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Abstract This paper is mainly concerned with the modified anisotropic three-dimensional
Boussinesq equations with damping. We first prove the existence and uniqueness of global
solution of velocity anisotropic equations. Then we establish the well-posedness of global solution
of temperature anisotropic equations.
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1 Introduction

In this paper, we investigate the following modified velocity anisotropic three-dimensional
Boussinesq equations with damping;:

O — Apu+ (u- V)u + |ulP~lu 4+ Vp = fes,

0 — A0+ (u-V)0 =0,

Vou=0, (1.1)
U((E,O) - u0($)7 0(33,0) - 00(‘/1;)7

and the temperature anisotropic three-dimensional Boussinesq equations with damping;:

O — Au+ (u-V)u+ |ulf~tu+ Vp = ez,

Ol — AR+ (u-V)0 =0,

Vou=0, (1.2)
u(x,0) =ug(z), 0(x,0)=0y(z),
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where e3 = (0,0, 1)T, t >0, 2 € R3, uis the velocity fluid, 6 is the temperature, p is the
pressure, 3 > 1 is real parameter, A, := 02 + 97 and 9; is the partial derivative in the
direction x;.

Recently, the anisotropic Navier-Stokes equations were investigated in [1, 7, 19, 20,
21, 22, 23, 27]. In [7], Chemin and Zhang proved the local-in-time well-posedness in the
anisotropic Sobolev space H 0.5+ for some £ > 0. Meanwhile, if the initial data was
sufficiently small, global well-posedness was obtained. In [23], Paicu and Zhang proved
the well-posedness for the three dimensional anisotropic Navier-Stokes equations in an
appropriate anisotropic Sobolev space.

By using the Friedrichs method, the existence and uniqueness of global-in-time weak
and strong solutions of the two-dimensional Boussinesq equations with horizontal viscos-
ity only appearing in one equation were studied in [8]. In [6], Cao and Wu established the
global-in-time existence of classical solutions to the 2D anisotropic Boussinesq equations
with only vertical dissipation. They proved that the pressure was obtained by separat-
ing it into high frequency and low frequency modes via Littlewood-Paley decomposition.
The global well-posedness and regularity of solutions of the two dimensional Boussinesq
system with anisotropic viscosity and without heat diffusion were established in [11].
Stability and exponential decay for the two-dimensional Boussinesq equations with only
horizontal dissipation and horizontal thermal diffusion in the spatial domain T x R were
investigated in [10]. Stability and optimal decay for a system of three dimensional Boussi-
nesq modeling anisotropic buoyancy-driven fluids were proved in [25]. By the virtue of
damping term, we will prove the well-posedness of system (1.1) and (1.2).

In [5], Cao and Wu proved the global regularity for two-dimensional incompress-
ible magnetohydrodynamic equations without dissipation and magnetic diffusion. In [4],
global regularity of classical solutions to the two dimensional incompressible magnetohy-
drodynamic equations with horizontal dissipation and horizontal magnetic diffusion were
studied. By means of anisotropic Littlewood-Paley analysis, Yue and Zhong proved the
global well-posedness of the three dimensional incompressible anisotropic magnetohydro-
dynamics equations in the anisotropic Sobolev spaces of type H%*(R3) with so > %
in [26]. The global existence and regularity for a system of the two-dimensional mag-
netohydrodynamic equations with only directional hyper-resistivity were established in
9].

The Navier-Stokes equations and related models with damping were investigated in
[3, 12, 14, 15, 16, 17, 24]. In [2], Bessaih, Trabelsi and Zorgati first introduced the
anisotropic Navier-Stokes equations with damping term and proved the existence and
uniqueness of global solutions for the modified anisotropic three-dimensional Navier-
Stokes equations. In [24], Titi and Trabelsi proved the global well-posedness of solutions
to a three-dimensional magnetohydrodynamical model in porous media for § > 4. In
[18], the global well-posedness of the three dimensional micropolar equations with partial
viscosity and damping was proved for 5 > 4.

In this paper, our main purpose is to establish the well-posedness for the modified
anisotropic 3D Boussinesq equations with damping. The main difficulty lies in dealing
with the anisotropy estimation. We first prove the existence and uniqueness of global
solution of system (1.1) for 8 > 4 with ug € H*'(R3?) and ug € H*(R?), respectively.



Then we get the existence and uniqueness of global solution of system (1.2) for 5 > 3.
Finally, we prove the unique global smooth solution of system (1.2) for s > 3.

The outline of the paper is as follows. In section 2, we give some necessary notions
and main results. We will prove Theorem 2.1 and Theorem 2.2 in section 3. Then, based
on the results in previous sections, the proofs of Theorem 2.3 and Theorem 2.4 are given
in section 4.

2 Preliminaries

In this section, we introduce some useful notations and definitions. Denote x = (z1, x2, x3),
where xj, := (21, x2) is the horizontal variable and z, := x3 is the vertical variable. Re-

ferring to the Chapter VI in [1, 13|, we define the anisotropic Sobolev spaces as follows.

For any s,s’ € R, assume that H*® is the set of tempered distributions ¢ € S’(R3) such

that

9120 = [ (L1610 + lea)” ()P < oo

The space H**" endowed with the norm || - [|5+ is a Hilbert space. For exponents p,q €
[1,00), LY (L$) denotes the space LP(Ry, X Ry,, LY(Ry,)) which is endowed with the norm

P 1
falligezzy =1 ([ uConaa) tdaa)’ ey
R2 JR

The space L}(L) can be defined similarly. Let || - || z» be the LP(R®) norm for p > 1. For
s € R, let H® := W*?2 be the usual Sobolev space endowed with the norm

Julfy: = [ 1+ 6P la(e) P

Now we present the main results of this paper.

