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Abstract This study gives some new existence results for a three point
boundary value problem involving a nonlinear fractional differential equation
that incorporates a broad form of the Caputo fractional derivative concerning
a new function. Our approach rests upon the fixed point theorems estab-
lished by Banach, Schafer, and Schauder. Additionally, we substantiate the
robustness of our findings by providing an apt illustrative example.
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1. Introduction

Fractional calculus has emerged as a powerful mathematical tool with diverse ap-
plications in modeling complex phenomena exhibiting memory effects, anomalous
diffusion, and non-local behavior. Fractional differential equations have gained sub-
stantial attention in recent decades due to their ability to model complex phe-
nomena in various scientific and engineering disciplines. These equations involve
derivatives of non-integer order, providing a more accurate representation of pro-
cesses that exhibit memory effects and anomalous diffusion. The Caputo fractional
derivative, in particular, has proven to be a versatile tool for describing such behav-
iors. Thus, in recent years, fractional analysis and fractional differential equations
have become very popular and gained great importance by the agency of stud-
ies and proven applications in many scientific fields such as physics, mathematics,
statistics, biology and engineering. When we examine the literature, besides the
Caputo fractional derivative, there are so many studies on different operators such
as Riemann, Hilfiger, Erdelyi-Kober, Hadamard and generalized fractional deriva-
tives and integrals. We would like to mention some recent monographs devoted to
the investigation of boundary value problems for fractional differential equations
with many examples and applications, namely [2,3,5,9,11,13-17]. In particular
we also mention some studies on the existence of Caputo fractional boundary value
problems [1,4,6,7,18,19]. However, many scholars discovered that some existing
fractional operators may not well to describe many phenomena in the real world.
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Hence, a new general definition is proposed recently, so-called ©-Caputo fractional
operator, which could combine the maximum number of definitions of fractional
derivatives to a single one by depending upon a nonsingular kernel. The kernel
function can provide free arguments to better calibrate a system.

In this paper, we delve into a specific class of fractional boundary value problems
associated with this new ©-Caputo fractional derivative. This derivative encom-
passes a general form of the traditional Caputo fractional derivative and is defined
in terms of a new function ©. The introduction of © allows us to capture a broader
range of behaviors and instances, making our study particularly relevant in explor-
ing intricate dynamics. This provides flexibility in finding better solutions to various
problems in different application domains.

In [1] Abdo, Panchal and Saeed investigated the existence of positive solutions
for the following nonlinear fractional differential equation,

e
cDPOL(t) = f(t,2(t),  t€a,b],
P -1
zg(a) =2, j=0,1,..,m—2; zgn }(b) = 2,
containing a general form of the Caputo fractional derivative according to a new
function ©, where ch ;@ is the ©-Caputo fractional derivative of order 3 such that
m—1<p8<m, f:]abd xR — R is the continuous function and zJ (j =
0,1,...,m —2), z, are the real constants. By using Banach and Schafer fixed point
theorems, the existence of a positive solution is achieved.
Let’s take another study in [14] researched the results of existence and unique-
ness for the nonlinear Caputo fractional boundary value problem

°DP2(t) = f(t, 2(1)), t € [a,b],
29 (a) = zj, j=0,1,...,m—2; 2D (b) = 2,

where zg, 21, ..., Zm—2, z» are the real constants, f : [a,b] x R — R is the continuous

function and CDg is the Caputo fractional derivative of order m — 1 < 8 < m.
Motivated by the research going on in this direction, in this paper, we study the

existence of a solution for the following nonlinear fractional differential equation

DY) = f(t,2(t), t€ [a,b], (1.1)

zg](a) = zg, j=0,1,...,m — 2; zgnfz](b) = (52[@;"72](17), (1.2)

containing a general form of the f—th order Caputo fractional derivative according
to a new function © such that © is an increasing differentiable function with ©’(t) #
0 for all ¢ € [a,b]. In this problem CDS jr@ is the ©-Caputo fractional derivative

of order B withm—1<B8<m (m=[p]+1), 2 €Rfor (j =0,1,...m —2),
[m—3]

!
_ t
€ (a,b), 5 € (0,1), z € C™Ya,b), 22" 2(t) = (Z@G),(t;() and f: [a,b] xR — R
is a continuous function. Our main objective is to establish the existence and
uniqueness results for the considered ©-Caputo fractional boundary value problem

(1.1)-(1.2). The search for solutions to fractional differential equations is often
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complicated by the non-local and non-linear nature of the equations, demanding
novel analytical techniques. To this end, we draw upon the foundational fixed point
theorems provided by Banach, Schafer, and Schauder. These theorems furnish a
solid theoretical framework for proving the existence of solutions.

