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BÄCKLUND TRANSFORMATIONS AND
INFINITE NEW EXPLICIT EXACT

SOLUTIONS OF A VARIANT BOUSSINESQ
EQUATIONS∗

Yadong Shang1,2, Huafei Di2

Abstract This paper deals with a variant Boussinesq equations which de-
scribes the propagation of shallow water waves in a lake or near an ocean
beach. We derive out two hetero-Bäcklund transformations between the vari-
ant Boussinesq equations and two linear parabolic equations by using the ex-
tended homogeneous balance method. We also obtain two hetero-Bäcklund
transformations between the variant Boussinesq equations and Burgers equa-
tions. Furthermore, we obtain two hetero-Bäcklund transformation between
the variant Boussinesq equations and heat equations. By using these Bäcklund
transformations and so-called ”seed solution”, we obtain a large number of ex-
plicit exact solutions of the variant Boussinesq equations. Especially, The
infinite explicit exact singular wave solutions of variant Boussinesq equations
are obtained for the first time. It is worth noting that these singular wave
solutions of variant Boussinesq equations will blow up on some lines or curves
in the (x, t) plane. These facts reflect the complexity of the structure of the
solution of variant Boussinesq equations. It also reflects the complexity of
shallow water wave propagation from one aspect.

Keywords a variant Boussinesq equations, nonlinear transformation,exact
linearization, explicit exact solution, singular wave solution.
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1. Introduction

The following variant Boussinesq equationsut + (uv)x + vxxx = 0,

vt + ( 1
2v

2)x + ux = 0,
(1.1)

was derived by Broer [1] to describe the propagation of shallow water waves in a
lake or near an ocean beach. It can be converted from the completely integrable
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variant of the classical Boussinesq equationsρt + vx + (ρv)x + vxxx = 0,

vt + ( 1
2v

2)x + ρx = 0,
(1.2)

by the transformation u(x, t) = 1 + ρ(x, t). As a water wave model, u is the height
of free wave surface for fluid in the trough and v is the wave velocity. The same
system (1.1) in terms of the potential ϕ : u = ϕx was derived by Kaup [2]. He
also demonstrated that (1.1) is the compatibility condition for a pair of linear e-
quations. Kupershmidt [3] discussed the symmetry and conservation law of the
system (1.1) and the corresponding hierarchy by making use of the theory of non-
standard integrable systems developed in Section 2 of his paper. Sachs [4] studied
the Painlevé property, rational solutions and its equivalent relation with AKNS
system. Ablowitz [5] studied inverse scattering transformation solutions for the sys-
tem. Wang [6] obtained the solitary wave solutions of variant Boussinesq equations
(1.1) by using a homogeneous balance method. Fan and Zhang [7] constructed the
Bäcklund transformations of Modified Boussinesq equation (1.1) by an improved
homogeneous balance method. Furthermore, Fan [8] obtained the Bäcklund trans-
formation, linearization transformation and three types of similarity reductions by
using the generalized homogeneous balance technique. Some new symmetry reduc-
tions and similarity solutions of (1.1) were given by using direct reduction method
developed by Clarkson and Kruskal in [9]. They obtained two sets explicit ex-
act solutions of rational solutions of (1.1). Yan and Zhang [10] obtained several
types of explicit and exact travelling wave solutions by using an improved sine-
cosine method. In another paper, Yan and Zhang [11] presented a new generalized
transformation based upon the well-known Riccati equation and obtained some new
travelling wave solutions, which contain new solitary wave solutions, periodic wave
solutions, and the combined formal solitary wave solutions and periodic wave solu-
tions. In [12], Fan and Hon devised a new algebraic method to uniformly construct
a series of travelling wave solutions for two variant Boussinesq equations. These
solutions include soliton solutions, rational solutions, triangular periodic solutions,
Jacobi and Weierstrass doubly periodic wave solutions. In [13], the authors de-
rived the conservation laws of the variant Boussinesq system (1.1) by an interesting
method of increasing the order of partial differential equations. For more research-
es on traveling wave solutions and solitary wave solutions of variant Boussinesq
equations, refer to literatures [14–22] and references therein. For more recent re-
searches on the variant Boussinesq equation are recommended for readers to refer
to references [23–27]. The study of nonlinear phenomena plays an important role
in mathematical physics,chemistry, biology, astrophysics and geophysics. The exact
solutions of the nonlinear partial differential equation can not only provide some
inspiration for their qualitative research, but also be used to judge the superiority
or inferiority of the numerical methods. Some well established methods have been
proposed for obtaining exact solutions. Here are some recent typical literature that
needs to be mentioned [28–30].