Theorem 2.1. Let 8 > 4, ug € H* (R3) and 0y € H'(R3) such that divug = 0. The
system (1.1) has a unique global solution (u(t),0(t)) satisfying

u(t) € Lis.(RT; HOM(R®) N L, (R HYN(RY) 0 LE (RT; LAHH(RY)),
0(t) € Lig.(RY; H' (R)) N L (RY; H(R?)).

Theorem 2.2. Let f > 4, ug € H'(R3) and 6y € H'(R3) such that divug = 0. The
system (1.1) has a unique global solution (u(t),0(t)) satisfying

u(t) € LS (RY; HY(R?) N LEH (R LATHRY)), Vi e LY (RT; HY(R?)),

loc loc
0(t) € Lis(R*; H'(R?) N L, (RT; H*(R?)),
dru(t) € L, (RY; LA (R?)), 90(t) € Li, (RY; L*(R?)).



Theorem 2.3. Let B > 3, ug € H'(R?) and 6y € H*'(R3) such that divug = 0. The
system (1.2) has a unique global solution (u(t),0(t)) satisfying

u(t) € L5, (RT; H' (R)) 0 Ly, (RY; HA(R®) N L HH(RY; LAF(R?)),
0(t) € Lis, (R HO'(R?)) N Li, (RT; HYH(RY)).
Theorem 2.4. Let 3 >3, s > 3, ugp € H*(R3) and 6y € H*(R3) such that divug = 0.
The system (1.2) has a unique global smooth solution (u(t),0(t)) satisfying
u(t) € Lig(R™; H(R?)) N Li, (RT3 H(R?)),
0(t) € Lis. (R H*(RY)),  Vad(t) € Lipo(RT; H(R?)).

3 Existence and uniqueness of global solution for the ve-
locity anisotropic system

This section concerns the existence and uniqueness of global solution of system (1.1) for
8 > 4. We will prove Theorem 2.1 and Theorem 2.2 with different smooth conditions of
initial values.

3.1 Proof of Theorem 2.1

We first consider the case that the initial value ug € H>*(R3) and 6y € HY(R3) . To
prove Theorem 2.1, we firstly need to give some priori estimates in the following.
Taking the L? inner product of the second equation of (1.1) with 6, we get

1d
2dt
Integrating over [0, t], it yields that

16172 + IVO]Z> = 0.

t
10122 +2 / IV012.ds = (1602 (3.1)

Taking the L? inner product of the first equation of (1.1) with u, we have
1d »
gl + ¥l + [l 732, = [ Gesuds < Jul200]

R3
< lullze + 100172 < llullzz2 + 16017

Applying Gronwall inequality, we get
t
()7 +/0 (IVaulFz + el 75 )ds < Ot uo, b0). (3.2)

Taking the L? inner product of the second equation of (1.1) with —A#, it yields that, for
B >4,

1d

— 2012, + | A0)2, = / (1 V) Addz
2dt s
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< o190 x| A6] 12

52 514
< Cllull s |IVOI 737 |A0]] 2
2(B+1)

1 &
< S1A0ILe + Cllull 523 IVOIIZ:

1
< SIAGIIZ: + O+ [lull 5 VO] (33)
Consequently
d
ZIVOIZ: + 180172 < CO+ lull 51D VO . (3.4)

By Gronwall inequality again, it is easy to get that
t
IO + [ 180]Eads < Ot o, b0). (3.5)
0

Taking the L? inner product of the first equation of (1.1) with —93u and the integration
by parts, it yields that

1d
2 dt

AB-1)

(B+1)?
= / (u- V)udiudr — [ Besd3udz
R3 R3

B-1 =1
183ull72 + | VadsulFa+|ul = dsull72 + 19slul = 175

= Il(t) +Ig(t). (36)

For I1(t), by integration by parts, we have for 8 > 3

3 3
I1(t) = — Z /R3 33ui8iuj83ujd:v - Z /R;s uiaiagujagujdx

ij=1 Q=1
2 3 3
= — Z Z/ O3u;0;u;03ujdx — Z O3u303u;03u;dx
i—1 j—1 /R? j=1 /B3
2 3 2 3
= — Z Z / 83u¢8iuj03ujdx + Z Z / 8,~ui83uj83ujdx
i—1 j=1/R® i=1 j=1 'R
2 3 2 3
= Z/ ujagu]'aiag,uida? + ZZ/ uj83ui8i83ujd:c
i=1 j—17R® =1 j—1 7R’
2 3
-2 Z Z / uiagujﬁi(?gujdw
i=1 j—1 7R
2 2 3
< Z / ]ujHagujHazaguz]dx + Z Z/ |U]H83U1H8183ujldl‘
i=1 j=1'K° i=1 j=1’K°



2 3
2 Z Z /ﬂw |u;||03u;|0;03u;|dx

i=1 j=1
2 B=3
< Af[|ul[Osul 7T || o1 |[|O5u] 7T ||L42<;_—31> IVhOsul 12

B—3

B-1 21 =
< Clllul "= dgul| > " |9sull 72" | Vidsul .2
< 5IVadsullzz + Slllul 7T dsullzz + Cl|dsul72. (3.7)
For I5(t), applying the Holder inequality and Young inequality, we have
Ip(t) < 1|050]| 12105 2 < (1036172 + [95ull72 < [ VOI[72 + [[D5ul]. (3.8)
Inserting the estimates of (3.7) and (3.8) into (3.6), we have

1d

1 1 B-1 4(6-1) A1
5@w&uﬁg+§uvmwm;+5MM2 %uﬁg+(5+1yH%WI2Hé
< (C+1)||05ull22 + (| V022 (3.9)
Then, we get

d -1 p=1
ﬁHasuHia+HVh(93UH%2+HIUI z Ozul|7> + [|0sful 7z |72
< C(|10sull7> + VO][72)- (3.10)