The remainder of the paper is arranged as follows. In Section 2, we provide a
concise overview of essential foundational lemmas and definitions pertinent to the
theory of ©-Caputo fractional calculus. In Section 3, we write the problem (1.1)-
(1.2) as an equivalent integral equation, and then, under some assumptions on the
nonlinear term f, we establish existence results for (1.1)-(1.2) by means of the fixed
point theorems. Also, in this section, to illustrate the validity and applicability
of our theoretical findings, we provide a carefully chosen illustrative example that
highlights the significance of our approach. This example not only demonstrates the
feasibility of our results but also serves as a guide for researchers and practitioners
seeking to comprehend the practical implications of our work. Finally, Section 4
concludes the paper with a summary of the achieved results.

In essence, our study aims to contribute to the advancement of the theory and
applications of fractional differential equations by tackling the nonlinear generalized
Caputo fractional boundary value problem according to a new function. The explo-
ration of this problem not only enhances our understanding of complex dynamics
but also holds promise for addressing real-world challenges across diverse domains.

2. Preliminaries

In this section, we would like to provide a brief overview of the relevant literature
in the field of fractional differential equations. Therefore, we give some definitions,
notations, lemmas and results for ©-Caputo fractional derivative [7] which are used
throughout this paper.

Definition 2.1. [7] Let § > 0 such that m —1 < 8 < m, z : [a,b] — R be an
integrable function defined on [a,b] and © € C"™[a, b] be an increasing differentiable
function with ©’(¢t) # 0 for all ¢ € [a,b]. The S—th order left-sided ©-Riemann-
Liouville fractional integral of a function z is given by

Lt )P z(s)ds
i F(ﬁ/ —6(s))" " 2(s)ds,

where I'(.) is a gamma function.

Definition 2.2. [7]Let m—1< 8 <m, z: [a,b] = R be an integrable function
and O be as defined in Definition 2.1. The left-sided ©-Riemann-Liouville fractional
derivative of order 8 of a function z is given by

DECa0 = [ ] 1m0t

where m = [§] + 1 and [] denotes the integer part of the real number £.

Definition 2.3. [7] Let m —1 < 8 <m, 2 € C™ 1[a,b] and © be as defined in
Definition 2.1. The left-sided ©-Caputo fractional derivative of function z of order
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S is identified as

8,0 8.6 - Zg] (a)
‘DIPa(t) = DI |2(t) = ) A
p= !

©) -6() |,

where z[@j](t) = {@,1(,&) %}jz(t) and m = [f]+1for 8 ¢ N, m = 3 for § € N.
Furthermore if z € C™[a,b] and 8 ¢ N, then

1 d]™
CDB’@ t :Imfﬁ,@ — t
at Z( ) at @/(t) dt Z( )

- ’ (s 0™ AL Im ) s
—r<mﬂ>a/®<><®<t> O(s))" <L ().

Thus, if 5 =m € N, one has CDf;ez(t) = zgn] (t).
Lemma 2.1. [7] Let 8 > 0, then the followings hold for the function z : [a,b] — R:
1. If z € Cla,b] then ”‘fo)[f;@z(t) = 2(t).

m—1
2. If z € C™ Ya,b], then Ifjr@ CDg;@z(t) = z(t) — Z ¢j[0(t) — ©(a)]?, where
j=0

o 21 (a)
]|

Lemma 2.2. [1] Let 8 >0 and z,0 € Cla,b]. Then
1. If_"_@(.) is bounded from Cla,b] to Cla,b] and linear,

3,0 T 3,0 B
2. I, 2(a) = t£r£+ I,:72(t) = 0.
Lemma 2.3. [1] Letv,8 >0 and z : [a,b] — R. Then

1. 17°[0() = ©(a))~! = 25 (6(1) ~ O(@)] "+,

2. <DPO(1) ~ O(a))* ! = 5 [0() — O@)
3. <DIP[O(t) - 6(a) =0, Vje{0,1,...,m—1}, meN,
4

CIPIPC (1) = 1P (1).

