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Abstract In this study, we prove in the context of Musielak Sobolev space
that, under various assumptions on the data, two positive non-trivial solutions
exist to the double phase problem with a singularity and a homogeneous
Choquard type on the right-hand side. Our method relies on the Nehari
manifold, the Hardy Littlewood - Sobolev inequality, and some variational
approaches. The findings presented here generalize some known results.
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1. Introduction

The present paper aims to prove the existence of two positive non-trivial solutions
to the following problem

L2 (u) + V (2) (JulP"%u + a (2) [u]"?u)
=g(z)|u/"Tu+n (/Q H(ym(y))dy> h(z,u)in z€Q, (1.1)

|z —yl~
u=0 in xz€of.

Where © C R¥ is a smooth bounded domain, ﬁ,‘if;) (u) = —div (|VuP~2Vu + a (z) [Vu|?"2Vu),
0<M<N,1<p<q<2r<p*:NN—f;),0<ﬂ<1,a(.)€L°°(Q)With
mina (z) = ag > 0 and we consider h : Q@ x R — R U {0} a continuous function

€N
with an odd behavior concerning the second variable. This function fulfills the

subsequent set of assumptions:

(h1) h is a positive homogeneous of degree r — 1, that is,
h(z,tu) = t""'h(z,u) for all (z,u) € Q x R.
(h2) There exists a positive constant C' such that

|h(z,t)| < CJt|" forany teR.
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H,) H is homogeneous of degree r, that is, H (z,tu) = t"H (x,u) (¢t > 0) for
all (z,u) € Q x R, and h leads to the so-called Euler identity u h (z,u)
r H (z,u).
The positive continuous function V' : @ — R satisfies

W)

—~

0< inf V(z)=Vo< Vo =lminfV (2) < . (1.2

z€RN |z]— 00

~—

The Choquard equation has been included in a variety of physical models. For
example, the polaron model of Frohlich and Pekar postulates that free electrons in
an ionic lattice interact either with phonons associated with lattice deformations
or with the polarization it creates on the medium (interaction of an electron with
its hole) [10,25]. Also, to simulate a plasma consisting of a single component, Ph.
Choquard developed the Choquard equation in 1976 [16]. The following equation,

P
—Au+V(z)u= </ lu@)” dy> |u[P~%u in RY,
R

N |z =y~

known in this context as the Schrédinger-Newton equation, is used as a model for
self-gravitating matter in the work of Moroz-Penrose-Tod [22]. An appropriate guide
to the Choquard-type equation was published in 2017 by Moroz-Van Schaftingen
23], which the reader can consult for more information on applications of the
Choquard term.

This wide range of practical applications has prompted the publication of several
existing results for various equations incorporating choquard terms over the past few
decades. We mention the relevant works of Su-Liu [26], Zhang-Meng-He [29], Gao-
Moroz-Yang-Zhao [11], Anthal-Giacomoni- Sreenadh [3], Yao-Sun-fang Wu [28],
Maia-Pellacci-Schiera [21], Liu-Liao-Pan-Tang [17], Cingolani-Gallo-Tanaka [6], and
Zuo-Choudhuri-Repovs [31].

In this research, motivated by the above works, we will use the variational
approach to study the existence of at least two positive non-trivial solutions to the
problem (1.1) under conditions (hy) — (he), (Hi) and (V7). The following are some
of the key aspects of this paper:
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i) The problem involves the interaction of a double phase operator with a Choquard
reaction.

ii) The presence of a non-linear singularity.

The subsequent sections of this paper are structured as follows: The features of
the Musielak-Orlicz Sobolev space WM (Q) are presented in section 2. The Hardy
Littlewood-Sobolev inequality, which played a significant role in our investigation,
is also reviewed. Section 3 is then devoted to the demonstration of our principal
findings.

2. Preliminaries

We shall review various Musielak-Orlicz space features that can be found in [7,9,
14,15,24] and references to them.

Set the functions M (2,t) = t* + a (x)t? and p (t) = [ M (z, |t|)dz for 1 <p < ¢
and a(.) € L*> (Q) and mingeq a (z) = ag > 0.

The Musielak-Orlicz space LM () is defined by

LM(@Q) = {u : O — R, measurable and / M (z, lu]) dz < oo}
Q

endowed with the Luxemburg norm

|u|M:inf{)\>O:/M(x,M>dx§1}.
Q A

We use the notation L2 (€2) to represent the space comprising all measurable functions
u : 2 — R, characterized by the following semi-norm

1

fullo = ([ a@)lult ar) " < o

Since p (%) = 1 whenever u # 0, we have

Jul
min (|ulf, [ulfy) < llullf + ullf o < max (Julfy, lul}y), w e LM Q). (2.1)
While the Musielak-Sobolev spaces WM (Q) are defined by
WEM(@Q) = {ue LM(Q) : |[Vu| € LM ()},

and it is equipped with the norm ||u|| = |u|pm + |Vu|am-
We denote by Wy (Q) the completion of Cg°(Q) in WM (Q) and it can be
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equivalently equipped by ||u|| = |Vu|m.
LM (), WM (Q) and Wy () are separable reflexive Banach spaces with the
above norms. Forimorerdetailsysee [24].