By Gronwall inequality, we have
2 ! 2 -1 2 8219
103ullz2 + [ (IVaOsullzz + [[lul 2" Osullze + [18s|ul =" [[72)ds < C(t,uo,60).  (3.11)
0

Next, we will prove the uniqueness of strong solutions of (1.1). Let (v(t),601(t)) and
(w(t), 02(t)) be two solutions of system (1.1) with the same initial data. Setting (u,p, ) =
(v —w,p1 — p2,01 — 62), we get the following form:

o+ (v-V)u+ (u- V)w — Apu+ 0[P~ — |w|~lw + Vp = fes,
00 — A0+ (v-V)§+ (u-V)by =0, (3.12)
V-u=0.

Multiplying both sides of the first equation of (3.12) by u and the second equation of
(3.12) by 0, respectively, we have

d _ -
g g5l + 16132+l + VO3 + | (1ol 0 = ful*~ wudo

= —/ (u- V)wudr — / (u-V)ba0dx +/ Bezudx
R3 R3 R3

= J1(t) + Jo(t) + J5(t). (3.13)



Inspired by [3, 14, 15, 16], it yields that

/ (Jo]* Lo — |w|?~tw)udz > 0. (3.14)
R3

By Sobolev embedding H}% — L;ll, we get for all u € L2 N H,ll
i) < © [ ellig sz
< Cllull 2 Vil 2
Bearing in mind that d3ug = —divyuy, we get
[03us|| L2 < Cl[Vhul| 2.

For Ji(t), by Holder inequality and Gagliardo-Nirenberg inequality, J;(¢) can be estimat-
ed as follows

2 3 3
Jl(t) = — Z Z /R3 uiﬁiwjujd:v — Z /R3 u;;é?gwjujd:):
7j=1

i=1 j=1
2 3 3
<ZZ/ lluz'lngg||3z'wj|!LgHug'HL§dx3+Z/ lusll 2 [|05w; || 4 || 2 ds
i=1 j=1"R =17k

< CthwHLgO(L%)HUH%%(Li) + CHU3HL3°(L%L)Ha3w”L%(Lﬁ)”uHL%(Lﬁ)

< OV 2V ndsew]| 2 ull 12 |Vl

- Cllus | 293 | 22 1 Bst0l| 2, | V50 2, l] 2, 1V 2

< OV 2V ndsew]| 2 ull 12 |Vl

+ Cllull 21Vl 211050 2, |V 5050 2,

< 21Vl + O(IVnwls + [swl3a + [ Vadswlfa) ullz (3.15)

On the other hand, by Hoélder inequality and Gagliardo-Nirenberg inequality again, to-
gether with Young inequality, Ja(t) can be estimated by

Jo(t) < [lullL2(10]| 6 [[VO2]| s
1 1
< Cllull21V0l 21V 02| 2. | Ab2 |l 7
1
< SIVOIIZ: + ClIVOa 2| As| ol

IN

1

SIVOIIT2 + (V0272 + [ Aba|[72) ul7- (3.16)
2

For J3(t), by Holder inequality and Young inequality, we get

Ja(t) < lull 2116l 2 < [[ul72 + 161172 (3.17)

7



Putting all the results (3.14)-(3.17) into (3.13), it yields that

@l + 1012) + IVl + V0122 < OO+ [Vl + 253
I VadswlZa + [ V62l + 12002 (lullZe + [0]2:).  (3.18)
By Gronwall inequality, it is easy to get
lu()II72 + 101172 <
C(|luol132 + [16032)elo

Then, by (3.2), (3.5) and (3.11), the uniqueness of the solution is proved, and then the
proof of Theorem 2.1 is completed.

Jo A IVRwIR o +1103w]2 5+ VR Osw]|2 5 +[V02]|2 o +[| 20212 5 )ds (3.19)

3.2 Proof of Theorem 2.2

In this subsection, we get a higher regularity about the solution of system (1.1) with a
more smooth initial value.

Step 1. Taking the L? inner product of the first equation of (1.1) with —Awu and
integration by parts, we obtain

1d B-1 4B8-1) 41
g gt Tl + IV Va2 ulfs + 1V
:/ (u-VuAudr — | BesAudz
R3 R3
= Ig(t) + I4(t). (320)
For I5(t), integration by parts, we have
3
—Z/ OpuNVuliudr
R3
= Z Z / O uiOjudyude
k=1 i=1
3 3
k=1 i=1 7R’
2 3 2
= Z/ uakulakazudx—kz:/ uakU3akagud$+/ ud3u30303udr
i=1 k=1 7R k—17/R° R?
= I (t) + Is2(t) + I33(1). (3:21)

For I3;(t), by Holder inequality and Young inequality, for 5 > 3, I3;1(t) can be estimated
by

I3 (t / lu||Vul| VV pu|dz

8



IN

2 B=3
Hul [Vl 7= | o [[[Vu] 7T \|L2<Bﬂ_—31> IVVihu| 2

IN

1 B-1 1
Sl TVl + IVl + O Tull (322)

For I39(t), by Holder inequality, Gagliardo-Nirenberg inequality and Young inequality,
for > 3, I32(t) can be estimated by

I (t) < / Vil 9 dulde
R

< / lu||Vul| VV pu|dz
R3

2 B=3
< [l Vul 7= Lo [[[Vul 51 ||L42<g:31> IVVhul| 2
Loest o 1 2 2
< gllel™= Vullzz + SV Vhullze + Ol Vulz.. (3.23)
For Is3(t), since O3usz = —divjup, we have for § > 3

