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Abstract

The study of the chaotic Chen dynamic System (CDS) has been a recent focus in the lit-
erature, with numerous works exploring its various chaotic features. However, the majority of
these studies have relied primarily on numerical techniques to investigate nonlinear dynamic
systems (NLDSs). In this context, our aim is to derive approximate analytical solutions for
the CDS by developing an iterative scheme. We have proven the convergence theorem for this
scheme, which ensures that our iterative process will converge to the exact solution. Addi-
tionally, we introduce a new method for constructing the extended center manifold, a critical
component in the analysis of dynamical systems. The characteristics of the global bifurcation
of the system components within the parameter space are explored. The error analysis of the
iterated solutions demonstrates the efficiency of the present technique. We present both three-
dimensional (3D) and two-dimensional (2D) phase portraits of the system. The 3D portrait
reveals a feedback loop pattern, while the 2D portrait, which represents the interaction of the
system components, exhibits multiple pools and cross pools. Furthermore, we illustrate the
global bifurcation by visualizing the components of the CDS against the space-parameters.
The sensitivity of CDS to infinitesimal variations in the initial conditions (ICs) is tested. It is
found that even minor changes can lead to significant alterations in the system.

Keywords: Chen dynamical system; Global bifurcation; Extended center manifold; Approximate
analytical solutions.

1 Introduction

The study of the non-linear behavior of systems is essential in almost every field of engineering
and science. Chaotic behavior is eminent for elucidating the characteristic properties of systems.
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†e–mail: mtantawymath@gmail.com
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Chaos assumes a variety of types; Lorenzian chaos, “ sandwich”, “horseshoe”, attractor, strange
attractor and wings [1-10]. A sequence of the chaotic chameleon system was studied and it was
found that the chaotic system can produce self and hidden attractors [11]. A numerical solutions
of low-dimensional chaotic systems, whose statistics exhibit smooth and rough regions via chaotic
parameter, was obtained [12]. 3D dynamical system that is derived from the Nosé-Hoover oscillator
and fold-Hopf bifurcation, saddle-node bifurcation, transient chaos, and conservative correspond to
four cases of equilibrium were studied [13]. The chaotic solutions for the perturbed Fokas system
were obtained and displayed with graphs [14].

a Two types of horseshoe chaos spiral and screw chaos are possible. While, sandwich chaos supports
a genuine strange attractor. Chaos undergoes different trends, sensitivity to initial conditions,
period doubling, degenerate period doubling and indeterminacy. Chaos are experimentally verified
in science, engineering and in industry [15,16,17].

The complex dynamical behaviors of the chaotic trajectories of Chen’s system were analyzed in
detail, with its precise bound [18]. The Lorenz and the Chen systems as two dual systems at the
two extremes of their parameter spectrum were introduced. A unified chaotic system bridges the
gap between the Lorenz and the Chen system and may also represent the entire family of chaotic
systems between them [19]. The effect of state feedback on Wang–Chen system was studied by
introducing a further state variable wherein hidden chaotic attractors were revealed [20]. Analytic
solution of Chen system was given by differential transformation method (DTM) and the accuracy
of the DTM method is then tested against classical numerical methods, such as the Runge–Kutta
method were obtained in [21].

Bifurcation occupies a considerable area of research in dynamical systems. In [24], The dynamics
of a diffusive Lotka–Volterra type model for two species with nonlocal delay effect and Dirichlet
boundary conditions was investigated. The study 3-dimensional Lotka–Volterra systems which can
have at least four periodic orbits bifurcating from one of their equilibrium points waqs carried out
[25]. Galerkin–Koornwinder (GK) approximations, was applied to the Stuart–Landau (SL) normal
form and center manifold which was presented for a broad class of nonlinear systems [26]. An
explicit recursive formula was presented for computing the normal form and center manifold of
general n-dimensional systems [27]. A partial unfolding for an analog to the fold-Hopf bifurcation
in three-dimensional symmetric piecewise linear differential systems was obtained [28]. Time-
delayed sampled-data feedback control technique was used to stabilize a class of unstable delayed
differential systems asymptotically [29].
The real world applications of chaotic systems are highly diverse, including the study of turbulent
flow of fluids, irregularities in heart beat, population dynamics, chemical reactions, and financial
mathematics. In particular, the Chen can serve for secure chaotic communications via extended
Kalman filter and multi-shift cipher algorithm [30]. On the other side, A criterion for controlling
the Chen system was proposed in [31]. The problem of the optimal control for the equilibrium
point of chaotic Chen in a simple three-dimensional autonomous system was studied [32].