Our main results heavily rely on the fundamental and crucial fixed point theo-
rems presented below.

Theorem 2.1. (Schaefer’s Fized Point Theorem) [10] Let U be a Banach space
and A : U — U be continuous and compact operator. Assume further that the set
{u € U :u= ANu, for some X\ € (0,1)} is bounded. Then the operator A has a
fixed point in U.

Theorem 2.2. (Banach Fized Point Theorem) [8] Let U be a Banach space and K
be a closed subset of U. If A is a contraction mapping from K into K, then there
exists a unique fized point u in K such that A(u) = u.



Existence Results for a Boundary Value Problem 5

Theorem 2.3. (Schauder-Tychonov Fized Point Theorem) [12] Let U be a Banach
space and K be a closed, bounded, convexr subset of U. If A: K — K is compact,
then A has a fized point in K.

3. Main Results

In this section, we establish some sufficient conditions for the existence and unique-
ness of the solutions to the problem (1.1)-(1.2). To that end, we first give the
following useful result which gives the solution of the linear form of the problem.

Lemma 3.1. Let m—1 < 8 < m and the function g : [a,b] — R be continu-
ous function. A function z € C™ [a,b] is a solution of the following three point
fractional boundary value problem

“DIP(t) = g(1) (3.1)

a)y=2, j=01,....m—-2 720 =s5L" ), (3.2)

if and only if z(t) satisfies the following fractional integral equation;

ES

m—3
w)= 3 o) - 0@y + | L4 EZ VOO =@ oz g  gaym-2

— 4! (m —2)! (m —1)IA @

<
k=

+/ O'(s)G(t,5)g(s)ds,
where
A:=06(b) — O(a) — 4(0(n) — O(a))
and
<
2\, S), s =21,

such that

AR (O(n) — ©()* 7 — (B(E) — ()P
Gilt,s) = { Tl (O0) — 06D, s<t,

AR S[(O(n) — O()) ™ — (O(b) — 6(s)P Y, s >,
and

L5 (O(b) — O(s)7 L — (s (O(1) - ©(s))P7, s <t,

G2(t7 8) = -

—e(a))™ 1! o
R (O(b) — ©(s)) 7, s>t
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6
Proof. First, assume that z € C™ 1[a, b] is a solution of the problem (3.1)-(3.2)
Then Lemma 2.1 implies that
2(t) = co + c1(8(t) — O(a)) + 2(O(t) — ©(a))* + ... + €-1(O(t) — O(a))™
P / 0'()(O(t) — O(s))*Lg(s)ds
=3 00 - 0@ + iy [ O6)(60) - 00 s
§=0
We need to show the correctness of the conditions in (3.2). It is clear that z(a) = zg.
Also with the direct computations, we get
(1] Z'(t)
Z@ (t) - @/ t)
m—1 ) 1 t
e (O(0) = 0@~ + gz [ ©(e)(O0) — 0s) gl

[m=3],,\)’
z (t) m—1 |
([;n 2](t) ( © ) Z ] j _ 1 ] _ ( _ 2))cj(@(t) @(a))j—m+2
1 t .
* m/ ©'(s)(O(t) — ©(s))" " g(s)ds

1) Cm— 1(@(t) - G(a))

(m 2) Cm—2 +(
) — O(s))7 " g(s)ds.