In the literature mentioned above, we find that most of the obtained solutions
are traveling wave solutions, which are mainly global smooth solutions. Only a
few literatures have obtained some simple singular solutions. As we all know, the
structure and dynamical behavior of the solution of the nonlinear evolution equation
is very complex. In many cases, the solutions of nonlinear evolution equations have
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some singularity. Many of the solution of the initial value or/and initial boundary
value problem of nonlinear evolution equations will blow up in finite time, even
if the initial value is smooth. In order to reveal the structural complexity of the
solution of the nonlinear evolution equation, it is necessary to study the singular
solution of the equation.

In this paper, we analytically investigate the variant Boussinesq equations. First-
ly, we will transform the variant Boussinesq equations (1.1) into a linear equation by
introducing a nonlinear function transformation. Secondly, we obtain two hetero-
Bäcklund transformations between the variant Boussinesq equations and two linear
parabolic equations. We then obtain two hetro-Bäcklund transformations between
the variant Boussinesq equations and Burgers equations. Furthermore, we obtain
two hetero-Bäcklund transformations between the variant Boussinesq equations and
heat equations. Make use of these hetero-Bäcklund transformations and so-called
”seed solutions”, we construct infinite explicit exact solutions of the variant Boussi-
nesq equations (1.1) by solving the reduced equations. The infinite solutions include
single soliton solutions, multi-soliton solutions, rational solutions, and various forms
of singular solutions. These singular solutions will blow up on some lines or curves
of the (x, t) plane. The results reveal the complexity of the structure of solutions
of nonlinear equations.

2. Exact linearlization of Eqs.(1.1)

Over one hundred years agao, Bäcklund investigated transformation properties of
pseudospherical surfaces. As a consequence of this study, Bäcklund derived a trans-
formation which generates a new solution of the Sine-Gordon equation from a given
solution. Afterwards, people collectively referred to the relationship between one
solution of a partial differential equation and another as the Bäcklund transforma-
tion. These two solutions can be solutions of different partial differential equations
or systems, or they can be two solutions of the same equation. A hetero-Bäcklund
transformation, also called a non-auto-Bäcklund transformation, has been account-
ed as the relation between the solutions of different partial differential equations
or systems, while an auto-Bäcklund transformation, of the same partial differential
equation or system itself. The Bäcklund transformation is not only a useful method
to find exact solutions to some soliton equation from a trivial ’seed solution’ but
also related to infinite conservation laws and inverse scattering method.

In order to transform the variant Boussinesq equation (1.1) into linear equation,
we assume that Eqs.(1.1) possesses the solution in the form

u = α(lnϕ(x, t))xx + u0(x, t), v(x, t) = β(lnϕ(x, t))x + v0(x, t), (2.1)

where ϕ(x, t), u0(x, t), v0(x, t) are functions of indicated arguments to be determined
later and α, β are two constants to be determined.

From (2.1) , we have

ut = α[
ϕxxt
ϕ
− ϕxxϕt

ϕ2
− 2

ϕxϕxt
ϕ2

+ 2
ϕ2
xϕt
ϕ3

] + u0t,

vt = β[
ϕxt
ϕ
− ϕxϕt

ϕ2
] + v0t,

ux = α[
ϕxxx
ϕ
− 3

ϕxxϕx
ϕ2

+ 2
ϕ3
x

ϕ3
] + u0x,

(2.2)
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vx = β[
ϕxx
ϕ
− ϕ2

x

ϕ2
] + v0x,

vxxx = β[
ϕxxxx
ϕ
− 4

ϕxϕxxx
ϕ2

− 3
ϕ2
xx

ϕ2
+ 12

ϕ2
xϕxx
ϕ3

− 6
ϕ4
x

ϕ4
] + v0xxx,

Substituting the expressions above (2.2) into the left-hand side of Eqs. (1.1), yields

