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Abstract In this paper, we discuss several classes of convolution type singular integral

equations with variable integral limits in class H∗
1 . By means of the theory of complex anal-

ysis, Fourier analysis and integral transforms, we can transform singular integral equations

with variable integral limits into the Riemann boundary value problems with discontinuous

coefficients. Under the solvability conditions, the existence and uniqueness of the general so-

lutions can be obtained. Further, we analyze the asymptotic properties of the solutions at the

nodes. Our work improves the Noether theory of singular integral equations and boundary

value problems, and develops the knowledge architecture of complex analysis.
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1 Introduction

Singular integral equations (SIEs) are closely related to the classical theory of boundary value

problems for analytic functions, which has a wide range of applications in many fields, such

as quantum mechanics, asymptotic analysis, statistical physics and orthogonal polynomial

theory. Many scholars have systematically researched convolution type SIEs and formed a

rigorous theoretical system.

Gakhov [1-3] studied the general solutions of Riemann boundary value problems. Litvinchuk

[4] obtained the explicit solutions of SIEs in more general cases, and further developed the

Noether theory of the general SIEs. Muskhelishvilli [5] investigated the conditions of solvabil-

ity for SIEs with convolution kernels and discontinuous coefficients. Lu [6,7] considered the

explicit solutions and the solvability theory of convolution SIEs with constant coefficients, and

obtained some worthwhile results. Du and Shen [8] further dealt with the integral equations

of convolution type with variable coefficients. Subsequently, Li and Ren [9-12] developed the

theory of solvability and asymptotic theory for singular integral equations with the mixture

of convolution kernel and singular integral kernel in the case of non-normal type.

1∗ Corresponding author at: School of Mathematical Science, Qufu Normal University, Qufu, 273165, P.R.China.
2E-mail address: lipingrun@163.com (P. Li)
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Based on the above work, in this paper, we will deal with SIEs of convolution type with

variable integral limits, and we investigate the asymptotic properties and Noether solvability

theory of solutions for such SIEs with variable integral limits under the solvability conditions.

The main aim of this paper is to solve the following three classes SIEs with convolution kernel

and variable integral limits.

(1) SIEs with two convolution kernels

Aψ(τ) +
B√
2π

∫ τ

0

ψ(t)h(τ − t)dt+
C√
2π

∫ 0

τ

ψ(t)k(τ − t)dt+
D

πi

∫
R

ψ(t)

t− τ
dt = n(τ), τ ∈ R.

(1.1)

(2) SIEs of Wiener-Hopf with convolution kernels

Aψ(τ) +
B√
2π

∫ τ

0

ψ(t)h(τ − t)dt+
C

πi

∫
R

ψ(t)

t− τ
dt = n(τ), τ ∈ R+. (1.2)

(3) Dual SIEs with convolution kernelsAψ(τ) + B√
2π

∫ τ
0
ψ(t)h1(τ − t)dt+ C

πi

∫
R
ψ(t)
t−τ dt = n(τ), τ ∈ R+;

Aψ(τ) + B√
2π

∫ 0

τ
ψ(t)h2(τ − t)dt+ C

πi

∫
R
ψ(t)
t−τ dt = n(τ), τ ∈ R−.

(1.3)

In Eqs. (1.1)-(1.3), A,B,C,D are constants. The known functions h, k, n, hj ∈ H1, j = 1, 2.

We require the unknown function ψ ∈ H1. The notations mentioned above can be refered to

Section 2.

It is well known that SIEs with variable integral limits, an important class of equations

in physics, is closely related to the Riemann boundary value problems. By the Sokhotski-

Plemelj formula and the principle of analytic continuation, we transform Eqs. (1.1)-(1.3)

into linear Riemann-Hilbert problems with discontinuous coefficients, and prove the existence

and uniqueness of analytic solutions given by integral-form. We propose a novel approach

different from the one used in the classical Riemann-Hilbert problems. In view of the theory of

classical boundary value problems for analytic functions, we study the properties of solutions at

nodes, and obtain the solvability conditions and asymptotic properties of the general solutions.

Therefore, this paper develops the theory of Noether solvability of SIEs and boundary value

problems, and extends the ones in [13-18].

This paper is arranged as follows. In Section 2, we give properties of the function classes

H∗
1 (H

∗
2 , H

∗
3 ), H1(H2, H3), and the relation between Cauchy type integrals and Fourier trans-

form. In Sections 3-5, by using the boundary value theory, complex analysis and the system

of linear algebra, the explicit solutions and asymptotic properties are obtained under the

conditions of solvability, and the properties of solutions at nodes are further analyzed.

2 Preliminaries

R,C denote the sets of real and complex numbers respectively, R̄ := R ∪ {∞}. As usual,

C(R),C(R̄) denote the sets of continuous functions on R and R̄ respectively. For 1 ≤ q <∞,
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the space of Lebesgue integrable functions Lq(R) =
{
Φ | ∥Φ∥q <∞

}
with the standard norm

∥Φ∥q =
(∫

R
|Φ(s)|qds

) 1
q

,

where R− = (−∞, 0),R+ = (0,∞), R = (−∞,∞).

Moreover, we respectively denote by H(R), Ĥ(R) as the spaces of Hölder continuous func-
tions on R and R̄.

In the following, we give some necessary preliminary knowledge and notations.

Definition 2.1. Let ψ ∈ L1(R)∩L2(R), denote the Fourier integral transform W and inverse

transform W−1 as

W [ψ(τ)] =
1√
2π

∫
R
eisτψ(τ)dτ, W−1[Φ(s)] =

1√
2π

∫
R
e−isτΦ(s)ds. (2.1)

For simplicity, (2.1) can be denoted as

W [ψ(τ)] = Φ(s), W−1[Φ(s)] = ψ(τ). (2.2)

From (2.1) and (2.2), we know that

W : L1(R) ∩ L2(R) → L2(R). (2.3)

Since L1(R)∩L2(R) is dense in L2(R), from the Planchere theorem [19], the operator W can

be uniquely extended to a self-mapping

W : L2(R) → L2(R), (2.4)

and

∥Φ∥2 = ∥ψ∥2 . (2.5)

We introduce the concepts of several classes H1, H2, H3 and H∗
1 , H

∗
2 , H

∗
3 .