2
Jg(t) = — Z /R3 u@iuiﬁgagudx
i=1

2 2
= Z/ 83uaiui83uda:+2/ ud3ud;O3u;dx
i—1 7R i—1 /R

_2 B=3
< 10sul agy IVatll e 1) 105wl gy + Mll ValF o [IVul 52 s [V Vhullze

< Cl10sull 21V nDsdl 21Vl 2 195wl + Cllul 5 Tl 3T IVl 157 IV Va1

< Closull 2 IV ullf Vel o + IVl + Sl 7l + OVl

< {1Vl + el "Vl + CIVuls + Closulal Vul (3.21)
Putting (3.22)-(3.24) into (3.21), we get

I5(1) < LIV Vhull3a + 7 V3 + O Vuls + Closul | Va3
By Hélder inequality and Young inequality, I4(¢) can be estimated by
L) < |IVOll 2l Vullz2 < [IVO]IZ2 + |VullZ:.

Adding the estimates of I3(t) and I4(t), we arrive at

d B—1 Bs=1
gllvullig + IVVRull7e + llfulZ Vull7. + Ve Z |7,
< C|IVO|172 + C(1+ [|85ul|72) [ Vul 7.



By Gronwall inequality, noticing (3.5) and (3.11), we have
¢
B-1 81
IVl +/ (IVVullz + llul = Vul 7z + [ VIu| = [|72)ds < C(t,uo, 60)-  (3.25)
0

Step 2. Taking the L? inner product of the first equation of (1.1) with d;u and the
integration by parts, we obtain

1d
10eull72 t3 thu”L2+ H 1754 = (Bes, Opu) — ((u- V)u, Oyu)

6+1dt

2 B=3
101l 22 |10¢ul| L2 + [[ || [Vl =T || o || [ V] 51| L 2=D [Opul| 2

IN

| /\

*HatuHm + (0122 + lul 7 VulZs + | Vull22).
Then we have
d d +1 B-1
10ul|7> + aHVhUH%Q + %Huufﬁ#l < C(16117 + lllul =z V|2 + [ Vul32).

Integrating on [0, ], we get
Vsl + O + [ lonlads

t
B-1 +1
< C/O (161172 + lllul = Vull32 + [Vull72)ds + [ Vauoll32 + luoll it

< C(t,uO,Qo). (3.26)

Taking the L? inner product of the second equation of (1.1) with ;0 and the integration
by parts, we have for 8 > 4

08135 + 5 = IV6% = ~((u- V)6,0)

< N18:0] 2llull Lo VO] 20y
L B-1
B=2

< Cllo0l e llull Lo+ VOl 13 ||A9||’3+1

2(8—-2) 6
1 1
< *IlatHHLz + CHUHL,BH IV, (a0

2(B+1)

< §|!8t9H%2 +t35 HMHL2 +Cllull 557 1V01Z:

1
< ;l90l72 + §HA9HL2 + C(L+ Jull 52V 7. (3.27)
Consequently
d
ZIVOIL: + 120172 < 180]7: + C(1L+ |ull 50 VOIIZ- (3.28)
Integrating on [0,¢], by (3.2) and (3.5), we obtain
t
VoI + [ 016]ds < oo, ), (3.29)
0

which completes the proof of Theorem 2.2.
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4 Well-posedness of global solution for the temperature
anisotropic system

In this section, we will prove that system (1.2) has a unique global solution with different
smooth conditions of initial values.
4.1 Proof of Theorem 2.3

We first consider the case that the initial value ug € H(R3) and 6y € H*(R3). We will
get the existence and uniqueness of global solution of system (1.2) for g > 3.

Taking the L? inner product of the second equation of (1.2) with § and the integration
by parts, we have

||9HL2 +[IVadlZ2 = 0.
2dt

Integrating on [0, ¢], we obtain

t
16032 +2 [ 19,012ds = 1601 (a.1)
Similarly, taking the L? inner product of the first equation of (1.2) with u, we have

1d .
Sl + [ Vul2s + el 5 = (Ges,u)

<101l 2 llull g2 < [l6oll72 + llul7.

By Gronwall inequality, we obtain
¢
1
lu(t)]I72 +/0 (IVul72 + llull 75 ds < C(t,uo, 6). (4.2)

Taking the L? inner product of the first equation of (1.2) with —Aw and the integration
by parts, for 8 > 3, we have

1d 48— 1)

IValZ: + | Au)Zatllul = Full?s + 191l 5 12

2dt (B+1)?
= /R3 (u- V)uAudz — /R3 fes Audx
= K1 (t) + Ko(t). (4.3)

For K (t), by Holder inequality and Young inequality, for 5 > 3, we get
Kai(t) < gl Auz. +C |U| [Vu|5=1|Vu|™ 5-1dz

1
ZHAUHLQ + *IIIUI T Vul?: + O Vul3. (4.4)

11



For Ks(t), by Hélder and Young’s inequalities, we have
1
Ks(t) < [|Aul|2]|0] 2 < 3 AulZz + [10]7- (4.5)
Putting (4.4) and (4.5) into (4.3), we have
”VUHL2 + ||AUHL2+|||U| VUHL2 + HVW HL2 = CHVUHL2 + C||9HL2 (4.6)

By Gronwall inequality, we obtain
2 ! 2 -1 2 8419
”VU||L2+/O (lAul[za+[[ul =" VullL2 + [[V]u[ 2" [[72)ds < C(¢, uo, o). (4.7)

Taking the L? inner product of the second equation of (1.2) with —936 and the integration
by parts, we have

5 dtH836HL2 + || VR332

= — 03u . V9830da:
R3

2
=—> | 05u;0i0050dx — / 3050050
— JR3 3

< ||83UHL3(L;§)HVh9HLoo )||839HL2 Lyt Ha?)uHLOO(L )H(939HL2 L)

< CH&&“H%zth&w”%zuvheﬂiatha?ﬁH;”839”22”Vh539\\22

+ Cl10sull 2, 195052, 19301121V 1050 .