ut + (uv)x + vxxx

= α[
ϕxxt
ϕ
− ϕxxϕt

ϕ2
− 2

ϕxϕxt
ϕ2

+ 2
ϕ2
xϕt
ϕ3

] + u0t

+ αβ[
2ϕ4

x

ϕ4
− 3ϕ2

xϕxx
ϕ3

+
ϕxϕxxx
ϕ2

] + βu0x
ϕx
ϕ

+ αv0[
ϕxxx
ϕ
− 3

ϕxxϕx
ϕ2

+ 2
ϕ3
x

ϕ3
]

+ αβ[
ϕ2
xx

ϕ2
− 2

ϕ2
xϕxx
ϕ3

+
ϕ4
x

ϕ4
] + (βu0 + αv0x)[

ϕxx
ϕ
− ϕ2

x

ϕ2
] + (u0v0)x

+ β[
ϕxxxx
ϕ
− 4

ϕxϕxxx
ϕ2

− 3
ϕ2
xx

ϕ2
+ 12

ϕ2
xϕxx
ϕ3

− 6
ϕ4
x

ϕ4
] + v0xxx,

= (3αβ − 6β)
ϕ4
x

ϕ4
+ 2α

ϕ2
xϕt
ϕ3

+ (12β − 5αβ)
ϕ2
xϕxx
ϕ3

+ (αβ − 4β)
ϕxϕxxx
ϕ2

+ (αβ − 3β)
ϕ2
xx

ϕ2
− α[

ϕxxϕt
ϕ2

+ 2
ϕxϕxt
ϕ2

]

+ α
ϕxxt
ϕ

+ β
ϕxxxx
ϕ

+

{
βu0

ϕx
ϕ

+ αv0[
ϕxx
ϕ
− ϕ2

x

ϕ2
]

}
x

+ u0t + (u0v0)x + v0xxx.

(2.3)
and

vt + vvx + ux

= β[
ϕxt
ϕ
− ϕxϕt

ϕ2
] + β2[

ϕxϕxx
ϕ2

− ϕ3
x

ϕ3
] + α[

ϕxxx
ϕ
− 3

ϕxxϕx
ϕ2

+ 2
ϕ3
x

ϕ3
]

+ (βv0
ϕx
ϕ

)x + v0t + v0v0x + u0x,

= (2α− β2)
ϕ3
x

ϕ3
+ [β2 − 3α]

ϕxxϕx
ϕ2

− βϕxϕt
ϕ2

+ β
ϕxt
ϕ

+ α
ϕxxx
ϕ

+ (βv0
ϕx
ϕ

)x + v0t + v0v0x + u0x.

(2.4)

To simplify expression (2.3), (2.4) and determine α, β of (2.1), setting the coefficients

of
ϕ4

x

ϕ4 in (2.3) and
ϕ3

x

ϕ3 in (2.4) to zero yields a system of algebraic equations for α
and β

3αβ − 6β = 0, (2.5)

2α− β2 = 0. (2.6)

Considering α, β are non-zero, solving (2.5) and (2.6), we get

α = 2, β = ±2. (2.7)

Making use of (2.7), expressions (2.3) and (2.4) can be simplified as

ut + (uv)x + vxxx

=
2ϕ2

x

ϕ3
(αϕt + βϕxx + αv0ϕx)− 2ϕx

ϕ2
(αϕxt + βϕxxx + αv0ϕxx + βu0ϕx)

(2.8)
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− ϕxx
ϕ2

(αϕt + βϕxx + αv0ϕx) + ∂x(αϕxt + βϕxxx + αv0ϕxx + βu0ϕx)
1

ϕ

+ (βu0 − αv0x)
ϕ2
x

ϕ2
+ u0t + (u0v0)x + v0xxx.

and

vt + vvx + ux

= [−αϕxx − βϕt − βv0ϕx]
ϕx
ϕ2

+ (βϕt + αϕxx + βv0ϕx)x
1

ϕ
+ v0t + v0v0x + u0x.