Definition 2.2. If Φ ∈ L2(R) ∩ Ĥ(R), we say Φ ∈ H∗
1 . If Φ ∈ H∗

1 , then W−1Φ = ψ ∈ H1.

Definition 2.3. If (1) Φ ∈ Ĥ(R); (2) For ℓ > 1
2
, s ∈ N∞, Φ(s) = O(|s|−ℓ), we say Φ ∈ H∗

2
ℓ

or H∗
2 , where N∞ = {s ∈ R | |s| > δ−1,∀δ > 0} .

For Φ ∈ H∗
2
ℓ or H∗

2 , we say that W−1Φ = ψ ∈ Hℓ
2 or H2.

Definition 2.4. If (1) Φ ∈ Ĥ(R) ∩Hℓ(N∞), ℓ > 1
2
; (2) Φ(∞) = 0, then Φ ∈ H∗

3
ℓ or H∗

3 , and

ψ ∈ Hℓ
3 or H3.

For s ∈ N∞, we put

h1 =
{
Φ | Φ(s) = O(|s|−ℓ)

}
, h2 = Hℓ(N∞), h3 = {Φ | Φ(∞) = 0} .

If Φ ∈ h2 ∩ h3, we have

|Φ(s1)− Φ(s2)| ≤ a| 1
s1

− 1

s2
|ℓ, s1, s2 ∈ N∞, (2.6)
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where a ∈ R+, ℓ ∈ (0, 1]. In (2.6), we let s2 → ∞, since lim
s2→∞

Φ(s2) = 0, thus we have

|Φ(s1)| ≤ a| 1
s1
|ℓ,

which implies Φ ∈ h1. Further, we get∫
R
|Φ(s)|2ds ≤ a2

∫
R
|s|−2ℓds. (2.7)

When ℓ > 1
2
, it is easily seen that

∥Φ∥2 <∞, i.e., Φ ∈ L2(R).

From Definitions 2.2, 2.3 and 2.4, H∗
2 = Ĥ ∩h1, H∗

3 = Ĥ ∩h2∩h3, hence H∗
3 ⊂ H∗

2 ⊂ H∗
1 ⊂

H ∩ L2, further, H3 ⊂ H2 ⊂ H1.

Definition 2.5. Let ψ, g ∈ L2(R), then their convolution is defined by

ψ ∗ g(τ) = 1√
2π

∫
R
ψ(t)g(τ − t)dt. (2.8)

Obviously, we have

ψ ∗ g(τ) = 1√
2π

∫
R
ψ(t)g(τ − t)dt =

1√
2π

∫
R
g(t)ψ(τ − t)dt = g ∗ ψ(τ), (2.9)

this implies, the convolution is commutative. From the Hölder inequality, we know that

ψ ∗ g ∈ L2(R). By the convolution theorem [5,20], we have

W [ψ ∗ g(τ)] = W [ψ(τ)] · W [g(τ)] = Φ(s)G(s). (2.10)

Definition 2.6. Denote the Cauchy principal integral operator V as follow

Vψ(τ) = P.V.
1

πi

∫
R

ψ(τ)

τ − t
dτ = lim

ε→+0
X→+∞

1

πi

∫
[−X,X]\(t−ε,t+ε)

ψ(τ)

τ − t
dτ. (2.11)

The operator V is a self-mapping under the modified notion of Cauchy principal value

integrals. Moreover, in view of the Poincaré-Bertrand formula and the Riesz theorem [11,21],

we know that V is an involution in L2(R), namely, V2 = I, where I is a unit operator.

Definition 2.7. We denote the operators A,K as follows

Aψ(τ) = ψ(−τ), Kψ(τ) = ψ(τ)sgn(τ).

Obviously, we have A2 = K2 = I.
Lemma 2.1. For the function ψ(τ) = W−1[Φ(s)], we can get

W [
1

πi

∫
R

ψ(τ)

τ − t
dτ ] = −Φ(s)sgn(s), s ∈ R. (2.12)
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Proof. Denote Cauchy type integral ψ(z) as

ψ(z) =
1

2πi

∫
R

ψ(t)

t− z
dt, z ∈ C \ R. (2.13)

Substituting (2.2) into (2.13), it follows that

ψ(z) =
1√
2π

∫
R
Φ(s)ds

1

2πi

∫
R

e−ist

t− z
dt.

From the generalized residue theorem [12], for z ∈ C+, we have

ψ+(z) =
1

2πi

∫
R

ψ(t)

t− z
dt =

1√
2π

∫
R−

Φ(s)e−iszds, (2.14)

and for z ∈ C−, we have

ψ−(z) =
1

2πi

∫
R

ψ(t)

t− z
dt =

−1√
2π

∫
R+

Φ(s)e−iszds. (2.15)

By the Sokhotski-Plemelj formula [5], we obtain

Vψ(τ) = ψ+(t) + ψ−(t) =
−1√
2π

∫
R
Φ(s)sgn(s)e−istds = W−1[KΦ(s)],

where

ψ+(t) = lim
z→t
z∈C+

ψ+(z), ψ−(t) = lim
z→t
z∈C−

ψ−(z). □

Lemma 2.2. For the operators W ,A,V ,K, we have

(1) WKV + VKW = 0; (2) VWA−AVW = 0.

Proof. (1) Note that, we may write (2.12) in the following form

WV = −KW .

Similarly, we can verify that

WK = VW , (2.16)

hence

WKV = VWV = −VKW .