Indeed, in the literature some methods for approximate analytic solutions were employed. Among
them,the the variational iteration method [33], the decomposition method [34], and the series
expansion method. The first is based on iteration near a particular solution, the second stands for
dealing with linear and nonlinear parts, while the last one’s is based on the initial condition [35].
Some relevant works were carried in [36,37,38].

In the present work, approximate analytical solutions of the chaotic Chen systems are found via
Picard iteration method, where iteration is carried about the solution of the linearlyzed system
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[39,40]. The convergence theorem is proved and a new technique for the extended center manifold
is proposed.

The outlines of the paper are as it follows. Mathematical formulation is presented in Sec. 2,
while Sec. 3 is concerned with analytical solutions. In Sec.4 global bifurcation is investigated
and extended center manifold is constructed in Sec.5. In Sec. 6 Lyapunov exponent values, and
solutions-sensitivity against varying ICs are shoe graphically. Secs. 7 and 8 are devoted to discus-
sions and conclusions.

2 Mathematical formulation

Chen dynamical system reads [10].

ẋ = a(y − x),
ẏ = (a+ c)x+ cy − xz,

ż = xy − bz,
, x(0) = x0, y(0) = y0, z(0) = z0,

(1)

where x, y and z are the state variables, and a,b and c are real parameters .

Eq. (1) is rewritten in the matrix form by,

 ẋ
ẏ
ż

 = M

 x
y
z

+

 0
−xz
xy

 ,M =

 −a a 0
a+ c c 0

0 0 −b

 , (2)

In Eq. (2), we use the transformation,

u =

 x
y
z

 = eMtU, U =

 X
Y
Z

 ,U(0) = u(0), (3)

From Eq. (2) into Eq. (3) , we reduce

eMt

 Ẋ

Ẏ

Ż

 =

 0
−xz
xy

 , (4)

Eq. (4) integrates to

U(t) = u(0) +

∫ t

0

e−Mt1

 0
−x(t)z(t)
x(t)y(t)

 dt1. (5)

In Eq. (5) is criticized and we write ,
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U(n)(t) = U (0)(t) +
∫ t
0
e−Mt1

 0
−x(n−1)(t1)z(n−1)(t1)
x(n−1)(t1)y(n−1)(t1)

 dt1, n ≥ 1,

U (0)(t) =

 x0
y0
z0

 ,

(6)

The first approximation is,

U(1)(t) = U (0)(t) +

∫ t

0

e−Mt1

 0
−x(0)(t1)z(0)(t1)
x(0)(t1)y(0)(t1)

 dt1. (7)

Now, we prove the convergence theorem of the iteration scheme Eq. (6). To this issue, we present
the following.

We write U (n) = {U (n)
i , i = 1, 2, 3},where ‖ U (n) ‖= Maxi=1,2,3 ‖ U (n)

i ‖,‖ U (n)
i ‖= SuptεR+ |

U (n)(t) |. We assume that the space of solutions

S = {U (n)
i : U

(n)
i εC1(R+), , i = 1, 2, 3, nεN } is endowed by the norm ‖ S ‖= Maxi ‖ U (n)

i ‖, ‖
U

(n)
i ‖= SuptεR+ | U (n)

i (t) | ) (cf. (6)).

Define the mapping M̃ : S → S, M(u
(n−1)
i (t)) = u

(n)
i (t). We proceed the proof of the convergence

theorem by the following.