(2.9)
It is easy to find that u(x, t), v(x, t) are the solution of (1.1), as long as ϕ(x, t) satisfy
the following compatibility conditions

αϕt + βϕxx + αv0ϕx = 0,

αϕxt + βϕxxx + αv0ϕxx + βu0ϕx = 0,

βϕt + αϕxx + βv0ϕx = 0,

(2.10)

while u0(x, t) and v0(x, t) satisfy the following compatibility conditions

u0t + (u0v0)x + v0xxx = 0,

v0t + v0v0x + u0x = 0,

βu0 − αv0x = 0.

(2.11)

From (2.10), taking into account (2.5), (2.6), the third equations of (2.11), we know
that ϕ(x, t) only needs to satisfy the linear parabolic equation

αϕt + βϕxx + αv0ϕx = 0. (2.12)

In summary, we have the following conclusion:
Theorem 1. If the functions v0(x, t) is the solutions of Burgers equation

v0t + v0v0x ± v0xx = 0 (2.13)

then there exist two hetero-Bäcklund transformations

u(x, t) = 2(lnϕ(x, t))xx ± v0x(x, t), v(x, t) = ±2(lnϕ(x, t))x + v0(x, t), (2.14)

between the variant Boussinesq equations (1.1) and the linear parabolic equations

ϕt ± ϕxx + v0ϕx = 0. (2.15)

Remark 1. Taking α = β = 2, from Theorem 1, we derive a hetero-Bäcklund
transformation

u(x, t) = 2(lnϕ(x, t))xx + u0(x, t), v(x, t) = 2(lnϕ(x, t))x + v0(x, t), (2.16)

where ϕ satisfy
ϕt + ϕxx + v0ϕx = 0, (2.17)

while u0, v0 is solution of the following equations

v0t + v0v0x + u0x = 0,

u0 − v0x = 0.
(2.18)
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This result is in agreement with the results obtained by [7-8]. However, the last
conditional equation u0 = v0x was omitted in the compatibility conditions (4.8) of
[7], all the compatibility conditions for u0 and v0 were even omitted in [8].

Remark 2. Taking α = 2, β = −2, from Theorem 1, we derive another hetero-
Bäcklund transformation

u(x, t) = 2(lnϕ(x, t))xx + u0(x, t), v(x, t) = −2(lnϕ(x, t))x + v0(x, t), (2.19)

where ϕ satisfy
ϕt + v0ϕx − ϕxx = 0, (2.20)

While u0, v0 is solution of the following equations

v0t + v0v0x + u0x = 0,

u0 + v0x = 0.
(2.21)

The Bäcklund transformation (2.19) with conditions (2.20) is obviously differen-
t from the Bäcklund transformation (2.16) with compatibility conditions (2.17).
This is a new Bäcklund transformation obtained in this article. This result is a
supplement to the results of literature [7-8].

Remark 3. From Theorem 1, setting u = ±vx, we find that the variant Boussi-
nesq equations (1.1) can be transformed into Burgers equation

vt + vvx ± vxx = 0. (2.22)

Remark 4. Furthermore, taking v0(x, t) = ϕ(x, t), we obtain two hetero-
Bäcklund transformations

u(x, t) = 2(lnϕ(x, t))xx ± ϕx(x, t), v(x, t) = ±2(lnϕ(x, t))x + ϕ(x, t), (2.23)

between the variant Boussinesq equations (1.1) and the Burgers equations

ϕt ± ϕxx + ϕϕx = 0. (2.24)

Remark 5. When taking v0 = 0 in Theorem 1, we obtain two hetero-Bäcklund
transformations

u(x, t) = 2(lnϕ(x, t))xx, v(x, t) = ±2(lnϕ(x, t))x (2.25)

between the variant Boussinesq equations (1.1) and the heat equations

ϕt ± ϕxx = 0. (2.26)

By using the different Bäcklund transformations obtained above and starting from
different ”seed solutions”, we can obtain a large number of explicit exact solutions
of the variant Boussinesq equations (1.1).