(2) From (2.1) and (2.2), we know that

W [Φ(s)] = W−1[Φ(−s)] = ψ(−τ), W−1[ψ(τ)] = W [ψ(−τ)] = Φ(−s),

which implies

W−1 = AW , A−1 = W2, KA−AK = 0, (2.17)

it gives rise to

AVW = AWK = AW3AK = WKA = VWA. □
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Lemma 2.3. If ψ ∈ H1, and Wψ(0) = 0, we have WVψ ∈ H∗
1 , further Vψ ∈ H1.

Proof. By assumption, we have Wψ = Φ ∈ H∗
1 . Notice that

lim
s→∞

Φ(s) = 0,

and Φ(0) = 0, one has KΦ ∈ Ĥ and∫
R
|Φ(s)sgns|2ds <∞, i.e., KΦ ∈ L2(R),

thus we get WVψ ∈ H∗
1 , further, Vψ ∈ H1. □

Lemma 2.4. (see [22-24]). If ψ, g ∈ H1(H2, H3), then ψ ∗ g ∈ H1(H2, H3), thus we have

ΦG ∈ H∗
1 (H

∗
2 , H

∗
3 ); if ψ ∈ H1, g ∈ H2(H3), then ψ ∗ g ∈ H2(H3), further, ΦG ∈ H∗

2 (H
∗
3 ).

Lemma 2.5. Let Φ ∈ Ĥ, we denote the Cauchy type integral as follows

Φ(z) =

∫
R

Φ(s)

s− z
ds, z /∈ R, (2.18)

then we can get

W [ψ+(τ)] = Φ+(s), W [ψ−(τ)] = Φ−(s), Φ+(s)− Φ−(s) = Φ(s), (2.19)

where

ψ+ (τ) =

ψ(τ), τ ≥ 0;

0, τ < 0,
ψ− (τ) =

0, τ ≥ 0;

−ψ(τ), τ < 0.

Proof. From (2.16) and Sokhotski-Plemelj formula, we have

Φ+(s) =
1

2
W [ψ(τ)] +

1

2
W [Kψ(τ)] = 1

2
√
2π

∫
R
ψ(τ)(1 + sgn(τ))eisτdτ = W [ψ+(τ)],

for the negative boundary value, we have

Φ−(s) =
−1

2
W [ψ(τ)] +

1

2
W [Kψ(τ)] = 1

2
√
2π

∫
R
ψ(τ)(sgn(τ)− 1)eisτdτ = W [ψ−(τ)].

Further,

Φ+(s)− Φ−(s) = W [ψ+(τ)]−W [ψ−(τ)] = W [ψ(τ)] = Φ(s). □

From Lemma 2.5, we know that the positive and negative boundary values Φ±(s) of Φ(z)

are the single sided Fourier integral transforms of ψ±(τ), respectively.

3 SIEs with two convolution kernels

We solve the following SIEs with two convolution kernels and variable integral limits

Aψ(τ) +
B√
2π

∫ τ

0

ψ(t)h(τ − t)dt+
C√
2π

∫ 0

τ

ψ(t)k(τ − t)dt+
D

πi

∫
R

ψ(t)

t− τ
dt = n(τ), τ ∈ R,

(3.1)
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where A,B,C,D are constants, and D ̸= 0. The functions h, k, n ∈ H1, and the unknown

function ψ ∈ H1.

Expanding t to t ∈ R, then Eq. (3.1) can be transformed into

Aψ(τ)+
1√
2π

∫
R
ψ(t)h1(τ−t)sgn(t)dt+

1√
2π

∫
R
ψ(t)k1(τ−t)dt+

D

πi

∫
R

ψ(t)

t− τ
dt = n(τ), τ ∈ R,

(3.2)

where

h1(τ) =
B

2
h+(τ) +

C

2
k−(τ), k1(τ) =

B

2
h+(τ)− C

2
k−(τ),

in which

h±(τ) =
sgn(τ)± 1

2
h(τ), k±(τ) =

sgn(τ)± 1

2
k(τ),

that is to say,

h1(τ) =

B
2
h(τ), τ ≥ 0;

−C
2
k(τ), τ < 0,

k1(τ) =

B
2
h(τ), τ ≥ 0;

C
2
k(τ), τ < 0.

Applying the Fourier transforms to both sides of (3.2), then we have

AΦ(s) +
H(s)

πi

∫
R

Φ(t)

t− s
dt+K(s)Φ(s)−Dsgn(s)Φ(s) = N(s), (3.3)

where

W [h1(τ)] = H(s), W [k1(τ)] = K(s), W [n(τ)] = N(s), W [ψ(τ)] = Φ(s).

Denote the Cauchy type integral

Φ(z) =
1

2πi

∫
R

Φ(t)

t− z
dt, z ∈ C \ R, (3.4)

by the Sokhotski-Plemelj formula, we can get

Φ+(s)− Φ−(s) = Φ(s), Φ+(s) + Φ−(s) =
1

πi

∫
R

Φ(t)

t− s
dt. (3.5)

Substituting (3.5) into (3.3), then we shall solve the following Riemann problem in place

of (3.3)

Φ+(s) = J(s)Φ−(s) +N0(s), s ∈ R, (3.6)

where

J(s) =
A−H(s) +K(s)−Dsgn(s)

A+H(s) +K(s)−Dsgn(s)
, N0(s) =

N(s)

A+H(s) +K(s)−Dsgn(s)
.