The logarithmic norm of a matrix M is defined by,

µ(M) = Limitδ→0
‖ I + δM ‖ −1

δ
, (8)

where ‖M ‖is the matrix norm. Here, we consider ‖M ‖∞= Max1≤i≤n(
∑j=n

j=1
| mij |)

Lemma. The norm of exponential matrix Mm×m = (mij), i, j = 1, ...,m satisfies [22,23].

‖ exp(−tM) ‖∞< exp(−tµ∞(M)), (9)

where µ∞(M) = Maxi(| mii | +
∑j=m
j=1,j 6=i | mij |).

Theorem The sequence of solutions U(n) converges absolutely to the exact solution Uas n→∞.

Proof . By using Eqs. (6) , (2) and the lemma, we have,
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‖ U(1) −U(0) ‖<‖
∫ t
0
e−Mt1

 0
−x(0)(t1)z(0)(t1)
x(0)(t1)y(0)(t1)

 dt1 ‖<
∫ t
0
‖ e−Mt1 ‖‖

 0
−x(0)(t1)z(0)(t1)
x(0)(t1)y(0)(t1)

 ‖ dt1

<
∫ t
0
‖ e−µt1(M) ‖‖

 0
−x(0)(t1)z(0)(t1)
x(0)(t1)y(0)(t1)

 ‖ dt1 =
∫ t
0
e−(|a|+|c|+|b|)t1 ‖

 0
−x(0)(t1)z(0)(t1)
x(0)(t1)y(0)(t1)

 ‖ dt1.

(10)
In the present case, when 4a+ 2b >

√
4a2 −m2, then from Eq. (8), there exist ε0 < 1 and T0 such

that,

‖ U(1) −U(0) ‖< ε0 < 1, t > T0. (11)

Define a mapping M̃ with M̃(U (i)) = U (i+1). By the same way for ‖ U(2) −U(1) ‖=‖ M̃(U(1)−
M̃(U(0)) ‖ it holds that there exists ε1 < 1 and T1such that,

‖ M̃(U(1))− M̃(U(0)) ‖< ε1 < 1, t > T1,

‖ M̃(U(2))− M̃(U(1)) ‖< ε2 < 1, t > T2,
.
.

(12)

and by induction it holds that,

‖ M̃(U(n))− M̃(Un−1)) ‖< εn < 1, t > Tn. (13)

From Eqs. (11)-(13), there exist ε = Minjεjand T = MaxjTj such that,

‖ M̃(U (n))− M̃(Un−1)) ‖< εj < ε < 1, t > T > Tj , j = 1, ..., n. (14)

Thus,M̃ is a contraction mapping. This completes the proof 2.

Corollary. The sequence of solutions u(n) converges absolutely on [0,∞] to the exact solution u of
Eq. (2) (or(1)) .

3 Approximate analytic solutions

By using Eq. (7), we calculate the approximate solutions {x(0)y(0), z(0)}, and we get,

x(0) = 1

2
√

(a+c)(5a+c)
e
− 1

2 t
(√

(a+c)(5a+c)+a−c
) ((

c
(
−et
√

(a+c)(5a+c)
)

+
√

(a+ c)(5a+ c) + c

et
√

(a+c)(5a+c) + 1
)
x0 − a(c1 − 2c2)

(
et
√

(a+c)(5a+c) − 1
))

,

(15)
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y(0) = 1

2
√

(a+c)(5a+c)
e
− 1

2 t
(√

(a+c)(5a+c)+a−c
) (
y0
√

(a+ c)(5a+ c)et
√

(a+c)(5a+c) + y0
√

(a+ c)(5a+ c)

(2x0 + y0)(a+ c)et
√

(a+c)(5a+c) − (2x0 + y0)(a+ c)
)
,

(16)

z(0) = z0e
−bt. (17)

