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Abstract

A new fishery model is proposed by using the strategy of seasonal harvesting. Suf-

ficient and necessary conditions are established to ensure the existence of a unique

equilibrium or a periodic solution by the approach of Poincaré maps. It is shown that

the equilibrium or the periodic solution is globally asymptotically stable. Numeri-

cal examples are provided to demonstrate the model dynamics and some biological

implications are given as well.
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1. Introduction

In recent years, various population models have been proposed for single or

multiple species, and their dynamics have been extensively studied [1–11]. Moreover,

much attention has been paid on non-smooth population models [12–24], which

arise from discontinuous control strategies such as economic threshold [14], seasonal

harvesting [3, 4], periodically releasing [21–24] and so on. These non-smooth models

often bring difficulties and challenges such as sliding motions [20, 25], limit cycles

[26–28], bifurcation [29–32] and global dynamics [20–22].

To study the dynamics of population, the simplest model introduced by Schaefer
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[2] is
dx

dt
= rx

(
1− x

K

)
− Ex, (1.1)

where x represents the fish population, r > 0 is the intrinsic growth rate, K > 0 is

the carrying capacity and E is the fishing effort. In general, E = E(t) is variable in

time t, see [1, 2] for example. In order to efficiently exploit stocks and prevent the

collapse of key fisheries, the authors [15] proposed a two-dimensional fishery model

with discontinuous harvesting as follows{
dx
dt

= rx
(
1− x

K

)
− ψ(x)Ex,

dE
dt

= kψ(x)(px− c)E,
(1.2)

where an equation of fishing effort was added to the model (1.1). The parameters k, p

and c are positive, and ψ(x) is usually discontinuous denoting the harvesting strat-

egy. It is shown that discontinuous harvesting strategies are superior to continuous

ones in maintaining the fish population at a sustainable level [15]. This discontin-

uous harvesting strategies require constantly monitoring the number of fish species

and determining whether they have reached the threshold, which wastes a lot of

manpower in practical operation. In fact, harvesting commonly practiced in fishery

does not always occur because of seasonal environmental fluctuations. The seasonal

harvesting is also an effective strategy to maintain the fish population at a desirable

level, which permits harvesting only during a specified harvest season, while dur-

ing the rest of the year, the fishing moratorium, no harvesting or less harvesting is

allowed.

The periodically switched model has recently been investigated in several stud-

ies in population dynamics. In [21, 22], the authors proposed a mosquito population

suppression model ignoring the dynamics with respect to the sterile mosquitoes.

Thus the dimension of the model is reduced and the mathematical analysis becomes

more tractable. Comparing with the massive literature devoted to the analysis of

mathematical models with continuous harvesting, discontinuous harvesting strate-

gies have received surprisingly little attention. In a much earlier paper, the author in

[33] studied the global dynamics of a logistic equation with seasonal constant-yield

harvesting. Constant-yield harvesting is assumed that the population is caught at a

constant rate per unit time. It’s difficult to keep constant-yield harvesting when the

population density is low. The recent work [34] discussed a two-species competition

model with seasonal succession and different harvesting strategies, where the author

assumed that the fish species is experiencing a bad season if it is in the non-growing

season. Although the large fish do not lay eggs in bad seasons, the small fish will

continue to grow.

Inspired by the research works presented above, we propose a fishery model by
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using the strategy of seasonal constant-effort harvesting in this paper. The popu-

lation of the species obeys logistic type equation in the fishing moratorium. The

model is a periodically switched system to describe the phenomenon of seasonal har-

vesting. This brings some new challenges to mathematical analysis. We will study

the global dynamics of this model and establish sufficient and necessary conditions

to ensure the existence of a globally asymptotically stable T -periodic solution.

The rest of the paper is organized as follows. Our model is described and

some preliminary results are given in Section 2. Section 3 is devoted to the global

dynamics of the model. Finally in Section 4, we give some biological implications

and numerical simulations to verify our results obtained in this paper.