Moreover, we can write J(s), N0(s) in the forms

J(s) =


A−H(0)+K(0)
A+H(0)+K(0)

, s = 0;

1− 2H(s)
A+H(s)+K(s)−D , s ∈ R+;

1− 2H(s)
A+H(s)+K(s)+D

, s ∈ R−,

N0(s) =


N(0)

A+H(0)+K(0)
, s = 0;

N(s)
A+H(s)+K(s)−D , s ∈ R+;

N(s)
A+H(s)+K(s)+D

, s ∈ R−.
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Since H,K,N ∈ H∗
1 , then we know that

lim
s→∞

H(s) = lim
s→∞

K(s) = lim
s→∞

N(s) = 0,

which implies lim
s→∞

J(s) = 1. In this case, s = ∞ is not a node of (3.6).

Let J1(s) = A + H(s) + K(s) − Dsgn(s) have some zero-points d1, d2, · · · , dm with the

orders α1, α2, · · · , αm respectively; let J2(s) = A − H(s) + K(s) − Dsgn(s) have some zero-

points e1, e2, · · · , en with the orders β1, β2, · · · , βn respectively, where di ̸= ej, αi, βj(i =

1, 2, · · · ,m; j = 1, 2, · · · , n) are non-negative integers. Let

E1(s) =
m∏
i=1

(s− di)
αi , E2(s) =

n∏
j=1

(s− ej)
βj ,

and

α1 + α2 + · · ·+ αm =M1, β1 + β2 + · · ·+ βn =M2.

Next, we only consider the case of non-normal type, that is, M1 > 0,M2 > 0.

Without loss of generality, we take any fixed points z0 = a+ib ∈ C+, and z∗0 = a−ib ∈ C−,

and rewrite (3.6) as

Φ+(s) =
E2(s)(s− z∗0)

M1

E1(s)(s− z0)M2
P (s)Φ−(s) +N0(s), s ∈ R, (3.7)

where

J(s) =
E2(s)(s− z∗0)

M1

E1(s)(s− z0)M2
P (s), P (s) ̸= 0,

and P ∈ H. Note that, the solution Φ(s) of (3.6) is continuous along R, and lim
s→∞

Φ(s) = 0.

Denote

γ0 = λ0 + iη0, λ0 =
1

2π
arg

P (−0)

P (+0)
, η0 = − 1

2π
ln|P (−0)

P (+0)
|, (3.8)

and we say κ the index of (3.7) which satisfies κ = [λ0]. Let

λ = λ0 − κ, γ = γ0 − κ,

hence γ = λ+ iη0, λ ∈ [0, 1).

In order to prove the solvability of (3.6), we first introduce the sectionally holomorphic

function

X(z) =

(z − z∗0)
−κeΓ0(z), Imz > 0;

(z − z0)
−κeΓ0(z), Imz < 0,

(3.9)

in which we have put

Γ0(z) =
1

2πi

∫
R
lnP0(s)

ds

s− z
, z ∈ C \ R, (3.10)

and

P0(s) =

(
s− z∗0
s− z0

)κ

P (s), P (s) =
X+(s)

X−(s)
.
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Obviously,

κln
s− z∗0
s− z0

= lnP0(s)− lnP (s), (3.11)

where lnP0 ∈ Ĥ, and we take a continuous single-valued branch of ln
s−z∗0
s−z0 which satisfies

ln
±∞− z∗0
±∞− z0

= 0, or ln
±0− z∗0
±0− z0

= ±πi.

Therefore, we rewrite (3.7) in the form

Φ+(s) =
E2(s)(s− z∗0)

M1X+(s)

E1(s)(s− z0)M2X−(s)
Φ−(s) +N0(s), (3.12)

for convenience, we deal with (3.12) in the problem R−1, that is, Φ(∞) = 0.

For homogeneous problem of (3.12), we consider the function

Ω(z) =


Φ(z)

X(z)E2(z)
(z − z∗0)

−M1 , Imz > 0;
Φ(z)

X(z)E1(z)
(z − z0)

−M2 , Imz < 0.
(3.13)

From the principle of analytic continuation, we know that Ω(z) is analytic in C. Moreover,

by the generalized Liouville theorem, we have

Ω(z) = Uκ−M1−M2−1(z) =

κ−M1−M2−1∑
t=0

Cκ−M1−M2−1−tz
t,

where C0, · · · , Cκ−M1−M2−1 are arbitrary complex constants. Therefore, the analytic solution

of (3.12) is given by

Φ1(z) =

E2(z)(z − z∗0)
M1X(z)Uκ−M1−M2−1(z), Imz > 0;

E1(z)(z − z0)
M2X(z)Uκ−M1−M2−1(z), Imz < 0.

(3.14)

When κ ≤M1 +M2, we have Ω(z) = 0, thus Φ1(z) ≡ 0.

To solve the non-homogeneous problem (3.12), we introduce the following function

Y (z) =

X0(z), Imz > 0;

(z − z∗0)
κ(z − z0)

−κX0(z), Imz < 0,
(3.15)

where X0(z) = eΓ0(z), then (3.12) is written as

Φ+(s)E1(s)

Y +(s)(s− z∗0)
M1

=
Φ−(s)E2(s)

Y −(s)(s− z0)M2
+

N0(s)E1(s)

Y +(s)(s− z∗0)
M1
. (3.16)

Define

Ψ(z) =
1

2πi

∫
R
Ψ∗(s)

ds

s− z
, z ∈ C \ R, (3.17)

where

Ψ∗(s) =
N0(s)E1(s)

Y +(s)(s− z∗0)
M1
, Ψ∗ ∈ Ĥ.
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Via the generalized Liouville theorem, we know that

Ψ+(s)−Ψ−(s) = Ψ∗(s).