+ 7F(5—m+2) /a o' (s)(0(t

From the boundary condition zg] (a) = 23, we have
Z j
Za 0,1, m 2,

and using the second boundary condition

7)) =620, o< <,

we have

1 m—2
] {(‘5‘ S T

- [T e - o) gtsas) |

b
/ 0'()(O(b) — O(s))* "™ g(s)ds

Then, the solution of the problem (3.1)-(3.2) is given
(@(t) — G(a))(é — 1):| Zam—Z((_)(t) _ @(a))m—2

[T A1)




Existence Results for a Boundary Value Problem 7

where G(t, s) is defined in Lemma 3.1. O

Lemma 3.2. The Green’s function G(t,s) is continuous on t,s € [a,b]. Also the
functions G;(t,s) (i = 1,2) given by Lemma 3.1 satisfy the followings

(i) 1G(t,5)] < HOB=C@N 1 (@(8) — @)~ + 1 (O(8) — O(a))* for any
t,s € [a,b],

.. — a B —
(”) |G2(t7 5)' < F(ﬁ(?gll?i(;i,l)l + ﬁ(@(b) - 6(0’))6 ! fOT any t,s € [a’7 b]

Proof. We can easily see that the function G(t, s) is continuous on ¢, s € [a, b, so
we can omit this part.

Now we show that (i) holds. If s <5<t 0<f—-m+1<1, 0<d<1and
I'(.) is positive function then

(6() - B(a))™! P —
< b)— m+1_ _ m L
< T e DA O -8 () (O~
Since the function f(t) = (©(b) —t)?~™+1 —(6(n) —t)#~™*! is increasing, for s < n
we have ©(s) < O(n) and so f(O(s)) < f(O(n)). Thus we get desired result.
When s > t we can easily see that the inequality is satisfied.
Next, we show that (ii) holds. If s < ¢, since 5 —1 <m — 1 and m > 2 then

o __(6) ~6()’ 1
STB-m+1DAm—1) ' T(8)

G, 5)

|Ga(t, s) (O(b) — O(a))? 1.

So we have desired inequality. Similarly, for s > t we easily obtain. O

Corollary 3.1. The Green’s function G(t,s) for the problem (1.1)-(1.2) satisfies
the following inequality

o(b) - O(a) 1]
B-—m+D)Am—1 " =M.

Proof. It is easy from Lemma 3.2. O

(Gt 5) < (B(b) = ©(a) ™ | 5

Theorem 3.1. Assume that

(U1) f:]a,b] x R = R is continuous function and there exists 0 < ko < 1 such that

|f(t,21) — f(t,22)| < k‘o|21 — 2’2‘, te [a,b}, 21,29 € R.
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If
Mko(O(b) - ©(a)) < 1,

then the boundary value problem (1.1)-(1.2) has a unique solution on [a,b], where
M is the upper bound of G(t,s) which is given in Corollary 3.1.

Proof. In view of Lemma 3.1, the function z € C™ ![a,b] is a solution to (1.1)-
(1.2) if z satisfies

m—3 j B a B
A0 =3 2000 - 0@y + |ty + CUL P2 - o)
i=0
b
+/ O'(s)G(t,s)f(s,2(s))ds
Set
P={zeC™ ' a,b]: D2 € Cla,b] } (3.3)

and define the operator T': P — P by

m—3 j ) B a .
(20 = 3 2000 - (@) + | ooty + UL I 2 e - o)
7=0
b
+ [ ©'(s)G(t,8)f(s,2(s))ds. (3.4)

a

We first show that the operator T" which is given in (3.4) is well defined operator,
that is, T(P) C P. For this reason, we consider a function 2 € C™ ![a,b]. It is
evident that Tz € C™ [a,b]. Also, we have

m—3

S 2 @) - 6(a))

c ,© c ,©
D5+ (T=(t)) = D5+ n

=0

Dy (O(t) — O(a))" !
L(B—m-—1)A(m—1)!
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=[(t,2(1)).

Since f(t,z(t)) is continuous on [a, b], then we have ch’P(Tz(t)) € Cla,b).

Let 21,29 € P, since

Tz1(t) — Tzo(t)] = G(t,s)f (s, z1(s dS—/ o'( )f(s, 22(s))ds

8)(f(s,21(s)) — f(s, 22(s))ds

b
< / 10" (s)[ |G (t, 5)| [(f(s,21(5)) — f(5,22(s))| ds
b
< M/ O (s)ds ko|21 — ||

for all ¢ € [a,b], we get
[[T21 — T2|| < Mko(0(b) — ©(a))|[21 — 22l

From the condition Mk (©(b)—0O(a)) < 1, the operator T is a contraction mapping

from P to P. By virtue of the Banach fixed point theorem, there exists a unique

fixed point z € P such that Tz(t) = z(¢).