3. Explicit exact solutions of Eqs.(1.1)

In this section, we focus on finding more new explicit exact solutions of the variant
Boussinesq equations.
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Taking the solution v0(x, t) of Burgers equation (1.1) as constant −c1, it is easy
to know that equation (2.15) has a solution ϕ(x, t) = x+c1t+c2. Thus the Bäcklund
transformation (2.14) gives the following explicit exact traveling wave solutions of
variant Boussinesq equations (1.1)u(x, t) = − 2

(x+c1t+c2)2
,

v(x, t) = −c1 ± 2
x+c1t+c2

.
(3.1)

where c1, c2 are two arbitrary constants. The rational solutions (3.1) here contain
the solutions obtained by the direct reduction method in [8,9] as a special case (the
case of the sign of (3.1) is positive). It should be pointed out that a minus sign is
omitted in front of u in the solution expression in [8].

In the case of v0 = Constant, we make a variable transformation w(x, t) =

e±(
v0
2 x−

v2
0
4 t)ϕ(x, t), then the Bäcklund transformation (2.14) becomes Bäcklund

transformation (2.25), and w(x, t) is the solution of equation (2.26). It is easy

to verify that ϕ(x, t) = (x + c1t + c2) exp∓( c12 x +
c21
4 t) is a solution of (2.15), so

the rational solutions (27) can also be obtained from the Bäcklund transformation
(2.23).

In [9], Fan and Zhang obtained two set of explicit exact solutions of variant
Boussinesq equations (1.1)

u = 0, v =
x− C1

t+ C2
.

and

u =
(x+ C1)2

9(t+ C2)2
, v =

2(x+ C1)

3(t+ C2)
.

It is easy to verify that ϕ(x, t) = x+C1

t+C2
is a solution of Burgers equation (2.24)(

one can also see [31, 32]). By using u = vx, v = ϕ(x, t), we know that variant
Boussinesq equations (1.1) have two sets of new explicit exact solutionsu(x, t) = ± 1

t+C2
,

v(x, t) = x+C1

t+C2
.

(3.2)

From the hetero-Bäcklund transformations (2.23) we can also obtain two sets of
new explicit exact solutions of variant Boussinesq equations (1.1)u(x, t) = − 2

(x+C1)2
± 1

t+C2
,

v(x, t) = ± 2
(x+C1)

+ x+C1

t+C2
.

(3.3)

In [33], S. Hood obtained the exact solution of Burgers equation ϕ(x, t) = x
t +

λ4

x+λ3t
, λ4 = 0, 2. by using direct method of Clarkson and Kruskal ((1.23) and (3.41)

of [33]). More general, we can find the solution of Burgers equation

ϕ(x, t) =
λ4

x+ λ3t+ c1 + c2c3
+
x+ c1
t+ c2

, λ4 = 0, 2. (3.4)
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(a) u(x, t) (b) v(x, t)

Figure 1. The surface plots of (3.3) when C1 = 1, C2 = −1

It should be noted the solution (3.4) here contains the solution (3.39) of [33] as a
special case. By u = vx, v = ϕ(x, t) we obtain another set of solutions of variant
Boussinesq equations u(x, t) = − 2

(x+λ3t+c1+c2c3)2
+ 1

t+c2
,

v(x, t) = 2
x+λ3t+c1+c2c3

+ x+c1
t+c2

.
(3.5)

From the hetero-Bäcklund transformations (2.23) and (3.4) we can another new
explicit exact solutions of variant Boussinesq equations (1.1).

(a) u(x, t) (b) v(x, t)

Figure 2. The surface plots of (3.5) when c1 = 1, c2 = 0, λ3 = 2

The explicit exact solutions (3.1),(3.2),(3.3), and (3.5) are extensions and sup-
plements to the corresponding results in References [8.9].