Again define

W (z) =


Φ(z)E1(z)

Y (z)(z−z∗0 )M1
−Ψ(z), Imz > 0;

Φ(z)E2(z)

Y (z)(z−z0)M2
−Ψ(z), Imz < 0,

(3.18)

obviously, W (z) is analytic in C \ {z∗0}, thus we can obtain the solution of (3.12) with singu-

larities at di and ej. Hence, we shall construct a Hermite interpolation polynomial

Ωϱ(z) = b0z
ϱ + · · ·+ bϱ−1z + bϱ, (3.19)

where ϱ = M1 +M2 − 1, and b1, · · · , bϱ ∈ C. Note that, Ωϱ(z) is uniquely determined, and

it has zero-points of the orders αi(i = 1, 2, · · · ,m), βj(j = 1, 2, · · · , n) at di, ej, respectively,
which implies

[Ψ(z)(z − z∗0)
κ](L1) |z=di= Ω(L1)

ϱ (z) |z=di ;

[Ψ(z)(z − z∗0)
κ](L2) |z=ej= Ω(L2)

ϱ (z) |z=ej ,

where

L1 = 1, 2, · · · , αi − 1, i = 1, 2, · · · ,m; L2 = 1, 2, · · · , βj − 1, j = 1, 2, · · · , n.

By the Riemann boundary value theory, (3.12) has the particular solution

Φ2(z) =


Y (z)(z−z∗0 )M1

E1(z)(z−z∗0 )κ
[Ψ(z)(z − z∗0)

κ − Ωϱ(z)] , Imz > 0;

Y (z)(z−z0)M2

E2(z)(z−z∗0 )κ
[Ψ(z)(z − z∗0)

κ − Ωϱ(z)] , Imz < 0,
(3.20)

where

(z − z∗0)
κX(z) = Y (z), z ∈ C \ R.

In view of linearity, we obtain the general solution of (3.12) as follows

Φ(z) =

X(z)(z − z∗0)
M1E−1

1 (z)F (z), Imz > 0;

X(z)(z − z∗0)
M2E−1

2 (z)F (z), Imz < 0,
(3.21)

where

F (z) = Ψ(z)(z − z∗0)
κ − Ωϱ(z) + E1(z)E2(z)Uκ−M1−M2−1(z).

Obviously, Φ2(z) has the singularity at z = z∗0 when κ < 0. Due to Φ ∈ H∗
1 , we must have∫

R
Ψ∗(s)

ds

(s− z∗0)
ν
= 0, ν = 1, 2, · · · , |κ|. (3.22)

Taking the boundary values of Y (z), then we obtain

Y +(s) =
√
P0(s)X0(s), Y −(s) =

X0(s)√
P0(s)

, (3.23)
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hence we have

Φ+(s) =
N0(s)

2
+

X0(s)
√
P0(s)

E1(s)(s− z∗0)
κ−M1

F∗(s),

and

Φ−(s) = −N0(s)E1(s)(s− z∗0)
M2−M1

2E2(s)P0(s)
+
X0(s)(s− z∗0)

M2−κ√
P0(s)E2(s)

F∗(s),

where

F∗(s) = F (s)− Ωϱ(s) + E1(s)E2(s)Uκ−M1−M2−1(s).

By (2.20) we get the following closed-form solution

Φ(s) =
N0(s)

2
+
N0(s)(s− z∗0)

M2−M1E1(s)

2P0(s)E2(s)

+
X0(s)F∗(s)

(s− z∗0)
κ
√
P0(s)

(
P0(s)

E1(s)
(s− z∗0)

M1 − (s− z∗0)
M2

E2(s)

)
.

(3.24)

Next, we consider the properties of the solutions at s = 0.

Suppose that s = 0 is an ordinary node, that is, λ ∈ (0, 1), then γ ̸= 0. Since

lim
s→0+

Φ(s) = lim
s→0−

Φ(s) = Φ(0),

then by (3.23) we can prove that

Y +(s) = sγ
√
P0(s)e

Γ∗(s), Y −(s) =
sγeΓ∗(s)√
P0(s)

, (3.25)

where Γ∗(s) = Γ0(s)− γlns, and Γ∗ ∈ H. From (3.9) and (3.10), we have

lnP0(±0) = lnP (±0) + κln
±0− z∗0
±0− z0

= lnP (±0)± κπi, (3.26)

again from (3.9) and (3.26), we obtain√
P0(+0) = e

κ
2
πi
√
P (+0) = eκπie

1
2
lnP (+0)

P (−0) e−
κπi
2 e

1
2
lnP (−0) = e−γπi

√
P0(−0). (3.27)

According to [5-7,13,25], when s > 0, it is clear that

Ψ(s) =
e−γπis−γ

2ieΓ∗(s)
Λ0 +Ψ0(s), (3.28)

where

Λ0 = eγπiΛ(+0) cot γπ − Λ(−0) csc γπ, Λ(s) =
N0(s)E1(s)√
P0(s)(s− z∗0)

M1

,

and Ψ0(s)|s|λ
∗ ∈ H, λ∗ ∈ (0, λ). Therefore, substituting (3.25)-(3.28) into Φ+(s), one has

Φ+(+0) =
N0(+0) csc γπ

2ie2γπi

[
e3γπi − N0(−0)

N0(+0)

]
. (3.29)
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As in [4,13,26], when s < 0, we have

Ψ(s) =
eγπis−γ

2ieΓ∗(s)
Λ1 +Ψ0(s), (3.30)

where

Λ1 = − cot γπe−γπiΛ(−0) + Λ(+0) csc γπ,

it gives rise to

Φ+(−0) =
N0(+0) csc γπ

2ieγπi

[
e3γπi − N0(−0)

N0(+0)

]
. (3.31)

By comparing (3.29) with (3.31), and eγπi ̸= 1, we know that Φ+(+0) = Φ+(−0) if and

only if

e3γπiN0(+0) = N0(−0). (3.32)

Since Φ(s) is continuous at s = 0, then we have

Φ−(0) = Φ+(0) = 0,

and Φ(0) = 0. Further, N0(0) = 0, and so

N(0) = 0. (3.33)

If (3.33) is valid, for s ∈ N0 = {|s| < ϵ,∀ϵ > 0} , we have Φ± ∈ H∗
1 .