For periodic solutions, we set m2 = −(a + c) (5a + c) or ( c = −3a ±
√

4a2 −m2) so that Eqs.
(15)-(17) become,

x(0) =
e

(c−a)
2

t
(
x0m cos

(
mt
2

)
− sin

(
mt
2

)
(a(x0 − 2y0) + cx0)

)
m

(18)

y(0) =
e
(c−a)

2 t(x0m cos(mt2 )−sin(
mt
2 )(a(x0−2y0)+cx0))

m
(19)

z(0) = z0e
−bt. (20)

By sing Eqs. (6) into (18)-(20), the solutions {x(1)y(1), z(1)}are

x(1) = 1
m

(
e

1
2 t(
√
4a2−m2−4a) (x0 (m cos

(
mt
2

)
−
(√

4a2 −m2 − 2a
)

sin
(
mt
2

))
+ 2ay0 sin

(
mt
2

))
+ 1
b(b2+m2)ae

1
2 t(
√
4a2−m2−4a−2b) (m (ebt − 1

)
cos
(
mt
2

) (
x0
(
−
√

4a2 −m2 + 2a+ b
)

+ 2ay0
)

+ sin
(
mt
2

) (
x0
(
b
√

4a2 −m2
(
ebt + 1

)
− 2ab

(
ebt + 1

)
− 2b2ebt −m2

(
ebt − 1

))
− 2aby0

(
ebt + 1

)))
z0
)
,

(21)

y(1) = 1
2m

(
2e

1
2 t(
√
4a2−m2−4a) ((√4a2 −m2 − 2a

)
(2x0 + y0) sin

(
mt
2

)
+my0 cos

(
mt
2

))
+ 1
b(b2+m2)e

1
2 t(
√
4a2−m2−4a−2b) ((2m (ebt − 1

) (
2a
(√

4a2 −m2 − b
)

+ b
(√

4a2 −m2 − b
)
− 4a2

)
cos
(
mt
2

)
−2b

(
ebt + 1

) (
2a
(√

4a2 −m2 − b
)

+ b
√

4a2 −m2 − 4a2 +m2
)

sin
(
mt
2

))
x0

+2a
(
m
(
ebt − 1

) (√
4a2 −m2 − 2a− b

)
cos
(
mt
2

)
−
(
−2ab

(
ebt + 1

)
− 2b2

b
√

4a2 −m2
(
ebt + 1

)
+m2 +

(
ebt − 1

))
sin
(
mt
2

))
y0
)
z0
)
,

(22)
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z(1) = − 1
Q

((
et(−(a+b))

(
eatm2

(
−2x20

(√
4a2 −m2 − 2a

) (
2
√

4a2 −m2 − 6a+ b
)

2ay20(2a− b)− 2x0y0(2a− b)
(
2
√

4a2 −m2 − 6a+ b
))

+et(
√
4a2−m2−3a+b) (m√4a2 −m2 − 4a+ b sin(mt)

(
−2
(√

4a2 −m2 − 2a
)

x20
(
2
√

4a2 −m2 − 6a+ b
)

+ 8ax0y0
(√

4a2 −m2 − 2a
)

+ 2ay20(2a− b)
)

+2−
√

4a2 −m2 + 4a− b
√

4a2 −m2 − 2a cos(mt)
(
−
(
m2 −

(√
4a2 −m2 − 2a

)
√

4a2 −m2 − 4a+ b
)
x20 − 4ax0y0

(√
4a2 −m2 − 4a+ b

)
+ ay20(6a− b)

)
+
((√

4a2 −m2 − 4a+ b
)2

+m2
)(

2x20
(√

4a2 −m2 − 2a
)2

−2x0y0
(
4a
√

4a2 −m2 − 8a2 +m2
)
− 2ay20

(√
4a2 −m2 − 2a

)))))
,

Q = 2m2
((√

4a2 −m2 − 4a+ b
)3

+m2
(√

4a2 −m2 − 4a+ b
)))

+ z0e
−bt.

(23)

Now, we make a comparison between the first approximation Eqs. (21)-(23) and the zero approx-
imations Eqs. (15)-(17), by evaluating the absolute errors.