2. Model description and preliminary results

In this paper, by incorporating the strategy of seasonal harvesting into the

model (1.1), we consider the following fishery model

dx

dt
= rx

(
1− x

K

)
− E(t)x, (2.1)

where x,K and r are the same as in (1.1),

E(t) =

{
v, t ∈ [iT, iT + T̄ )

0, t ∈ [iT + T̄ , (i+ 1)T ),
i = 0, 1, 2, · · · , (2.2)

is a discontinuous harvesting function, T > 0 represents the time of capture cycle,

T̄ ≤ T is the time of harvesting in the cycle and v is the harvesting rate.

Obviously, model (2.1) consists of the following two sub-equations

dx

dt
= rx

(
1− x

K

)
− vx (2.3)

and
dx

dt
= rx

(
1− x

K

)
. (2.4)

Moreover, model (2.1) is T -periodic and discontinuous with respect to t. We employ

the approach of Filippov [25] to define solutions of (2.1). Without loss of generality,

we assume that the initial time of a solution is t = 0.

Definition 2.1 A function x(t) = x(t; 0, u) is a solution on [0,+∞) with initial

value x(0) = u of system (2.1), if x(t) is continuous and piecewise differentiable on

[0,+∞), and satisfies the equation (2.3) on (iT, iT + T̄ ) and the equation (2.4) on

(iT + T̄ , (i+ 1)T ) for i = 0, 1, 2, · · · .
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As usual we only consider the regime where x(t) ≥ 0. In fact, x(t) < 0 for some

t > 0 implies this species has become extinct. In what follows, the well-posedness

of system (2.1) is established.

Proposition 2.1 Let x(t; 0, u) be a solution of the system (2.1) with initial condi-

tion x(0) = u ≥ 0, then x(t) ≥ 0 for t ∈ [0, t0), where 0 < t0 < +∞.

Proof. For t ∈ [0, T̄ ) and any given u ≥ 0, system (2.1) becomes the initial-value

problem for the following ODE on t ∈ [0, T̄ ):

dx

dt
= rx

(
1− x

K

)
− vx, x(0) = u. (2.5)

It is obvious that rx
(
1− x

K

)
− vx is a locally Lipschitz continuous function, then

system (2.1) admits a unique solution on its interval of existence. Moreover, we can

get

x(t) =
K(r − v)ue(r−v)t

r [e(r−v)t − 1]u+K(r − v)
. (2.6)

Since x(0) = u ≥ 0, we have that x(t) ≥ 0 for t ∈ [0, T̄ ).

For t ∈ [T̄ , T ), from Definition 2.1, the solution of system (2.1) can be deter-

mined uniquely by the initial-value problem for the following ODE:

dx

dt
= rx

(
1− x

K

)
, x(T̄ ) = x(T̄−). (2.7)

Similarly, it is obvious that rx
(
1− x

K

)
is a locally Lipschitz continuous function,

then system (2.1) admits a unique solution on its interval of existence. Meanwhile,

the initial value problem (2.7) has a solution

x(t) =
Krx(T̄ )ert

r [ert − 1]x(T̄ ) +Kr
. (2.8)

It is easy to get x(T̄−) ≥ 0 from (2.6). Then we have that x(t) ≥ 0 for t ∈ [T̄ , T ).

Next, we can use the same manner of steps on each time interval [iT, (i+ 1)T ).

Thus, the uniqueness and positivity of solutions for model (2.1) are allowed on

[iT, (i + 1)T ). Since i can be chosen sufficiently large, it follows that the solution

x(t) ≥ 0 with x(0) = u ≥ 0 on [0, t0), where t0 ∈ [iT, (i+ 1)T ). �

Proposition 2.2 Let x(t; 0, u) be a solution of the system (2.1) with initial condi-

tion u ≥ 0, then the solution x(t; 0, u) is bounded and hence exists on [0,+∞).