Suppose that s = 0 is a special node, then λ = 0, γ = iη0. We have Ψ0 ∈ H near s = 0.

If η0 ̸= 0, from [5-7,22], (3.29) and (3.31) are still fulfilled, and Ψ0(±0) exist and may not be

equal. Return to (3.29) and (3.31), we should modify Φ+(±0) to

Φ+(+0) =
N0(+0) csc γπ

2ie2γπi

[
e3γπi − N0(−0)

N0(+0)

]
+ σ(0)

√
P0(+0) lim

s→+0
siη0 [Ψ0(s)− Λ] , (3.34)

and

Φ+(−0) =
N0(+0) csc γπ

2ieγπi

[
e3γπi − N0(−0)

N0(+0)

]
+ σ(0)

√
P0(−0) lim

s→−0
siη0 [Ψ0(s)− Λ] , (3.35)

where

σ(s) =
eΓ∗(s)

E1(s)
(s− z∗0)

M1 ,

and when κ > ϱ+ 1,

Λ = (−1)κ
bϱ − E1(0)E2(0)Cκ−M1−M2−1

(z∗0)
κ

.

Since Φ+(+0) = Φ+(−0), and Ψ0(s) is continuous at s = 0, then we have

Ψ0(±0) = Λ,

in this case, (3.32) holds, and so (3.33) holds. On the other hand, if (3.33) is valid, thus Φ(s)

is continuous at s = 0. When κ > ϱ + 1, we have the condition of solvability F (0) = 0, that

is to say,

bϱ = E1(0)E2(0)Cκ−M1−M2−1 + (−z∗0)κΨ(0); (3.36)

12

hp
Underline



when κ ≤ ϱ+ 1, the constant bϱ takes the value

bϱ =
(−z∗0)κ

2πi

∫
R

Ψ∗(s)

s
ds. (3.37)

If η0 = 0, then γ = 0, therefore J(+0) = J(−0). We can also prove that Φ(0) = 0 if and

only if (3.33) is valid. Under the condition (3.33), we have Φ ∈ H, and Φ(0) = 0. Moreover,

when κ < ϱ+ 1, we have the following conditions of solvability

b0 = · · · = bϱ−κ = 0, (3.38)

then Ωϱ(z) is a polynomial with the degree κ − 1. When κ = 1, Ωϱ(z) = bϱ. In this case, we

require that

Ψ(s)(s− z∗0) |s=di= bϱ; Ψ(s)(s− z∗0) |s=ej= bϱ, (3.39)

and ∫
R
Ψ∗(s)(s− di)

−v1−1ds = 0;

∫
R
Ψ∗(s)(s− ej)

−v2−1ds = 0, (3.40)

are satisfied, where

v1 = 1, 2, · · · , αi − 1, i = 1, 2, · · · ,m; v2 = 1, 2, · · · , βj − 1, j = 1, 2, · · · , n.

When κ ≤ 0, Ωϱ(z) = 0. Moreover, when κ < 0, in order that Φ2 ∈ H∗
1 , we need (3.24) and

the solvability conditions as follows∫
R

Ψ∗(s)

s− di
ds = 0;

∫
R

Ψ∗(s)

s− ej
ds = 0. (3.41)

Combining (3.40) and (3.41), when κ < 0, we require that the following (3.42) holds∫
R
Ψ∗(s)(s− di)

−v1ds = 0;

∫
R
Ψ∗(s)(s− ej)

−v2ds = 0, (3.42)

where

v1 = 1, 2, · · · , αi, i = 1, 2, · · · ,m; v2 = 1, 2, · · · , βj, j = 1, 2, · · · , n.

Under the assumptions and solvability conditions, (3.1) has the solution

ψ(τ) =
1√
2π

∫
R
Φ(s)e−isτds, (3.43)

where Φ(s) is given by (3.24).

The results about the solutions of (3.1) are formulated in the following theorem.

Theorem 3.1. Under the case of non-normal type, the necessary condition of solvability for

problem (3.6) is (3.33).

(1) If s = 0 is an ordinary node, (3.33) holds. When κ > ϱ + 1, Eq. (3.1) has κ − ϱ − 1

linearly independent solutions. When κ = ϱ+1, (3.1) has a unique solution. When κ < ϱ+1,

(3.1) is solvable if (3.38) holds. When κ = 1, (3.39) and (3.40) hold, and when κ < 0, (3.22)

and (3.42) hold.
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(2) If s = 0 is a special node, (3.1) is solvable if (3.33) and (3.36) are valid. The solutions

of (3.1) belong to the class H1.

Remark 3.1. Suppose that J1(s), J2(s) have common zero-points j1, · · · , jk′ with the orders

δ1, · · · , δk′ respectively, where jp(1 ≤ p ≤ k′) are different from di(1 ≤ i ≤ m) and ej(1 ≤ j ≤
n), the additional solvability condition should be fulfilled

N (l)(jp) = 0, l = 1, · · · , δp − 1.

Remark 3.2. SIE with a convolution kernel and variable integral limits is a special case of

Eq. (3.1), i.e., h(τ) = 0 or k(τ) = 0. In this case, the process of analysis is not fundamentally

different from (3.1), and will be omitted.