Time Zero approxmation First approxmation Absolute error

t = 1 x(0) = 0.00978, y(0) = 0.00569, z(0) = 0.0409 x(1) = 0.0097608, y(1) = 0.00531, z(1) = 0.04101 2 × 10−4, 3 × 10−3, 6 × 10−4

t = 2 x(0) = 0.00923, y(0) = 0.00257442, z(0) = 0.0335 x(1) = 0.00917, y(1) = 0.00111, z(1) = 0.03361 6 × 10−4, 5 × 10−3, 9 × 10−4

t = 3 x(0) = 0.0085, y(0) = 0.00038, z(0) = 0.0274 x(1) = 0.0084, y(1) = −0.00027, z(1) = 0.028 6 × 10−3, 5 × 10−3, 8 × 10−4

t = 4 x(0) = 0.00764, y(0) = −0.0011, z(0) = 0.0225 x(1) = 0.0075, y(1) = −0.00174, z(1) = 0.023 1 × 10−3, 6 × 10−3, 6 × 10−4

t = 5 x(0) = 0.00675, y(0) = −0.002063, z(0) = 0.0184 x(1) = 0.0065, y(1) = −0.00262, z(1) = 0.0184 2 × 10−3, 5 × 10−3, 4 × 10−4

Table 1. When a = 0.1, b = 0.2, γ = 0.1, µ = 0.1, x0 = 0.01, y0 = 0.01, z0 = 0.05 and m = 0.2.

After this table, we find that the errors are satisfaction-ally and so, the method used here is
efficient.

We return to the results in Eq. (21)-(23), where they are displayed in Figs. 1-(i)-(iv) for phase
portraits, in 2D and 3D.
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Figs. 1 (i)-(v). The phase portraits (2D-parametricplot) for each pair of x(1), y(1), and z(1) the. Fig.

(iv) show 3D parametric plot in 3D-dimensions. When. a=2, b=0.1, x0=0.1, y0=0.2, z0=0.8. Fig. 1-(i)
shows two-layer shell, Fig. 1 (ii) shows shell, Figs. -(iii) show scrolling loop chaos.

Fig. 1 (iv) shows hook chaos.
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4 Global bifurcation

We distinguish between local and global bifurcation (GB). Local bifurcation is concerned with the study of
different kinds of bifurcations near the equilibrium points. While the Global type stands for investigations
the behavior of the system components in the parameter- space.

Now, we investigate the global bifurcation by displaying the solutions u(1),v(1), and w(1) against parameters
α, γ and ν.

Case (i). By using Eqs. (21) and (22), x(1)and y(1) are displayed in Figs. 2 (i)-(iii) against γ and ν .

Figs. 2 (i)-(iii). Show the bifurcations of x(1)y(1),z(1) Eq. (21)-(23) against a, when b = 0.1, x0 = 2, y0 =
−5, z0 = 0.1.

Figs. 2 (i)-(iii) show mixing of saddle node bifurcation, super-crtical bifurcation, pitch fork bifurcation,
and sub-critical pitch fork bifurcation, and sub-critical pitch fork bifurcation respectively.

5 Extended Center manifold

In the literature’s the study of extended center manifold (ECM) is not complete in the sense that there was
not explicit determination for the ECM. Here, we present a simple technique to construct the extended
center manifold. It is based on:

(i) Transforming the Chen system, in the neighborhood of an equilibrium point, to another system.

(ii) In the new system, some assumptions are adapted to derive the equation governing the ECM,

(iii) It is solved and yield to the explicit solution.

Consider the NLDS.