Therefore, z is the unique solution for the problem (1.1)-(1.2) on [a, b]. O
The next result relies on the Schaefer’s fixed point theorem.

Theorem 3.2. Assume that

(U2) f:[a,b] x R = R is continuous and there exists a positive constant ki such
that
£t 2(0)] < kalz| for all (£, 2) € [a,b] x R

If
My (O(b) — O(a) < 1 (3.5)

then the boundary value problem (1.1)-(1.2) has at least one solution on [a, b], where
M s given in Corollary 3.1.

Proof. We consider the set P and the operator T : P — P defined by (3.3) and
(3.4), respectively. The demonstration will unfold through a series of sequential
steps.

Step 1. We show that T is a continuous operator. Let {z,},en be a sequence in
P such that z, — z in P, as n — oo. Then by the equation (3.4) and for every
t € [a, b], we obtain

T2 (t) — T2(t)| = 5) (f (s, 2n(s)) — f(s,2(s5))) ds

b
S/ O'(s)|G(t, s)I|f (5, zn(s)) — (s, 2(5))|ds
< M||f(s,2n(s)) = f(s,2(5)) [ (©(b) — O(a)).
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Thus we get
1Tz, = T2|| < M(O(b) — ©(a))[|f (s, 2n(s5)) = f(s,2(s))Il.

Using the continuity of the function f, it follows that ||Tz, — Tz|| = 0 as n — oo,
which implies that T is a continuous operator.

Step 2. We see that T maps bounded sets into uniformly bounded sets in P. For
this reason, we show that for all r; > 0 there exists some ry > 0 such that for all
z € B, :={z € P:||z|| <ri}, ||Tz|| < ry is satisfied.

Indeed, let z € B,,, for all ¢ € [a, b], we have

b
" { 1 S+ e() - 9(a))(<.S - 1)} 2. 72(O(t) — O(a))™ 2 +/ O'(s)G(t,s)f(s, 2(s))ds

(m—2)! A(m —1)!
m—3 j
<Y Elen - e
j=0
_O(a b
g+ PO e - e@) 2 + [ W6 sl ()
m—3 j
<Y Elen - oy
=0
L (OO = 0@ =D\ ez (a2 4 s
+ [(m_Q), R } 2" 2(O0) ~ ©(a)™ 2 + ki [ ©
m—3 j
=Y Elew) - o)
§=0
s [ty + CU SN 200 - 0a) ™ + karaM(O() - 0(a)
Hence there exists an
Z |Zaj‘ (a))j 4 |:A(m — 1) +A((@n(lb)_1)(?(a))(1 — 6) (@(b) _ @(a))m—2|zam—2|

+k17‘1M(@(b) — @(a))

such that ||Tz|| < 7. Thus {T'z} is uniformly bounded set.

Step 3. We show that 7" maps bounded sets into equi-continuous sets of P. Let B,,

be a bounded set of P as in Step 2 and z € B,,.

Consequently for t1,ts € [a,b] with ¢; < to, we have

m- j
o5 “T®
j=0

|Tz(te) — Tz(t1)] O(a))?

1 (O(t2) —6()(é — 1)

" [(m ] Am—nr | =" (Ol) - 6@
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m—3

/ ©'(3)Gi(t2, )f (3 ()ds — 3 “(B(t2) ~ Oa))
j=0 7’
[(m 5 i (Q(tl)A(n?(_a)l))('(S - 1)} "T2(O(t) — O(a))™ 2

m—3 i
< Z Z;! | ‘(@( 2) —0(a)) — (O(t1) — @(a))]‘
; (|m - 2>|! (6(t2) — ©(a))™ 2 = (B(t1) — ©(a)™ |
N <1A_(5>|Za71")_| [(O(t2) — ©(a))" " = (B(t1) — O(a))™ !

/@ )Gty ) — Gltr, )1 (s, 2(s)|ds

(1—d)[z""?
Alm— 1), [(©(ts) —

b
+k1’l"1/ @/(8)|G(t2, ) (tl, )|d$

Using the continuity of the function G(¢, s), as t; — ta, the right side of the above
inequality tends to zero. Therefore, we can conclude that 7' : P — P is a completely
continuous operator with the Arzela-Ascoli theorem.