Next, we will obtain more explicit exact solutions of variant Boussinesq equations
(1.1) by using the solution of the heat conduction equation (2.26) and the Bäcklund
transform (2.25). We only discuss the case of positive sign in (2.26).

Case 1. Taking the static solution of Eq.(2.26) as ϕ(x, t) = ax + b, a, b are two
arbitrary constants that are not all zero, from the Bäcklund transformation (2.25),
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(a) u(x, t) (b) v(x, t)

Figure 3. The surface plots of (3.5) when c1 = 1, c2 = −1, λ3 = c3 = 2

we obtain a set of explicit exact solutions of Eqs. (1.1) as followsu(x, t) = −2a2
(ax+b)2 ,

v(x, t) = 2a
ax+b .

(3.6)

the solutions (3.6) are two sets of static solutions variant Boussinesq equations (1.1).

Case 2. Taking the solution of Eq. (2.26) as ϕ(x, t) = a(x2−2t)+bx+c, a, b, c are
three arbitrary constants that are not all zero, from the Bäcklund transformation
(2.25), we obtain a set of explicit exact solutions of Eqs.(1.1) as followsu(x, t) = 22ac−b2−2abx−2a2(x2+2t)

[a(x2−2t)+bx+c]2 ,

v(x, t) = 2 2ax+b
a(x2−2t)+bx+c .

(3.7)

(a) u(x, t) (b) v(x, t)

Figure 4. The surface plots of (3.7) when a = b = c = 1

Case 3. Taking the solution of Eq. (2.26) as ϕ(x, t) = ax3+bx2+cx+d−(6ax+
2b)t, a, b, c, d are four arbitrary constants that are not all zero, from the Bäcklund
transformation (2.25), we obtain a set of explicit exact solutions of Eqs.(1.1) as
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followsu(x, t) = −2 3a2x4+4abx3+2b2x2+(2bc−6ad)x+c2−2bd+36a2t2+(4b2−12ac)t
[ax3+bx2+cx+d−(6ax+2b)t]2 ,

v(x, t) = 2 3ax2+2bx+c−6at
ax3+bx2+cx+d−(6ax+2b)t .

(3.8)

Case 4. Taking the solution of Eq.(2.26) as ϕ(x, t) = ax4 + bx3 + cx2 + dx +
e− (12ax2 + 6bx+ 2c)t+ 12at2, a, b, c, d, e are five arbitrary constants that are not
all zero, from the Bäcklund transformation (2.25), we obtain a set of explicit exact
solutions of Eqs.(1.1) as followsu(x, t) = 2 Q(x,t)

[ax4+bx3+cx2+dx+e−(12ax2+6bx+2c)t+12at2]2 ,

v(x, t) = 2 4ax3+3bx2+2cx+d−(24ax+6b)t
ax4+bx3+cx2+dx+e−(12ax2+6bx+2c)t+12at2 .

(3.9)

where Q(x, t) = −4a2x6− 6abx5 + 24a2x4t− (3b2 + 2ac)x4 + 24abx3t− 144a2x2t2 +
(4ad − 4bc)x3 + 24acx2t − 72abxt2 − 288a2t3 + 2(6ae − c2)x2 + 36(2ac − b2)t2 +
24adxt+ (6be− 2cd)x+ (12bd− 24ae− 4c2)t+ 2ce− d2.

Remark 6. In general, we can suppose that Eq. (2.26) has a solution in the
following form

ϕ(x, t) = Σki=0Pi(x)ti, k ≥ 1. (3.10)

where Pi(x) are the polynomial of its variable x. Pi(x) can be determined by solving
the following ordinary differential equations

P ′′0 (x) + P1(x) = 0,

P ′′1 (x) + 2P2(x) = 0,

.

.

.

P ′′k−1(x) + kPk(x) = 0,

P ′′k (x) = 0,

(3.11)

By combining Pi(x), the expression of ϕ(x, t) (3.10), and Bäcklund transforma-
tion (2.25), we can construct infinite explicit exact solutions of variant Boussinesq
equations (1.1).

Remark 6. It should be pointed out that all these singular wave solutions of
variant Boussinesq equations will blow up on some lines or curves in the (x, t) plane.