ẋ = f1(x, y, z), ẏ = f2(x, y, z), , ż = f3(x, y, z), (24)

and we assume that P = (0, 0, 0) is the equilibrium point of Eq. (1), so we write,

 x
y
z

 =

 0
0
0

+M

 x1
x2
x3

 , M =

 −a a 0
a+ c c 0

0 0 −b

 , (25)

For extended center manifold (ECM) , detM 6= 0,when a 6= −2c.
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To construct ECM Γ, we proceed by setting a = α− 2c,and ΓεH(4) = {(x, y, z, α), x, y, z εR, α 6= 0}, and
α̇ = 0. From (25), we have,

x = x1 + x2, y = x3, z = x1
(α
c
− 2
)

+ x2. (26)

Eq. (25) can be rewritten,

 x1
x2
x3

 = M−1

 x
y
z

 , M−1 =

 c
3c−α 0 c

α−3c
c

α−3c
+ 1 0 c

3c−α
0 1 0

 . (27)

Or,

x1 =
c(x− z)
3c− α , x2 =

c(x− z)
α− 3c

+ x, x3 = y.

From Eq. (27) , we have,

 ẋ1
ẏ1
ż1

 = M−1

 ẋ
ẏ
ż

 = M−1

 f1(x, y, z)
f2(x, y, z)
f3(x, y, z)

 . (28)

In the present case,

f1(x, y, z) = a(y − x), f2(x, y, z) = (a+ c)x+ cy − xz, , f3(x, y, z) = xy − bz, (29)

and by using Eq. (26) into Eq. (29), Eq. (28), becomes,

 ẋ1
ẋ2
ẋ3

 = M−1

 ẋ
ẏ
ż

 =

 F1(x1, x2, x3)
F2(x1, x2, x3)
F3(x1, x2, x3)

 , (30)

where,

F1 = (2c− α)(x1 + x2 − x3),
F2 = (x1 + x2)

(
−
(
x1
(
α
c
− 2
)

+ x2
))

+ (α− c)(x1 + x2) + cx3,
F3 = x3(x1 + x2)− b

(
x1
(
α
c
− 2
)

+ x2
)
.

(31)

Or,

ẋ1 = (2c− α)(x1 + x2 − x3), ,
ẋ2 = (x1 + x2)

(
−
(
x1
(
α
c
− 2
)
+ x2

))
+ (α− c)(x1 + x2) + cx3,

ẋ3 = x3(x1 + x2)− b
(
x1
(
α
c
− 2
)
+ x2

)
.

(32)

Now, we write,
x2 = h1(x1) = α2β3 + αβ2x1 + β1x

2
1,

x3 = h2(x1) = α2ρ3 + αρ2x1 + ρ1x
2
1.

(33)

By using Eq. (33) into Eq. (32), lengthy calculations give rise to,

β1 = 0, β2 =
√

17−5
4α

, β3 = −
√
17−17
16α

, ρ1 = − 1
α
, ρ2 = − 1

2α
, 17−2

√
17

16α
,

ρ3 = − 1
2α
, 17−2

√
17

16α
, b = 1

8

(√
17− 9

)
α, c = 1

16

(√
17 + 7

)
α,

ẋ1(t) = 1
128

(α+ 4x1(t))
((√

17 + 17
)
α− 4

(√
17 + 1

)
x1(t)

)
,

(34)
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By solving Eq.(34),

x1(t) =
α
(√

17e
9αt
16

+ 1
16

√
17αt − e8(

√
17+9)αA

)
4
(
e

9αt
16

+ 1
16

√
17αt + e8(

√
17+9)αA

) . (35)

The extended center manifold function x1(t) = F̃ (t, α) is displayed in figures 3 (i), (ii).

Fig 3 (i), (ii) , show 3D and contour plot of Eq. (35), against (t, α). Fig. 3(i) shows two-fold double kinky
solitary waves. Fig. 3 (ii) consolidates the results in Fig. 3 (i).