< 2 IVkB3613 + OVl 2| Al 2 V0] 29561 2 + CIVulZs + || Aul22)]1 2563
< IV + CIVulRLIVAdIZ + COIVulZs + A3 05612

Consequently

d
10301172 + [ Vrds0lIZ < ClIVull L[ Vabl7z + C(IVullZz + [|AullZ2) 950172

By Gronwall inequality, we obtain

t
1056132 +/0 |V 1050|72ds < C(t, uo, bp). (4.8)
Now, we will prove the uniqueness of solutions of system (1.2). Let (1, p, 9) d (a,p,0)
be two solution of (1.2) with the same initial data. Assume that u =u —w, p =p— p,
0 =0 -0, it is easy to get the following form:
du—Au+ (- Vyu+ (u-V)u+ @~ — |a|P i + Vp = fes,
0l — A0+ (u-V)0+ (u-V)§ =0, (4.9)

V-u=0.

12



Taking first the L? inner product of the first equation of (4.9) with u and the second
equation with @, respectively, the integration by parts, and then taking all results into
account, we have

1d

g gl + 16132+l + 190132 + [ (fal*~'a— )" ude

= —/ (u-V)audr + | Oesudr — / (u - V)00dz
R3 R3 R3
5
i=3
Inspired by [3, 14, 15, 16], it is easy to prove that
/ (alPa — [a)°~@)udz > 0. (4.11)
R3

For K3(t), by Holder inequality, Gagliardo-Nirenberg inequality and Young inequality,
we have
Ks(t) < 31Vl 2 < Cllull 2 [ Vul £Vl 2
< {IVullZs + IVl uls. (112)
For K4(t), by Holder inequality and Young inequality, we have
Kat) < 6] zallull 2 < 10125 + ullZs. (4.13)

For K5(t), we get

K5(t) = 22:/ u;0;00dx / u30300dx
i=1 /R R
< HUHL%(Li)théHLgO(Li)HGHL%(L‘}L) + HUHLgO(L%L)||639~||L3(L;1L)||9HL3(L;§)
< ClullZ, IVl 2,V 4112 V5058112, 10]1 2, 11901 2
- Cllul 2, 95wl 2, 196012, 1750112, 10112, |V 1612,
< $IVulZs + 51V + Clull 2 |Vl 2 1905812 0] 2
+ Cllul 2119501 2 11581 1] 1.
< 11Vl + S19481R
T+ CUIVABI2: + 1058122 + 1V5058]22) (lul22 + 16]122). (4.14)

Putting (4.11)-(4.14) into (4.10), we have
d
2 (ullZz + 10172) + [VullZ2 + Va0l 72

13



< C(1+ |Valge + [IVa0l7: + 1050172 + [ Vr0s0l72) (lulZ2 + [10]Z2)- (4.15)

By virtue of Gronwall inequality, we obtain

t
) + 100132 + [ (I7uls + 19013

4 2 2
< ([luol2> + [|6o]|22)elo Jo IVl +HIVROI? 5 +1050112 o+ V]| 5 )ds (4.16)

The uniqueness of the solution of system (1.2) is proved. This completes the proof of
Theorem 2.3.

4.2 Proof of Theorem 2.4

In this subsection we suppose higher regularities on the initial values, i.e. ug € H*(R?)
and 6y € H*(R3). In this case the existence and uniqueness of global smooth solution of
system (1.2) can be obtained. To begin with, we deduce some priori estimates.

Step 1. Taking the L? inner product of the second equation of (1.2) with —A# and the
integration by parts, we have

37| VOIE + 1991 = [ (u-V)pn0ds
< IVull e e V0122
< OVl 2,19 0sul| 2 1 V0] 2|V V461
<l 2,18l 2, V0]l 2 [V V40
< SIVVAOIZ: + CUITulls + [ Aul2) V62
Consequently

d
ZIVOIL + IVVaollZ: < C(IVulgz + [ AulZ2) [ VOIIZ:.

By Gronwall inequality and (4.7), we have

t
IO + [ I9901Rads < Ot 0. b0). (4.17)
0

Step 2. Taking the L? inner product of the first equation of (1.2) with d;u and the
integration by parts, for 5 > 3, we have

41
02 + 3 SVl + e B g [ ead
= —/ (u - V)udpudx + fesdrudr

R3 R3

_2 B=3
< Ml VulPlps-s Va7 2@y 10wliz2 + 1912210l 2

14



1
< Slowlzz + C(10172 + el =" Fulls + [ Vul22).

Moreover,

1
072 + (HVUIIL2 +ull ) < CUI3 + ul = Vull3s + [ Vull3).