4



Proof. If x(t; 0, u) be a solution of system (2.1) with initial condition x(0) = u ≥ 0

on the time interval [0, t0), where t0 ∈ (0,+∞). Since u ≥ 0, by Proposition 2.1, we

have that x(t; 0, u) ≥ 0 for t ∈ [0, t0). When x(t) > K, we have that

dx

dt
=

{
rx
(
1− x

K

)
− vx < 0, t ∈ [iT, iT + T̄ ),

rx
(
1− x

K

)
< 0, t ∈ [iT + T̄ , iT + T ),

(2.9)

which implies that x(t) ≤ max{x(0), K}. In conclusion, the solution x(t) is bound-

ed on [0, t0). This, together with the virtue of the continuation theorem (see[25]),

implies that the solution x(t) exists on the time interval [0,+∞). �

From the uniqueness of solution of the equations (2.3) and (2.4), we can obtain

the uniqueness of the solution of equation (2.1). Moreover,

x(t+ T ;T, u) = x(t; 0, u) (2.10)

in view of the T -periodicity of system (2.1). Define a Poincaré map P (·) as

P (u) = x(T ; 0, u) (2.11)

and a displacement function as

d(u) = P (u)− u (2.12)

for u > 0. Then for a given u > 0, x(t; 0, u) is a T -periodic solution if and only if

d(u) = 0. For the sake of convenience, we further define

P̄ (u) = x(T̄ ; 0, u)

and

Pn(u) = P ◦ P ◦ · · · ◦ P︸ ︷︷ ︸
n

(u), n = 1, 2, · · · . (2.13)

Then it follows from (2.10) and the uniqueness of solutions that

Pn(u) = x(nT ; 0, u), n = 1, 2, · · · . (2.14)

Integrating (2.3) from 0 to T̄ with initial value u, we have

P̄ (u) =
K(r − v)ue(r−v)T̄

r
[
e(r−v)T̄ − 1

]
u+K(r − v)

. (2.15)

Similarly,

P (u) =
KP̄ (u)er(T−T̄ )[

er(T−T̄ ) − 1
]
P̄ (u) +K

(2.16)

by integrating (2.4) from T̄ to T with initial value P̄ (u). Some properties of the

Poincaré map and the displacement function defined by (2.11) and (2.12) respective-

ly are listed by the following lemmas, which will play an important role in proving

our main results.
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Lemma 2.1 Let P (·) and Pn(·) be defined by (2.11) and (2.13) respectively. Then

for any u > 0 the following statements hold:

(i) {Pn(u)} is strictly increasing if P (u) > u while strictly decreasing if P (u) < u;

(ii) P ′(u) = P 2(u)
u2 evT̄−rT and lim

u→0+
P ′(u) = erT−vT̄ .

Proof. Assume P (u) > u, namely x(T ; 0, u) > u. Then the uniqueness of the

solution x(t; 0, u) implies that

x(nT ; 0, x(T ; 0, u)) > x(nT ; 0, u) = Pn(u). (2.17)

On the other hand, it follows from (2.14) that

Pn+1(u) = Pn(P (u)) = x(nT ; 0, x(T ; 0, u)). (2.18)

It is obtained from (2.17) and (2.18) that Pn+1(u) > Pn(u), which means that

{Pn(u)} is strictly increasing. Similarly, {Pn(u)} is strictly decreasing if P (u) < u.

Thus the assertion (i) is true.

By direct computations, we get

P̄ ′(u) =
P̄ 2(u)

u2
e−(r−v)T̄ and P ′(u) =

P 2(u)P̄ ′(u)

P̄ 2(u)
e−r(T−T̄ )

from (2.15) and (2.16) respectively. This means that

P ′(u) =
P (u)2

u2
evT̄−rT . (2.19)

Notice that lim
u→0+

P̄ (u) = lim
u→0+

P (u) = 0 and

lim
u→0+

P (u)

u
= lim

u→0+

P (u)

P̄ (u)

P̄ (u)

u
= erT−vT̄

again by (2.15) and (2.16). Therefore, it is seen from (2.19) that lim
u→0+

P ′(u) =

erT−vT̄ . The proof is finished. �

With the help of Lemma 2.1, some properties of d(·) are stated by the following

lemma.