Case 5. Taking the solution of Eq. (2.26) as ϕ(x, t) = A+B exp(λ2t) sinλx,A,B, λ
are non-zero real constants,by using Bäcklund transformation (2.25), we obtain a
set of explicit exact solutions of Eqs.(1.1) as followsu(x, t) = −2λ2B [A sinλx+B exp(λ2t)] exp(λ2t)

[A+B exp(λ2t) sinλx]2 ,

v(x, t) = 2λB exp(λ2t) cosλx
A+B exp(λ2t) sinλx .

(3.12)
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(a) u(x, t) (b) v(x, t)

Figure 5. The surface plots of (3.12) when A = 1, B = −1, λ = 2

In specially, when A = 0, we obtain a set of explicit exact static periodic wave
solutions of variant Boussinesq equations (1)u(x, t) = −2λ2 csc2 λx,

v(x, t) = 2λ cotλx.
(3.13)

Case 6. Taking the solution of Eq. (2.26) as ϕ(x, t) = A+B exp(λ2t) cosλx,A,B, λ
are non-zero real constants, by using Bäcklund transformation (2.25), we obtain the
explicit exact solutions of Eqs.(1.1) as followsu(x, t) = −2λ2B [A cosλx+B exp(λ2t)] exp(λ2t)

[A+B exp(λ2t) cosλx]2 ,

v(x, t) = −2λB exp(λ2t) sinλx
A+B exp(λ2t) cosλx .

(3.14)

(a) u(x, t) (b) v(x, t)

Figure 6. The surface plots of (3.14) when A = −1, B = 2, λ = −2

In specially, when A = 0, we obtain a set of explicit exact static periodic wave
solutions of variant Boussinesq equations (1.1)u(x, t) = −2λ2 sec2 λx,

v(x, t) = −2λ tanλx.
(3.15)
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The solutions (3.12) and (3.14) are all periodic in the spatial direction. The solu-
tions (3.12) and (3.14) can be either globally smooth or singular, depending on the
choosing of constants A and B. When t → +∞, their asymptotic states are static
solutions (3.13) and (3.15), respectively.

Case 7. Taking the solution of Eq. (2.26) as φ(x, t) = A+B exp(kx− k2t), A,B
are non-zero real constants, we obtain the explicit exact solutions of Eqs.(1.1) as
follows u(x, t) = 2k2AB exp(kx−k2t)

[A+B exp(kx−k2t)]2 ,

v(x, t) = 2Bk exp(kx−k2t)
A+B exp(kx−k2t) .

(3.16)

Especially, when A = B = 1, the solution (3.16) becomes a set of one-soliton
solution, While A = 1, B = −1, the solution (3.16) becomes a set of singular
traveling wave solution. It is easy to see that the solutions (23) and (24) obtained
in Reference [29] are special cases of (3.16) here.

(a) u(x, t) (b) v(x, t)

Figure 7. The surface plots of (3.16) when A = 2, B = −1, k = 1

Remark 7. Using the superposition principle, one can obtain more solutions
of equation (2.26). Thus we can obtain abundant explicit exact solutions of variant
Boussinesq equations (1.1), such as multi-soliton solutions and so on.

Remark 8. If we take the negative sign in equation (2.26), we can also get the
corresponding explicit exact solutions,u(x, t) = −2λ2B [A sinλx+B exp(−λ2t)] exp(−λ2t)

[A+B exp(−λ2t) sinλx]2 ,

v(x, t) = −2λB exp(−λ2t) cosλx
A+B exp(−λ2t) sinλx .

(3.17)

In specially, when A = 0, we obtain a set of explicit exact static periodic wave
solutions of variant Boussinesq equations (1.1)u(x, t) = −2λ2 csc2 λx,

v(x, t) = −2λ cotλx.
(3.18)

and u(x, t) = −2λ2B [A cosλx+B exp(−λ2t)] exp(−λ2t)
[A+B exp(−λ2t) cosλx]2 ,

v(x, t) = 2λB exp(−λ2t) sinλx
A+B exp(−λ2t) cosλx .