6 Lyapunov exponent, and solutions-sensitivity against vary-
ing ICs

6.1 Lyapunov exponent

The Lyapunov exponent λ of the system is defined by,

λ = lim
t→∞

log
(√

(x(1))2+(y(1))2+(z(1))2

x2
0+y0

2+z20

)
t

(36)

Eq. (36) is used to find λ and the results are shown in Figs. 4 (i)-(iii).
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Figs. 4 (i) - (ii). When:(i) b = 1.5, x0 = 2, y0 = 1.2, z0 = 3, (ii) a=0.5, (iii) ν=−0.2, µ=0.19, x0 = 2.5, y0 =
1.5, z0 = 3,. Fig 3 (i)-(iii) show that the system is unstable by varying a,b and it is stable when c < 0and
unstable when c > 0.

6.2 Sensitivity against varying ICs

Here, we show the behavior of the system components under small disturbance in the ICs. To this issue,
the solutions in Eq. (24) are displayed in Figs. 6 (i)-(iii).

Figs. 5 (i). When a = 2, b = 0.1,m = 0.2,

Figs. 5 (i) and (ii) show a remarkable deviation in the two solutions under small disturbance in ICs. So,
the system exhibits sensitive change against small variation in the ICs.

7 Discussions

In this study, the Chen chaotic system is analyzed using approximate analytical solutions. The be-
havior of the system is investigated using these solutions, revealing several interesting characteristics.
Here,approximate analytical solutions of Chen chaotic system are obtained. The results obtained are used
to investigate the system behavior. It is observed that the 2D portrait of the mutual components exhibit
multiple-crossing loops, while the 3D portrait shows feedback loops (cf. Figs.1 (i)-(iv)). It is found that
the global bifurcation behaves as a mixing of saddle node bifurcation , super-critical pitch fork bifurcation,
sub-critical pitch fork bifurcation and imperfect pitch fork bifurcation (cf. Figs. 2 (i)-(iii). It is remarked
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that the extended center manifold exhibits different patterns formation (cf. Figs 3 (i)-(vi)). It is found
that the system is unstable by varying a,b while stable when varying c (cf. Figs. 4 (i)-(iii) ). The sensitive
depends of the system component, under small disturbance in the ICs, is examined, where the solutions
are remarkably higher than before disturbance (cf. Figs. 5 (i)-(iii)).

8 Conclusions

In this study, an iteration scheme is constructed to derive approximate analytical solutions for the Chen
dynamical system. The efficiency of this technique is confirmed through error analysis, and the convergence
theorem is proven. A novel technique is proposed for establishing the extended center manifold. These
results are then utilized to examine the behavior of the system components. Both 2D and 3D phase
portraits are investigated, revealing that: The mutual components display multiple loops with crossings in
the 2D phase portrait. The 3D phase portrait exhibits a double-layer feedback loops pattern. The global
bifurcation is explored within the parameters space, demonstrating a mixture of different bifurcation
structures.

Finally, the sensitivity of the system to small disturbances in initial conditions is tested using the derived
solutions. This comprehensive analysis provides valuable insights into the dynamics and behavior of the
Chen dynamical system. As a future work, we intend studying the complex Chen system by following the
same insight as in the present work. Also, synchronization will be visualized.
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system extended from Nosé-Hoover oscillator, Chaos Solitons Fractals 158 (2022) 112016.

[14] M. F. Alotaibi, N. Raza , M. H. Rafiq, A. Soltani, New solitary waves, bifurcation and chaotic patterns
of Fokas system arising in monomode fiber communication system, Alex. Eng. J. 67 (2023) 583-595.

[15] O. Leon, L. Kocaev, K. Eckert and M. Itoh, Experimental chaos Synchronization in Chua’s circuit,
Int. J. Bifurcation Chaos 02(03) (1992)705-708.

[16] N. B Tullaro, T. Abbott and J. P . Reil, An experimental approach to nonlinear dynamics and chaos,
Addison Wesley, (1992).

[17] T. Kohda, K. Aihara, Chaos in discrete systems and diagnosis of experimental chaos, EICE Trams.
E73 (6) (1990)772-783.

[18] T. Zhou and Y. Tang, Complex dynamical behaviors of the chaotic Chen’s system, Int. J. Bifurcation
and Chaos, 13 (9), (2003) 2561-2574.
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