Integrating on [0, t], we get

IVu(®) 22 + [u@) 2, + / |00ul22ds < C(t, uo, ). (4.18)

Taking the L? inner product of the second equation of (1.2) with ;6 and the integration
by parts, we have

10:0]|7 +1 ”vhHHLz = —/3(u - V)08,0dx:
R

2dt
< lull o 10 o100l 2+l ) 1950 2 ) 1 9461

< CHl IV ull I V74012219101 22 + Clul o 10l o) 195012172601 22110461 12
< 110813 + O(lul3a + |Vul32) [V V4012

+ Cllull s g 1050l ) IV 22 [ V61132 10

< J1061: + Ol + 19ul2)I 9 VA1

+ Clul 2|Vl 2 | Aul 5 [ VO [V V0] 2212161

< 1001 + Ol + 1 9ulE: + DIVl

+ Cllull Vel | vl 2 V612

< 10813 + Ol + 1 9ullE: + DIVl

Ol AU + Ol [ Va4 [V

Consequently

d
18601172 + — Va0l 7> < CllullZ: + [VullZz + DIVVAO|T2 + ClldulF,
+ w22V ul| 72 V|72

Integrating on [0, ], we get

t
IVa6(OI3:+ [ 1000]32ds < Ot b0) (4.19)
0
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Step 3. Applying the operator 9; to the first equation of (1.2), and then taking the L?
inner product to the result with d;u and the integration by parts, we obtain

1d _
3 gpllols + 190l + [ a(ul ' wdruds
2dt R3

= —/ (Opu - V)u@wdx—k/ O¢(0es)Opudx

R3 R3
< Vull g2 0eul 24 + 11846 L2 [ Opul | 2
1 3
< Ol Vullz2l|Oeull 72 IV Orull 1o + [|0:0]| 2 || Opu]| .2
1
< §HV<9WH%2 +C(1+ [ Vull72) [0l 72 + Cl0:0]|72-
Moveover,

d
Zl0wllZe + Vol < C(+ [[Vullpa)[0ml72 + Cllow]7..

Noticing (4.7) and (4.19), by Gronwall inequality we have
t
19 () 125 +/ IV OhulZads < C(t uo, 0)- (4.20)
0

Applying the operator 9; to the second equation of (1.2), and then taking the L? inner
product to the result with 9.0 and the integration by parts, we obtain

33510013+ 19,001 = = | 0uvon,0da

< CHatuHLgo(Lﬁ)thHHLg(Lﬁ)HatgHLg(Lg) + HatUHLgo(Lg)‘\339”133(%)HateHLg(L;g)
< Cl0pull2: 1050,ll 2, |V 40112, 1V V401 2, 1900112, [ V1040112,

- C0vul|, 110500l 2, 1050112, V1050112, 00112, V12,01 2

< ClOul| 2 IV Brul| 2, [ V401 22 1V V001 2. 194012, V040112,

+ Cl0vul| 2,1V Oyl 2, 05011 2, [V V40112, 10,0112, V048 2,

< SIVBOI3: + V0wl + IVT4613 + Clowl 2946132 0013

+ Clvull2105]12: 00112

1
< S IVrOOITz + IV Oulliz + IVVRON72 + (10wullzz + IVa01 L2 + [1801172) 100 72-
Consequently

d
1001172 + 1V10:072 < C(IVOu] 72 + [VVrOL2)
+C(l10wullz2 + [V1Ollz2 + 1050172)10:0112 - (4.21)
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By (4.8), (4.17), (4.19), (4.20) and Gronwall inequality, it yields that
t
10,0132 +/0 |V 10:0||72ds < C(t, uo, 6p). (4.22)

Step 4. Taking the L? inner product of the first equation of (1.2) with —Aw and the
integration by parts, we have

51 4(8—1) 41
1Au|Z2+lul = Vullfe + 257 I VIul = |17

(B+1)2

= OruAudr + / (u- V)uAudz — fes Audx
R3 R3 R3

1 =1 1

< C(l|0wul|72 + [ Vull72 + [10]72) + Sl Vull72 + §HAUHiz-

Moreover,
2 -1 2 BFL 9 2 2 2
[Aul|zo + [[lul = Vulzo + [VIul 2 17 < C(10wllz> + [[Vullzz + [10]]72)-
By (4.1), (4.7), (4.20), we have
2 -1 2 819
[Aul|7s + [[[ul 2" Vull7, + [[V]u] 2" [|7, < C(E, uo, bo)- (4.23)

Taking the L? inner product of the second equation of (1.2) with —A6 and the integra-
tion by parts, we have

|ARO)|2, = / 80 0dx + / (u- V)0AL0dz
R3 R3
< (1001l L2 | ARl L2 + [lullLoe VO] L2 | 2RO L2

IN

1
NAR0ILz + ClOOIIL + Clullz<[IVOI 72

IN

%I!Afﬁ\liz +C(10:01172 + llulz + VO 72).
Consequently
1An0N72 < C(10011Z2 + ullzo + VO] 72)- (4.24)
By (4.2), (4.7), (4.23), we have
el < ullf s < O, uo,00) (4.25)
Also, by (4.17), (4.22), (4.25), we have
|ALONZ 2 < C(t, uo, 0p). (4.26)
Step 5. Applying the operator 9; to the first equation of (1.2), we can get
00w + 9y (u - Vu) — Adyu + 0 (|ul’~1u) + Vayp = 9(fes). (4.27)
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Taking the L? inner product of the above equation with —Ad;u and the integration by

parts, we have

1d
2 dt

+ / 0, (0es) Adyuds|
R3
= Kg(t) + K7(t) + Ks(t).
For Kg(t), by Holder inequality, we have
Kg(t) < |/ OuVulAoudzr| + |/ uVOoruAdyudzr|
R3 R3

< [|AG¢ul| 2 |0l Lo | Vull s + [lulloe [V Orul| L2 || ADpu]l 2
1
< J180wl: + ClIVull s Vol zz + Cllulie Vol

1
< J180wllf: + CllullLz + 1AullZe + [[ull ) VOrullZ..

For K7(t), it is obvious that

_ 1 2(8—1
Kr(t) < Ol Al 2 [l 10012 < GlIAGeullZ2 + Cllul 72| Okul 2.