Lemma 2.2 Let d(·) be defined for u > 0 by (2.12). Then d(u) < 0 if T̄ ≥ rT/v,

and d(u) has a unique zero if T̄ < rT/v.
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Proof. Suppose that T̄ = rT/v. Then r < v in view of T > T̄ . It is obtained

from (2.15) and (2.16) respectively that P̄ (u) < u and P (u) < P̄ (u). Consequently,

P (u) < u for u > 0, which means d(u) < 0 for u > 0.

Next we show that d(·) has at most one zero if T̄ 6= rT/v. Since the proof for

the case T̄ < rT/v is analogous, we only give the proof for the case T̄ > rT/v by

the way of contradiction. Assume that d(·) has two adjacent zeros u∗1 and u∗2 with

0 < u∗1 < u∗2. Then d(·) has no zeros between u∗1 and u∗2. By the assertion (ii) of

Lemma 2.1, we have P (u∗i ) = u∗i and

d′(u∗i ) = P ′(u∗i )− 1 = evT̄−rT − 1 > 0, i = 1, 2.

Consequently, there is δ ∈ (0, u∗2 − u∗1) such that d(u) > 0 for u ∈ (u∗1, u
∗
1 + δ) and

d(u) < 0 for u ∈ (u∗2− δ, u∗2). This implies that there exists another zero between u∗1
and u∗2, which is a contradiction to the adjacency of the zeros u∗1 and u∗2.

Notice that P (K) < K, i.e.,

d(K) < 0 (2.20)

in view of dx
dt

∣∣
x=K

= −vK < 0 for the subsystem (2.3) and dx
dt

∣∣
x=K

= 0 for the

subsystem (2.4). If T̄ > rT/v, we claim by contradiction that d(·) has no zeros and

d(u) < 0 for u > 0. Indeed, if d(·) has a zero u∗ > 0, we have d′(u∗) > 0 and there

is δ̄ > 0 and u1 ∈ (u∗, u∗ + δ̄) such that

d(u1) > 0. (2.21)

Thus it is deduced from (2.20) and (2.21) that d(·) has another zero u? with u? > u∗.

This is a contradiction to the uniqueness of a zero. Therefore, d(u) < 0 for u > 0 if

T̄ > rT/v.

When T̄ < rT/v, it follows from lim
u→0+

P ′(u) = erT−vT̄ > 1 that there is u2 ∈
(0, u∗) such that P (u2) > u2, i.e.,

d(u2) > 0. (2.22)

Thus (2.20) and (2.22) imply that d(·) has a zero between 0 and K. Moreover, it is

unique since d(·) has at most one zero. The proof is completed. �

3. Main results

Making use of the properties of the Poincaré map P (·) and the displacement

function d(·) stated by the lemmas in Section 2, we discuss the global dynamics of

the discontinuous fishery model (2.1) in this section. Note that x = 0 is a trivial

solution of (2.1), which is called an equilibrium denoted by E0.
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Theorem 3.1 The equilibrium E0 = 0 of the system (2.1) is globally asymptotically

stable if and only if T̄ ≥ rT/v.

Proof. We show the necessity by the way of contradiction at first. Suppose T̄ <

rT/v. Then it follows from Lemma 2.1 that lim
u→0+

P ′(u) = erT−vT̄ > 1. Consequently,

there exists δ1 > 0 sufficiently small such that P (u) > u for u ∈ (0, δ1). Furthermore,

for a given u ∈ (0, δ1), {Pn(u)} is strictly increasing by Lemma 2.1. This is a

contradiction with the global asymptotical stability of E0.