4 SIEs of Wiener-Hopf with convolution kernels

Next, we consider SIEs of Wiener-Hopf with convolution kernels and variable integral limits

Aψ(τ) +
B√
2π

∫ τ

0

ψ(t)h(τ − t)dt+
C

πi

∫
R

ψ(t)

t− τ
dt = n(τ), τ ∈ R+, (4.1)

where A,B,C are constants, and C ̸= 0. The known functions h, n ∈ Hℓ
3, ℓ ∈ (1

2
, 1), and the

unknown function ψ ∈ H1. Extending τ to τ ∈ R by adding ψ−(τ) to the right side of (4.1),

we have

Aψ(τ) +
B√
2π

∫
R
ψ+(t)h+(τ − t)dt+

C

πi

∫
R

ψ(t)

t− τ
dt = n(τ) + ψ−(τ), τ ∈ R. (4.2)

By applying the operator W to (4.2), we get

Φ+(s) = J(s)Φ−(s) +N0(s), s ∈ R, (4.3)

in which

J(s) =
1

A+BH+(s)− Csgn(s)
, N0(s) =

N(s)

A+BH+(s)− Csgn(s)
,

and

W [h+(τ)] = H+(s), W [n(τ)] = N(s), W [ψ±(τ)] = Φ±(s), N0(s) = J(s)N(s).

It follows from H,N ∈ h3 that

lim
s→+∞

J(s) =
1

A− C
, lim

s→−∞
J(s) =

1

A+ C
, lim

s→∞
N0(s) = 0, (4.4)

hence s = 0,∞ are nodes of problem (4.3).

Now, we give the definitions of γ∞ and γ0. Define

γ∞ = λ∞ + iη∞ =
1

2πi
ln
J(−∞)

J(+∞)
=

1

2πi
ln
A− C

A+ C
, (4.5)
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where lnJ(s) takes a continuous branch such that λ∞ ∈ [0, 1). From [5-7], we know that

γ∞ ̸= 0 since C ̸= 0. Again denote

γ0 = λ0 + iη0 =
1

2πi
ln
J(−0)

J(+0)
=

1

2πi
ln
A+BH+(0)− C

A+BH+(0) + C
. (4.6)

We call κ the index of (4.3) which satisfies λ0 − 1 < κ ≤ λ0. Suppose that J−1(s) has some

zero-points di(1 ≤ i ≤ m) with the orders αi(1 ≤ i ≤ m) respectively, then we put

E(s) =
m∑
i=1

(s− di)
αi , M = α1 + · · ·+ αm. (4.7)

Here, we still only discuss the case M > 0. Rewrite (4.3) as

Φ+(s) =
X+(s)(s− z∗0)

M

X−(s)E(s)
Φ−(s) +N0(s). (4.8)

By the principle of analytic continuation and the generalized Liouville theorem, (4.3) has the

analytic solution

Φ1(z) =

X(z)(z − z∗0)
MPκ−M−1(z), Imz > 0;

X(z)E(z)Pκ−M−1(z), Imz < 0.
(4.9)

Next, we consider the non-homogeneous problem (4.8). Put

Φ2(z) =


Y (z)

E(z)(z−z∗0 )κ−M [Ψ(z)(z − z∗0)
κ − Ωρ(z)], Imz > 0;

Y (z)
(z−z∗0 )κ

[Ψ(z)(z − z∗0)
κ − Ωρ(z)], Imz < 0,

(4.10)

where

Ωρ(z) = bρ + bρ−1z + · · ·+ b0z
ρ (4.11)

has zero-points of the orders αi at di, and ρ =M − 1, this implies

Ω(L)
ρ (z) = [Ψ(z)(z − z∗0)

κ](L), 1 ≤ L ≤ αi − 1, 1 ≤ i ≤ m. (4.12)

Using the theory of classical boundary value, we can verify that (4.10) is the particular solution

of (4.3). Therefore, (4.3) has the general solution

Φ(z) =


X(z)(z−z∗0 )M

E(z)
[Ψ(z)(z − z∗0)

κ − Ωρ(z) + E(z)Pκ−M−1(z)], Imz > 0;

X(z)[Ψ(z)(z − z∗0)
κ − Ωρ(z) + E(z)Pκ−M−1(z)], Imz < 0.

(4.13)

Further process is the same as section 3 and will be omitted.

Now, we discuss the properties of solutions at s = ∞. By [5,13,27], we have, near s ∈ N∞,

Y (s)sλ∞ ∈ h2.

Notice that, in (4.13), we shall write Pκ−M(z) instead of Pκ−M−1(z).
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Suppose that s = ∞ is an ordinary node, then λ∞ ∈ (0, 1), further γ∞ ̸= 0. Consider the

positive boundary value Φ+(s) as follow

Φ+(s) = Y +(s)[Ψ(s)Q1(s) + (s− z∗0)
M−κQ2(s)] +

N0(s)

2
, (4.14)

where

Q1(s) = (s− z∗0)
ME−1(s), Q2(s) = Pκ−M(s)− Ωρ(s)E

−1(s). (4.15)

We can see that Q1(s) is bounded near s ∈ N∞. Moreover, when κ ≥M, one has

Q2(s) = O(|s− z∗0 |κ−M), Y +(s)Q2(s)(s− z∗0)
M−κ = O(|s|−λ∞). (4.16)

When 1
2
< λ∞ < ℓ < 1, we have |Ψ∗(s)| ≤ r0 near s ∈ N∞, then

|Ψ(s)| ≤ r0
2π

∫
R
|1
s
||1− t

s
|−1|dt| = r0

2π

∫
R
|

∞∑
n=0

tn

sn+1
| |dt| ≤ r∗0,

where r0, r
∗
0 take constants. Further, we obtain

Y +(s)Ψ(s) = O(|s|−λ∞), (4.17)

and by (4.15)-(4.17), when κ ≥M, it gives rise to

Φ+(s) = O(|s|−λ∞). (4.18)

When κ < M, Pκ−M(z) = 0, then we require the solvability conditions as follows

bj = 0, j = 0, · · · , ρ− κ− 1. (4.19)

In this case, Ωρ(z) =
∑κ

j=0 bρ−jz
j. Moreover, when κ > 0, (4.18) is still valid; when κ = 0,

Ωρ(z) = bρ, one must have

Ψ(di)(di − z∗0) = bρ, 1 ≤ i ≤ m; (4.20)

when κ < 0, we need that (3.22) and the following (4.21) hold∫
R
Ψ∗(s)(s− di)

−vds = 0, (4.21)

where 1 ≤ v ≤ αi, 1 ≤ i ≤ m.

