = Toj)n — 0.

So there is
(af", 0) 1% (Vo Toj).

8. Numerical simulations for the state reconstruc-
tion

In our first example, we take
Vo(z) = 2(1 — 2)2sin(15z), Iy(x) = —z (z € [0, 1]).

We show in Figures 3-4 several iterations of the iterative method (n € 2,4, 6,8, 10).

In this test, we take initial guess Value(a;o), bg-o)) = (0,0) of (Vo, Ip) and a mesh
size h = 1/(N +1) with N = 240. We also discretized the time interval, with a time
step 0t = 7/M, with M = 1200, and 7 = 2.5. We notice that the reconstructions
for Vo and Iy become more accurate as the number of iterations increases. We
represent in Figure 5 the relative error made after each iteration.

Inital condition
lter=2
lter=4
lter=6
lter=8
lter=10

/—\ \
\ \
\ N\
04 / 08
g \ /
W
\ 7/ 09
\/

0 0.1 02 03 04 05 06 07 08 09 1 70 0.1 02 03 04 05 06 07 08 09 1

Inital condition
lter=2
lter=4
lter=6
lter=8
lter=10

(a) Figure 3. Reconstruction of V (b) Figure 4. Reconstruction of Ig

Relative error
°
R

1 2 3 4 5 6 ¥ 8 9 10
Iterations

(c) Figure 5. Relative error made after n iter-
ations

We also show how the the time 7 plays a role in the method. We take M = 1200,
N =240, n = 10. We represent in Figures 6 - 7 the final reconstruction of the initial
condition for Vj and the relative error for 7 € {1.5,2,2.5,3}.
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0151 0015
Inital condition
Y- tau=15

tau=2

tau=2.5
tau=3

/ \
I \ | \v\
-0.05 - ”’ﬁ‘ / 0.005

\/

-0.15 0
0 01 02 03 04 05 06 07 08 09 1 15 2 25 3

Final time(tau)

Relative error

(d) Figure 6. Reconstruction of Vy (e) Figure 7. Relative error with respect to 7

9. Concluding remarks

Transmission line is a basic structure of circuit and plays an important role in
physics and engineering. This paper is devoted to uniformly exponentially sta-
ble approximations for the transmission line with varying capacity and inductance.
This means that we study it from the viewpoints of the numerical approximating
and control theory. It is well-known that there are many discretization methods to
discretize the spatial variables. It is nontrivial to pick one that preserves exponen-
tial stability among so many semi-discretization methods. On the other hand, if the
capacity parameter and the inductance parameter are constant, many existing re-
sults can be applied and there is no any challenge. To bypass the troubles brought
by variable coefficients, suitable similar transforms are introduced. The uniform
exponential stability of the transmission line with varying capacity and inductance
is then smoothly obtained based on the method for the wave equations with con-
stant coefficients. We gave an important application of this main result, i.e., the
state reconstruction of the transmission line with varying capacity and inductance.
Moreover, the uniform exponential stability has potential applications in uniform
controllability and other problems. They deserve to be investigated at length in
further research.
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