Next we verify the sufficiency. Assume T̄ ≥ rT/v. Then for any u > 0, P (u) < u

by Lemma 2.2, so {Pn(u)} is strictly decreasing by Lemma 2.1. We will prove that

E0 is locally stable. In fact, it is obtained from the continuous dependence that for

any ε > 0 there is δ2 > 0 such that

|x(t; 0, u)| < ε, t ∈ [0, T ] (3.1)

as long as u ∈ (0, δ2). For any t > 0, there are an integer m and t0 ∈ [0, T ] such

that t = mT + t0. Thus

x(t; 0, u) = x(mT + t0;mT, x(mT ; 0, u)) = x(t0; 0, Pm(u))

by (2.10) and (2.14). Note that Pm(u) < u by the monotonicity of {Pn(u)}. We

obtain Pm(u) ∈ (0, δ2) for u ∈ (0, δ2) and hence

|x(t; 0, u)| = |x(t0; 0, Pm(u))| < ε

for any t ≥ 0 by (3.1). This means E0 is locally stable. Again by the monotonicity

of {Pn(u)}, we get

lim
n→∞

Pn(u) = 0

for any u > 0. This implies that E0 is globally attractive. Thus E0 is globally

asymptotically stable, which completes the proof. �

When T̄ < rT/v, it will be seen from the following theorem that there is a

unique T -periodic solution, which is globally asymptotically stable. Moreover, the

T -periodic solution does not exist if T̄ ≥ rT/v.

Theorem 3.2 For the system (2.1), there is a unique globally asymptotically stable

T -periodic solution if and only if T̄ < rT/v.

Proof. Let us verify the necessity by the way of contradiction firstly, and assume

T̄ ≥ rT/v. Then it follows from Lemma 2.2 that d(u) < u for u > 0. Hence there

is no T -periodic solutions for the system (2.1).
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When T̄ < rT/v, it is obtained from Lemma 2.2 that d(·) has a unique zero

ũ∗ > 0. So the system (2.1) has a unique T -periodic solution. Next we need to show

the T -periodic solution is globally asymptotically stable. The local stability can be

similarly proved by the proofs of Theorem 3.1, thus it is omitted here. Notice that

ũ∗ ∈ (0, K) is the unique zero of d(·) and d(K) < 0 from (2.20). We have d(u) > 0

for u ∈ (0, ũ∗) and d(u) < 0 for u ∈ (ũ∗,+∞). Again by Lemma 2.1, {Pn(u)} is

strictly increasing for u ∈ (0, ũ∗) while decreasing for u ∈ (ũ∗,+∞). This means

that lim
n→∞

Pn(u) = ũ∗ for u ∈ (0,+∞) and the T -periodic solution is globally asymp-

totically stable. �

Remark 3.1 When T̄ = 0 or T̄ = T and r > v, the differential equations (2.1)

with a continuous righthand sides, is no harvesting or constant-effort harvesting.

It is well-known that there exists a unique positive equilibrium. Under seasonal

constant-effort harvesting, we verify that the dynamical behavior is analogous, but

with periodic solution instead of equilibrium.

4. Biological implication and numerical simulations

Making use of the strategy of seasonal harvesting, a new fishery model is es-

tablished in this paper and its global dynamics is investigated thoroughly. We have

shown that there is a unique equilibrium or a unique periodic solution. Furthermore,

the equilibrium or the periodic solution is globally asymptotically stable.

Our results suggest that taking appropriate fishing effort v and harvesting time

T̄ will maintain the normal reproduction of aquatic organisms and prevent the fish

stock from extermination. When vT̄ < rT , Theorem 3.2 tells us that there is a

globally asymptotically stable T -periodic solution, see Fig. 1. This means the fish

stock will not die out and can be maintained at some desirable level.

However, when fishing effort v is large and harvesting time T̄ is long, Theorem

3.1 implies that E0 = 0 is globally asymptotically stable as long as vT̄ ≥ rT , see Fig.