When 1
2
< ℓ ≤ λ∞ < 1, there exists ϵ > 0 such that λ∞ − ϵ > 1

2
. Therefore, we have

Y +(s)Ψ(s) = O(|s|−λ∞+ϵ), s ∈ N∞. (4.22)

Similarly, we can get

Φ+(s) = O(|s|−λ∞+ϵ), s ∈ N∞. (4.23)

Combining (4.18) and (4.23), when λ∞ > 1
2
, it turns out that

Φ+(s) = O(|s|−r), s ∈ N∞, (4.24)
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where r > min {ℓ, λ∞ − ϵ} , thus r > 1
2
. Moreover, Φ+ ∈ H∗

2 .

When 0 < λ∞ ≤ 1
2
, by [13,24] we know that

Y +(s)Ψ(s) = O(|s|−ℓ).

When κ ≥ M, in order that Φ+ ∈ L2(R), (4.18) needs to be satisfied. When κ < M, (4.19)

holds. Further, when κ ≥ 0, we must have

bρ−κ = 0; (4.25)

when κ < 0, we require that (4.19) and (4.21) are satisfied.

Under the assumptions and conditions of solvability, from [7,13,21], it is easily known that

Φ+ ∈ L2(R).
Suppose that s = ∞ is a special node, then λ∞ = 0. It follows from (4.4) that γ∞ ̸= 0,

thus we can transform it to the case λ∞ < 1
2
. Further discussions are the same as above.

In conclusion, we state the following result.

Theorem 4.1. Under the case of non-normal type, (3.36) is a necessary condition of solv-

ability for Eq. (4.3).

(1) If λ∞ > 1
2
, in (4.13), we write Pκ−M(z) in place of Pκ−M−1(z). When κ > M, (4.1) has

κ −M linearly independent solutions. When κ = M, (4.3) has the unique solution. When

κ < M, (4.19) and (4.25) hold, in this case, (4.3) has the general solution. When κ > 0, (4.18)

holds; when κ = 0, (4.20) holds; when κ < 0, (3.22) and (4.21) hold.

(2) If λ∞ ≤ 1
2
, when κ ≥M, (4.18) holds. When κ < M, (4.19) holds. When κ ≥ 0, (4.25)

holds, and when κ < 0, (4.19) and (4.21) hold.

Under the conditions of solvability, (4.1) has the general solutions

ψ+(τ) = W−1[Φ+(s)], (4.26)

where Φ+(s) is given by (4.14).

5 Dual SIEs with convolution kernels

Now we deal with dual SIEs with convolution kernels and variable integral limitsAψ(τ) + B√
2π

∫ τ
0
ψ(t)h1(τ − t)dt+ C

πi

∫
R
ψ(t)
t−τ dt = n(τ), τ ∈ R+;

Aψ(τ) + B√
2π

∫ 0

τ
ψ(t)h2(τ − t)dt+ C

πi

∫
R
ψ(t)
t−τ dt = n(τ), τ ∈ R−,

(5.1)

where A,B,C are constants, and C ̸= 0. The functions h1, h2, n ∈ H1, and the unknown

function ψ ∈ H1. Combining the two equations in (5.1) to the following (5.2):

Aψ(τ) +
B√
2π

∫
R
ψ(t)h(τ − t)dt+

B√
2π

∫
R
ψ(t)k(τ − t)sgn(t)dt

+
C

πi

∫
R

ψ(t)

t− τ
dt = n(τ), τ ∈ R,

(5.2)
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where

h(τ) =
1

2
[h+1 (τ)− h−2 (τ)], k(τ) =

1

2
[h+1 (τ) + h−2 (τ)],

then h, k ∈ H1. Obviously,

h(τ) =

1
2
h1(τ), τ ≥ 0;

1
2
h2(τ), τ < 0,

k(τ) =

1
2
h1(τ), τ ≥ 0;

−1
2
h2(τ), τ < 0.

We apply the operator W to (5.2) and obtain

AΦ(s) +BH(s)Φ(s) +
BK(s)

πi

∫
R

Φ(t)

t− s
dt− CΦ(s)sgn(s) = N(s), s ∈ R, (5.3)

where

W [h(τ)] = H(s), W [k(τ)] = K(s), W [n(τ)] = N(s), W [ψ(τ)] = Φ(s),

and H,K,N,Φ ∈ H∗
1 . We shall solve the following (5.4) instead of (5.3)

Φ+(s) = J(s)Φ−(s) +N0(s), (5.4)

where

J(s) =
A+B[H(s)−K(s)]− Csgn(s)

A+B[H(s) +K(s)]− Csgn(s)
, N0(s) =

N(s)

A+B[H(s) +K(s)]− Csgn(s)
.

From the analysis above, it is easy to prove that (5.4) has a unique node s = 0. Further

process is similar to section 3 and will be omitted.

6 Conclusions

In this paper, we mainly focus on three classes SIEs with variable integral limits in the case

of non-normal type. By means of the theory of complex variable functions and classical

boundary value problems, Eqs. (1.1)-(1.3) are transformed into the linear Riemann problems

with discontinuous property in class H∗
1 , further, we obtain the general solution given by

integral-form. Moreover, the novel method in this paper can effectively solve such equations

mentioned in [28-33], and we may also prove the existence and stability of solutions for Eqs.

(1.1)-(1.3) in Clifford analysis (see [34,35]).

Recently, many scholars have studied SIEs with convolution kernels and non-linear SIEs

in multidimensional and hyper-singular fields, and gained a lot of excellent results. Based on

our results in this paper, we may consider the solvability theory of Eqs. (1.1)-(1.3) in these

areas. More precise details will be omitted now.
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