For Kg(t), by Holder inequality and Young inequality, we have

Ks(t) < 11001 r2ll Adeul| 12 < L1 Adu]|72 + CllO0] 7.

o
8
Putting (4.29)-(4.31) into (4.28), we obtain

Vopul|22 + | Adull22 < C|0:0][22 + Cllul 32~ | Opul|22
+ C(J[ull2z + | Au|Zz + [|u2o) VO 22

4
dt

IV Oul22 + | Al < \/sat(qu)-A@tudﬂ +\/38t(\u|*31u)A8tudx\
R R

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

By virtue of Gronwall inequality, we can get from (4.2), (4.20), (4.22), (4.23) and (4.25)

that

¢
VO3 +/ | Adul|72ds < O(t, ug, bp).
0

(4.33)

Applying the operator V3 to the second equation of (1.2), and then taking the L? inner

product to the result with VJ36 and the integration by parts, we obtain

1d

f—HV&«;GH%g + ||vvhage|yig = —/ Vos(u - VO)VOs0dz
2 dt R3

= — [ V(05uV0 + uVds0)VIs0d
RS
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= - » VosuVOVOosbdr — ” 03uNVVOVO30dx — s VuV 930V 0s0dzx
= Ky(t) + Kio(t) + K11 (t). (4.34)
For Ky(t), by Sobolev inequality and Young inequality, it yields that
Ko(t) < [[VO3ull 12IVO|| oo (1.4) IV 0301l L2 12

1 1

< OVl 2 V01 12y 905014 ) IV 060 0

1 1
< OV sul 29612, ) IVOs61 2, 11 IV0561 12 1)

) )
1 1 3 3
< Ol Aul| 2| VOl £ [V VRO 22 V0501 £ | VV 130 £

< H|VV0012: + CUVVAIIZ + ClAuls + IVOILIVas0)2..  (4.35)
For Kjo(t), by Sobolev inequality and Young inequality, we get
Kro(t) < 110sull 1) IV Va0l Lo (22) V0501 3 0y + V050172 10 19050l Lo 12)
< C|0sull 2,1Vl 2, [V V0112, [V V10502, [V 06012, 1V V302,
+ V00|12V V050 12 Bl 2 | D551 2
< SIVLas0R. + CITVAl3:
+C(IVullZz + IVulle + [Aull7z + [|Aul12) [ V50172 (4.36)
Similarly, for K11(t), it turns out that
K (t) < Hva?ﬁHig(L%)HVUHLgo(L%L)
< OV 00 12V V4050112 |Vl 2, VO] 2
< énvvhageuiz + C(IVulZs + (| Au|22)|V850]|2. (4.37)
Putting (4.35)-(4.37) into (4.34), we have
V030|132 + IV V4030]72 < CIVVRO|| T + C([Vullfz + [|VOlI72 + | Vul 1
+ 1 AulZs + [[AuL.) ]|V 050]12. (4.38)

=l
dt
By virtue of Gronwall inequality, we can get from (4.2), (4.7), (4.17) and (4.23) that

t
IV 050]22 + / IV 0030 2ads < C(t, o, o). (4.39)
0

Applying the operator J; to the second equation of (1.2), we have

0yOL0 — A0 + 6t(u . V@) =0. (440)
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Taking the L? inner product of (4.40) with —920;0 and the integration by parts, we
obtain

1d
5@”83@&@2 + |[V41050,0] 7

R3

= OuVo + uVd,0)020,0dx
3
R3

= — - 030;uNV0030,0dx — - 0yuV 030030,0dx — - 03uNV 0;0030,0dx
= Kio(t) + K13(t) + K14(2). (4.41)
For Kj5(t), by Holder inequality and Young inequality, it yields that
Ka(t) < [|0300ul| oo (£2) 1030001 213y [V Ol 12 14y
< COsrul| 21105050, 2. | 9501611 2 | V05001 22 V6 2.9 918 2,
< OVl 2, A0l 2, 950,01 24 11 105010112, |1V 01 2, [V 16112,
< SIVA0AI3 + CUIAGuE: + IV V1613)
+ C(IVOulLe + V6] L2) |9:0:6] 2. (4.42)
Similarly, for Kj3(t), it turns out that
K1(t) < 9rull (12190501 200, 19500811 3 1
< Oyl 22 950rul| . |V 0501 22 1V V10501 2 3001 2.1V 10540 .
< SIVA0AI3 + CUIVSBIE: + IV V10561132)
+ C(|0ulld2 + VOl L) |050,6] 2. (4.43)
Using a similar method, for Ki4(t), we get
Kuat) < 10504612 1) |95l 1) + 105001 12 1) | V046 o 13| sl
< C|05046]| 21|V 0048 12 | V] o | At
+ C05048) IV h016]1 % | V050401 2 |Vl B | At 2
< {IV308132 + CAIVula + |Aul32) 0500117
+ ClIVADIBI%e + CUIVullte + [ Aullta) 950,62 (4.44)

Putting (4.42)-(4.44) into (4.41), we obtain

d
103060122 + V030,02
dt
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< C(1A0ulZ2 + IVVROl[72 + VO30lI72 + [V VRDs0] 72 + I Vi0I72)
+ OVl + IVOI72 + 0pull e + [ Vull72 + | Aul7.
+ |Vl + | Aull72)1050:0 7. (4.45)

By virtue of Gronwall inequality, we can get from (4.17), (4.18), (4.20), (4.22), (4.23),
(4.33) and (4.39) that

t
1050,0]|2. + / 1V ,050,0]|2.ds < C(t, ug, 0). (4.46)
0

Step 6. Applying the operator A to the first equation of (1.2), and then taking the L?
inner product to the result with Au and the integration by parts, we obtain

ld
2dt
= — A((u - V)u)Audx — A(|u]5_1u)Aud$ + / A(fes)Audz

R3 R3 R3
= K15(t) + K16(t) + K17(t)‘ (447)

1|2 + IV AulZ,

By virtue of Holder inequality and Young inequality, Ki5(t), K16(t), K17(t) can be esti-
mated by

Kis(t) < [Vull24 |V Aull g2 + [ull s | Al 2]V Au] 12

< CIIVull2, |Aul 2, |V Aull 2 + lull o< || Aull 2V Au| 1

< JIVAUZ + COIVulds + 18wl + Julf)|Aul3e,  (449)
Ki6(t) < C||Vul| 2 |Jull 7=V Au]| 2

< SIVAulE: + Ol Va3, (1.49)
Kir(t) < V0] 2]V A 1.