2. Thus large fishing effort or long harvesting time may lead to the extermination

of fish stock.

The above conclusions highlight the crucial importance of the time of capture

and the harvesting intensity during the time of capture. Although the harvest

intensity of the species is not large if the proportion of the time of capture is too

large, the fish population will become extinct. Hence, in order to keep the persistence

of the fish population, the harvesting intensity on population in the time of capture

should not be too high (i.e.,v < rT/T̄ ).
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Fig. 1: Global asymptotical stability of the unique periodic solution with

initial value x(0) = 0.9452, where r = 1, K = 1, v = 0.5, T̄ = 1 and T = 3.
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Fig. 2: Global asymptotical stability of E0 = 0, where r = 1, K = 1, v =

2, T̄ = 2 and T = 3.

10



We declare that we have no conflict of interest.

ORCID

Ying Chen: https://orcid.org/0009-0005-2445-2639

References

[1] P. M. Allen, J. M. McGlade, Dynamics of discovery and exploitation: the case

of the scotian shelf groundfish fisheries, Can. J. Fish. Aquat. Sci. 43 (6) (1986)

1187–1200.

[2] M. Schaefer, Some aspects of the dynamics of populations important to the

management of the commercial marine fisheries, Bull. Math. Biol. 53 (1-2)

(1991) 253–279.

[3] S. Tang, L. Chen, The effect of seasonal harvesting on stage-structured popu-

lation models, J. Math. Biol. 48 (4) (2004) 357–374.

[4] P. Liu, J. Shi, Y. Wang, Periodic solutions of a logistic type population model

with harvesting, J. Math. Anal. Appl. 369 (2) (2010) 730–735,

[5] J. He, K. Wang, The survival analysis for a single-species population model in

a polluted environment, Appl. Math. Model. 31 (10) (2007) 2227–2238.

[6] B. Zheng, J. Yu, J. Li, Modeling and analysis of the implementation of the

Wolbachia incompatible and sterile insect technique for mosquito population

suppression, SIAM J. Appl. Math. 81 (2) (2021) 718–740.

[7] W. Li, J. Ji, L. Huang, Global dynamic behavior of a predator–prey model

under ratio-dependent state impulsive control, Appl. Math. Model. 77 (2020)

1842–1859.

[8] D. Hu, Y. Zhang, Z. Zheng, M. Liu, Dynamics of a delayed predator-prey model

with constant-yield prey harvesting, J. Appl. Anal. Comput. 12 (1) (2022) 302–

335.

[9] R. Chinnathambi, F. Rihan, Analysis and control of Aedes Aegypti mosquitoes

using sterile-insect techniques with Wolbachia, Math. Biosci. Eng. 19 (11)

(2022) 11154–11171.

[10] J. Suh, H. Kwon, J. Lee, A model of Plasmodium vivax malaria with delays:

Mathematical analysis and numerical simulations, Math. Comput. Simul. 2023.

11



[11] R. Cristiano, M. Henao, D. Pagano, Global stability of a Lotka-Volterra

piecewise-smooth system with harvesting actions and two predators compet-

ing for one prey, J. Math. Anal. Appl. 522 (2) (2023) 126998.

[12] L. Huang, Z. Guo, J. Wang, Theory and Applications of Differential Equtions

with Discontinuous Right Hand Sides, Beijing: Science Press (2011)(in Chi-

nese).

[13] L. Huang, J. Wang, Models Described by Differential Equtions with Discontin-

uous Right Hand Sides and Their Dynamics, Beijing: Science Press (2021)(in

Chinese).

[14] T. Zhao, Y. Xiao, Non-smooth plant disease models with economic thresholds,

Math. Biosci. 241 (1) (2013) 34–48.

[15] Z. Guo, X. Zou, Impact of discontinuous harvesting on fishery dynamics in a

stock-effort fishing model, Commun. Nonlinear Sci. Numer. Simul. 20 (2) (2015)

594–603.