Step 4. We see that the set

={z€P:z=MXTz for some ) € (0,1)}

is bounded.
Let z € S and A € (0,1) be such that z = A\T'z. By Step 2, for all ¢ € [a, b], we have

(A =1+ (O0) ~ 0@)(1 =8| s
how —ewy + | e

by the inequality (3.5). Since A € (0,1), z < Tz and hence we get

m—3 j ) m— B a B
o< 7el < 3 El o) - ey + |2 D B = SR 2 oy

=0
+k1M||z[[(©(b) — ©(a))
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and so

i=0 J

6y + | =X

2] < 1 -k M(O(b) —06(a))

Thus, confirming the boundedness of S, we then employ Schaefer’s fixed point
theorem to establish the existence of at least one fixed point z of the operator T'
within the set P. This particular fixed point z serves as the sought-after solution for
(1.1)-(1.2) over the interval [a, b], thus culminating in the fulfillment of our proof.
O

Theorem 3.3. Assume that there exist nonnegative functions e,g € Cla,b] such
that

£t 2(0)] < e(t) + g(t)=(t), VL€ [a,b], = € R.

Then the problem (1.1)-(1.2) has at least one solution, provided that

(©() - () + S = e 4 Ml (©(0) - ©(a)

- 1— M|gl|(©(b) — 6(a))
for a constant [ > 0.

Proof. Define the set B; = {z € P : ||z|| < I}. Clearly, B; is a bounded closed
convex subset in P. As By C P and T : P — P is completely continuous operator,
T : B, — B; compact. Next, we show that if z € B;, we have Tz € B;.

For any z € By, we have ||z|| < [.

Hence, we get

m—3 ~ J .
|T=(t) 2 ]— O(a))
p— a P b
[ gy + O A(g(_)ig‘f Y] zmzie - oy + [ o6 (s ()i
= | PN 1 O(t) —0(a)1=8)T . ms o ymea
<35 Lo - oy + [ L+ B OI=IN o260 - (a)
b
+/ ()|G(t, 5)|(e(s) + g(s)(s))ds
m—3 j - a
S 2 |2Ja' ‘(@(b) _ @(a))j + |:(m i 2)' + (G(b)A(g(_)ig' 5):| |Zam_2|(@(b) o 9(&))m_2
M([lell + lglll =) (©(b) — O(a))
m—3 j ] m— - a _
S |Za ‘(@(b) _ @(a))_] + A( 1) + (G(b) 8( ))(1 5) m—2|

i Alm — DI(O(0) —B(a)Fm
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+ M(Jlell + llgl1)(©(b) — O(a))
<l

In view of the Schauder’s fixed point theorem, there exists a fixed point z € Bj.
Therefore the problem (1.1)-(1.2) has at least one solution z € P such that ||z]| < I,
for all ¢ € [a, b]. O

In order the present the another existence result for our problem, let’s define
the lower and upper control functions.

Definition 3.1. Let p,q € R* such that ¢ > p. Then for any z € [p,q] C RT,
we define the upper-control function f(t,z) = sup,<¢<, f(t,¢) and lower-control
function f(t,2) = inf,<¢<q (¢, ¢). It is clear that functions f(t,2) and f(t,2) are
non-decreasing on [p, q] and satisfies B

f(t,2) < f(t,2) < f(t,2).

Now, let we define the lower and upper solutions for the problem (1.1)-(1.2).

Definition 3.2. Let u,v € P such that p < u < v < g and satisfy

cDPCu(t) > f(t,v(t)), t € [a,b
vg](a) >0l j=0,1,...,m—2; v(gmd](b) > (511([;172](77)

m—3 i ) . . a
w02 3 O 0@y + | gy + T e ety
b
+/(ﬂ@0mgﬂ&m@m&
and
°DPCu(t) < f(t,u(t)), t € [a,b]
ubl(a) <ud, j=0,1,..om—2; ul ") < oud ()
m—3 j . i o a
ORI CORLEE e e - et

b

—|—/ O'(s)G(t,s)f(s,u(s))ds, t € [a,b].
Then the functions w(t) and v(¢) are called a pair lower and upper solution for the
problem (1.1)-(1.2).