(3.19)
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(a) u(x, t) (b) v(x, t)

Figure 8. The surface plots of (3.17) when A = 1, B = −1, λ = 2

(a) u(x, t) (b) v(x, t)

Figure 9. The surface plots of (3.19) when A = −1, B = 2, λ = −2

In specially, when A = 0, we obtain a set of explicit exact static periodic wave
solutions of variant Boussinesq equations (1.1)u(x, t) = −2λ2 sec2 λx,

v(x, t) = 2λ tanλx.
(3.20)

The solutions (3.17) and (3.19) are all periodic in the spatial direction. The solu-
tions (3.17) and (3.19) can be either globally smooth or singular, depending on the
choosing of constantsA and B. When t → +∞,they all asymptotically approach
zero.

And u(x, t) = 2k2AB exp(kx+k2t)
[A+B exp(kx+k2t)]2 ,

v(x, t) = −2Bk exp(kx+k2t)
A+B exp(kx+k2t) .

(3.21)

Especially, when A = B = 1, the solution (3.21) becomes a set of one-soliton
solution, WhileA = 1, B = 1, the solution (3.21) becomes a set of singular traveling
wave solution. The solitary wave solution solution (3.21) here is different from the
solutions (23) and (24) in Reference [29].
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(a) u(x, t) (b) v(x, t)

Figure 10. The surface plots of (3.21) when A = 3, B = −2, k = 2

In addition, equation (1.1) also admits the following explicit exact solutionsu(x, t) = 2λ2B [A sinhλx−B exp(λ2t)] exp(λ2t)
[A+B exp(λ2t) sinhλx]2 ,

v(x, t) = −2λB exp(λ2t) coshλx
A+B exp(λ2t) sinhλx .

(3.22)

and u(x, t) = 2λ2B [A coshλx+B exp(λ2t)] exp(λ2t)
[A+B exp(λ2t) coshλx]2 ,

v(x, t) = −2λB exp(λ2t) sinhλx
A+B exp(λ2t) coshλx .

(3.23)

(a) u(x, t) of (3.22) (b) v(x, t) of (3.22)

(c) u(x, t) of (3.23) (d) v(x, t) of (3.23)

Figure 11. The surface plots of (3.22) and (3.23) when A = B = λ = 1
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In specially, when A = 0 in (3.22),((3.23), respectively,) we obtain two set of
explicit exact static solutions of variant Boussinesq equations (1.1)u(x, t) = −2λ2csch2λx,

v(x, t) = −2λ cothλx.
(3.24)

and u(x, t) = 2λ2sech2λx,

v(x, t) = −2λ tanhλx.
(3.25)

For different values of parameters A and B, solution (3.22)and (3.23) can be either
a globally smooth solution or a singular solution. When t→ +∞, their asymptotic
states are static solutions (3.24) and (3.25), respectively.

4. Conclusions

In this paper, a variant Boussinesq equation has been investigated. It is shown
that the variant Boussinesq equation can be exactly linearized. We derive out two
hetero-Bäcklund transformations between the variant Boussinesq equation and t-
wo linear parabolic equation by using the simplified homogeneous balance method.
We also obtain two hetero-Bäcklund transformation between the variant Boussi-
nesq equation and Burgers equations. Furthermore, we obtain two hetero-Bäcklund
transformations between the variant Boussinesq equation and heat equations. By
using these Bäcklund transformations and so-called ”seed solution”, we obtain a
large number of explicit exact solutions of the variant Boussinesq equation. These
solutions include both globally smooth solutions, such as single soliton solutions,
multi soliton solutions, as well as a large number of singular traveling wave solution-
s and non traveling wave solutions. Especially, The infinite explicit exact singular
wave solutions of variant Boussinesq equation are obtained for the first time. It
is worth noting that these singular wave solutions of variant Boussinesq equations
will blow up on some lines or curves in the (x, t) plane. These facts reflect the
complexity of the structure of the solution of variant Boussinesq equations. It also
reflects the complexity of shallow water wave propagation from one aspect.
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