[16] S. Tang, J. Liang, Y. Xiao, R. A. Cheke, Sliding bifurcations of Filippov two

stage pest control models with economic thresholds, SIAM J. Appl. Math. 72 (4)

(2012) 1061–1080.

[17] G. Tang, S. Tang, R. A. Cheke, Global analysis of a Holling type II preda-

tor–prey model with a constant prey refuge, Nonlinear Dynam. 76 (1) (2014)

635–647.

[18] J. Yang, S. Tang, R. A. Cheke, Global stability and sliding bifurcations of

a non-smooth Gause predator–prey system, Appl. Math. Comput. 224 (2013)

9–20.

[19] J. Liang, Y. Zhu, C. Xiang, S. Tang, Travelling waves and paradoxical effects in

a discrete-time growth-dispersal model, Appl. Math. Model. 59 (2018) 132–146.

[20] J. Wang, F. Zhang, L. Wang, Equilibrium, pseudoequilibrium and sliding-mode

heteroclinic orbit in a Filippov-type plant disease model, Nonlinear Anal. Real

World Appl. 31 (2016) 308–324.

[21] J. Yu, J. Li, Global asymptotic stability in an interactive wild and sterile

mosquito model, J. Differential Equations 269 (7) (2020) 6193–6215.

[22] J. Yu, J. Li, A delay suppression model with sterile mosquitoes release period

equal to wild larvae maturation period, J. Math. Biol. 84 (3) (2022) 1–19.

12



[23] Z. Zhang, B. Zheng, Dynamics of a mosquito population suppression model

with a saturated Wolbachia release rate, Appl. Math. Lett. 129 (2022) 107933.

[24] Z. Zhu, X. Feng, L. Hu, Global dynamics of a mosquito population suppression

model under a periodic release strategy, J. Appl. Anal. Comput. 13 (4) (2023)

2297–2314.

[25] A. F. Filippov, Differential Equations with Discontinuous Right-hand Sides,

Kluwer Academic Publishers, 1988.

[26] E. Freire, E. Ponce, F. Torres, Canonical discontinuous planar piecewise linear

systems, SIAM J. Appl. Dyn. Syst. 11 (1) (2012) 181–211.

[27] J. Wang, C. Huang, L. Huang, Discontinuity-induced limit cycles in a general

planar piecewise linear system of saddle–focus type, Nonlinear Anal.-Hybrid

Syst. 33 (2019) 162–178.

[28] J. Wang, S. He, L. Huang, Limit cycles induced by threshold nonlinearity in

planar piecewise linear systems of node-focus or node-center type, Internat. J.

Bifur. Chaos 30 (11) (2020) 2050160.

[29] Y. A. Kuznetsov, S. Rinaldi, A. Gragnani, One-parameter bifurcations in planar

Filippov systems, Internat. J. Bifur. Chaos 13 (8) (2003) 2157–2188.

[30] M. Guardia, T. Seara, M. Teixeira, Generic bifurcations of low codimension of

planar Filippov Systems, J. Differential Equations 250 (4) (2011) 1967–2023.

[31] J. Wang, L. Huang, Limit cycles bifurcated from a focus-fold singularity in

general piecewise smooth planar systems, J. Differential Equations 304 (2021)

491–519.

[32] S. Liu, M. Han, Limit cycle bifurcations near double homoclinic and double

heteroclinic loops in piecewise smooth systems, Chaos Solitons Fractals 175

(2023) 113970.

[33] D. Xiao, Dynamics and bifurcations on a class of population model with season-

al constant-yield harvesting, Discrete Contin. Dyn. Syst. Ser. B 21 (2) (2016)

699–719.

[34] Y. Liu, J. Yu, J. Li, Global dynamics of a competitive system with season-

al succession and different harvesting strategies, J. Differential Equations 382

(2024) 211–245.

13