Theorem 3.4. Assume that [ : [a,b] X R = R is continuous function and u,v
are a pair of lower and upper solution of (1.1)-(1.2), respectively, then the problem
(1.1)-(1.2) has at least one solution such that

u(t) < z(t) <wv(t), te]a,bl.
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Proof. Define the set K as follows
K={zeP:u(t) <z(t)<ov(t), te]a,b]}.

It is clear that K is a convex, bounded and closed subset of the Banach space P
endowed with the max norm |u| = maxcqp [u(t)]. As K C Pand T : P — P
is completely continuous operator, T : K — K is compact. Next, we show that if
z € K, we have Tz € K.

For any z € K, we have u < z < v. Hence we have

= (L oD - 6] .
(T2 = 3 % (60 - 0w + o e e - ()
b
+/ O'(s)G(t,5)f(s,2(s))ds
- v j NGRS CIORCIC) N -2
<3 e ey + oy 2 et - 6(a)
b
+ [ ©'(s)G(t,s)f(s,v(s))ds
<w(t)
and
N~ 7 ; L =1O0=0@)] mo -2
(20 = 3 %5 (60 - 00 + o e e - ()
b
T / O'(5)G (1, ) f (s, 2(s))ds
N ua? j L, (6-)O®)=6(@)] mo m-2
> Y e - oy + oy e e - o(w)
b

It follows that,
u(t) < Tz(t) <w(t), tE€]la,b,
which implies Tz € K, that proves T : K — K is compact. By the means of fixed

point theorem of Schauder, T has a fixed point in K. Hence the problem (1.1)-(1.2)
has at least one solution z(¢) in Cfa, b].

O
In what follows, we present an example which illustrates one of our results.
Example 3.1. Consider the fractional boundary value problem
X z(t)
Dgia(t) = 5, t€10,2] (3.6)

T 102(1+ 22(¢))

A0) = 20, 251(0) = 23, 25%0) = 22, 2EBl2) =

| =
g
—~
DN | =
—
—~
w
\]
S~—
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with ©(¢) = In(1 —|—t2) Here, ﬁ =7 f(t, z( ) = % which is continuous
on [0,2] xR, § =1 and n = 1. Since 8 = I, we get m = 4. Also it is easy to see
that ©'(¢) = 2t2 # 0 for all t € [0,2]. We can easily evaluate that
B 1.5 1.5 1. 4
A=1Inb Zln1—1n5 41n4—41n(54)
5 Inb 1
|G(t,s)| < (Inb)2 [ + ]
AT A0G -2) | I(3)

s (4 1,6 8
=(1.6)2 - -
(1,62 (3\/7?6,4+15\/7?)
~3,23(0,1+0,3)=1,3=M

and
z(t
If(t, z)] = ‘102(11{)22(15))‘ < W|Z(t)|’
102

s0 ki = 165. Since 2185 < 1, then the problem (3.6)-(3.7) has at least one solution
n [0,2] by Theorem 3.2.

4. Conclusion

In this paper, we have delved into the investigation of the existence of solutions
for a ©-Caputo fractional boundary value problem, a class of equations that in-
corporates the ©-Caputo fractional derivative. Our exploration into this realm has
shed light on the complexities of fractional differential equations and their applica-
tions. So we considered a fractional differential equation involving the generalized
©—Caputo fractional derivative with three-point boundary condition. First of all,
we expressed the Green’s function of the boundary value problem and summarized
the necessary properties of the Green’s function for existence theorems. Next, the
proofs of the existence theorems are based on applications of the Banach, Schaefer’s
and Schauder’s fixed point theorems. Furthermore, by using lower and upper solu-
tion method an existence theorem was proved. At the end of this paper an example
is also given. This problem is new and not yet studied. Compared with [1,14] the
boundary conditions of our problem (1.1)-(1.2) includes three points.

Moving forward, avenues for future exploration could involve delving deeper into
the application of the ®©—Caputo fractional derivative in various contexts, as well as
extending our analysis to more intricate boundary conditions or generalized equa-
tions. Additionally, investigating the numerical methods and stability analysis for
solving the derived equations could provide valuable insights for both theoretical
and practical applications.
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