< 1||VAuH%2 +C| Vo3 (4.50)

Putting (4.48)-(4.50) into (4.47), we have

d
%HMH% +[|[VAU|7. < C(VullF2 + [|Aull72 + [Jul|Fe) | Aull? -
2(8—1
+ CJJulPCV Va2 + O VO 2. (4.51)

By virtue of Gronwall inequality, we can get from (4.7), (4.17), (4.23) and (4.25) that

t
18u)ls + [ IV Aulads < C(t. . 00). (452)
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Applying the operator A to the second equation of (1.2), and then taking the L? inner
product to the result with Af and the integration by parts, we obtain

1d
53t |18013: 4 1AV6l =~ [ A((w- V)0)20dz
R3
< O Aullys | 966 A0 2 + ClIVall e 1) | A0 1
1 1 1 1
< CllAUl 2 AVUlZ | A0]2: + CIIVul 2,1V sull | A0 2 | AV 46 12

1 2
< §||AVh0H%2 + C(|Aull}, + [|AVUl|72 + [IVul| 2| Aul 12)]| A6 172

IN

1
§||AVh9H%2 + C(1+ [[Vull72 + | Aull7> + [AVU|72)[| AG]|7..
Then we have

d

@IMH%Q +|1AVLO)72 < C(1L+ [ Vulliz + |Aull7 + [|AVu]|72) [ A0

By virtue of Gronwall inequality, we can get from (4.7), (4.23) and (4.52) that
¢
180 + [ 1AT0[Rads < Ot b0). (453)
0

Lemma 4.1. Assume that s > 3 and (up,00) € H®. Then we have u € L*([0,T], H*) N
L2([0,T), H*tY), 6 € L>([0,T),H®), V0 € L*([0,T], H®), and there exists a positive
C(t,up, o) such that

T
el Zrs + 116117+ +/0 (lullZress +IVROIZ)ds < C(t, uo, bo).-

Proof. First from (4.1), (4.2), (4.52) and (4.53), we know

we L2([0,T], H?) N L*([0, T), H),
6 € L>([0,T),H?), V0 c L*([0,T], H>).
For s > 3, assume that we have gotten
we L=(0,T), H*~Y) N L*([0,T), H®), (4.54)
6 c L>=([0,T), H*™Y), V,0 € L*([0,T], H*™1). (4.55)
Based on above assumption, we prove
we L=([0,T], H*) N L*([0, T}, H**Y),
6 € L>([0,T), H®), V0 € L*([0,T], H®).

Applying the operator A® to the first equation of (1.2), and then taking the L? inner
product to the result with A®u and the integration by parts, we obtain

1d

5@”/\%”‘22 + | A*Vu|2, = —/ A*((u- V)uw)Asude — [ A3(|ul’~tu)ASudz
R3

RS
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+ [ A%(fez)A’udx
R3

= Ki5(t) + Kig(t) + Ki7(t).

For Kj7(t), by Holder inequality and Young inequality, we can deduce that
1
Kair(t) < |A°710)| 2 | AVl 12 < gHASVUH%z +C|IA>19)17..
For K15(t) and Ki6(t), by a similar method, it turns out that

Kas(8)] = | / A (- V) A uda
]R3

1

< SIAVullZe + ClIA (u- Va) .
1 S S s—

< SIAVulZe + ClllulZee A%l + [ VullZs A ullZs)
1 S S

< SIAVulZe + Clllulie + IVulze + | Aulza) 1A ] 72

and
Kig(t) < [|A* (Jul®~u) | 2| A*Vul| 2

1 2(8—1 -
< JIAVul g + Cllul 287 1A 7.
Putting (4.57)-(4.59) into (4.56), we have

d S S S
— A% ullF2 + [A°VulZ, < C(llullie + [[Vullfz + [Aul72) | A%l 7
dt

s— 2(B—1 s—
+ CIA0)2, + Cllul 32V A ) 2.

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

By virtue of Gronwall inequality, we can get from (4.7), (4.23), (4.25) and (4.54)-(4.55)

that

t
| ASul%, —l—/ |A*Vul|32ds < O(t,ug, 0).
0

(4.61)

Applying the operator A® to the second equation of (1.2), and then taking the L? inner
ymg

product to the result with A®f and the integration by parts, we obtain

1d
5 IO + 1A°T0l = = [ A%((u- V)0)A0d
2dt R3
- / (A*((u- V)8) — (u- V)A*0)A*0dz
R3
< CIA*ul o |90l 1A%l 2 + C IVl e %0122
< CJIAul 12| V015 [A%6] 2 + CIIVul o< |A°0] 22
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< IVl 2 + 10172 + A7 072 + |V L) [|A6] -

Consequently

d S S S S— S
AN + A0 72 < ClIAVulZ2 + CIONT: + 140172 + [IVull ) [ AOIIZ-.

By virtue of Gronwall inequality, we can get from (4.1), (4.25), (4.55) and (4.61) that

t
HASQH%Q +/ HASV}LGH%st < C(t,uO,eo). (4.62)
0

This completes the proof of Lemma 4.1. By standard method, this completes the proof
of Theorem 2.4.
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