By Proposition 2.15 in [7], Wg™ (Q) < L" (Q) is continuous embedding since
r < p*, and by (2.1), we have

min (|Vul,(, |Vuld,) < | Vull2 + | Vull?,, < max (|Vul?,, [Vull,), ue Wy (Q)
(2.2)
and

[ullr < Cr|Vu|rm (2.3)
We denote E = WM (Q) and |Jul|g = |Vu| .

And we define g as

oE (u) = /Q lu|P dx+/ﬂa(w) |u|? da.

Lemma 2.1. (see [8]) Letu € E = T/VOIM (Q) then

i) lullp=a< o0p (%) =1

i) |lullg <1 (resp. >1,=1) < pp(u) <1 (resp. >1,=1).

iii) [lullp <1 = |ulf < er (v) < lullf and Julz > 1= |lullp < or (u) < ul%-
vi) |lullg = 0 < g (u) = 0 and ||u||g — 00 < op (u) — co.

Lemma 2.2. (see [14]) Let u € Wy then

i) WM (Q) — LM (Q).

ii) LM (Q) — L1 (Q)

iii) WM (Q) < L7 (Q) is continuous for all v € [1,p*] and compact forr € [p, p*).
Proposition 2.1. (see [15]) Let t,r > 1 and 0 < p < N with + + 1 + £ = 2,

helLt (RN) and k € L (RN). There exists a constant C (t,r, u, N) independent
of h and k, such that

h(z)k(y)
————" dr dy < C (& N) ||k 7+ Ellrrmny. 2.4
/N/N |x y|“ Y= (77“,#, )|| HL(]RN)H ||L (RN) ( )

+
. T(He) (T(% Y
Ift:r:%7 thenc(taTaﬂvN):WgF((NZ)g))<lw) ‘

In this case there is equality in (2.4) if and only if h = Ck and
k(x) :A(72+|x—a|2)_N+5 for some A C,0#~ve€R anda € R.

In the following, we denote

llulls,e = / a(z) |ul’dz, and ||ullsve = / V (z)a(z) |u|’dx, for every s > 1.
Q Q
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3. Main result

Definition 3.1. We say that a function u € E is a weak solution to problem (1.1)
if

/ (|IVulP7>Vu + a(z) [Vu|!*Vu) V(pdﬂH—/ V(@) (|ulP?u+a(z) [u|??u) ¢ do
0

H(y
/ () |u| P~ 1u<pdx+77// |x—y|# Hyuwhu) o (x) drdy
for all ¢ € E.

Theorem 3.1. Let (hy) — — (V1) hold. Then there exists n,. > 0 such that for any
n € (0,1ny), theproblem (1.1) admits at least two nonnegative weak solutions.

Consider the functional J,, : E — R associated to the problem (1.1) defined by

7, (u) = /Q <;|Vu” do + éa(m) |qu) dx+/QV(x) (;W do + %a(x) u|q> dx

b
1-p
We have J, € C! (E,R), and

@) ju'~Pay— 1 [ HEwwH @)

dx dy.
2 Jaxa |z —y|»

(Jy (u), ) :/ (IVulP7*Vu + a(z) [Vul|*">Vu) Vo dx
Q
+

V (@) (JulP~%u + a () [u]'"?u) ¢ da
Q

1
*/g(x)l UI’B’lwdw*n/ ——* H (y,u) dy/ h(x,u) e dv
Q qQ lz|# Q

forall u,p € £ = WOI’M ().

Remark 3.1. e Since f is an odd function, we can easily have J, (u) = J,, (Jul),
and the minimizer of J,, will be a nonegative function.
e One can easily notice that any critical point of J,, is a weak solution of problem
(1.1).

We define the fibering map @, : Rt — R as @, (¢) = J, (tu),

-1 —1 -1 1
@, (1) = P Vullp + 17 [ Vullf o + 7 ullp v + 2 ullg va

H H(z
_ t*,ﬁ/s;g(z)h”lfﬂdx _ 77,,,/0 Qt2r71 (yv ) (Tv )dl‘dy,
X

|z -yl

() = ((p = DE2Vally + (g — D2 Vully,)
+ (0= D2l + (g = DE2Vulf v, )

H H
+ A1 / g(x)|u|'~Pdx — nr(2r — 1)/ 2 2—(1/, wH(@,u) dzdy
Q QxQ |z —y|»
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and
N, ={u € E\{0}; < Jp(u),u >= 0}.

It’s obvious that tu € N, if and only if ®}(t) = 0 so, u € N, if and only if ®}/(1) = 0.
Let’s divide N, intorthreesubsetsias follomws:

Nif = {ue B\ {0}:2(1) > 0},

0 _ . —

N, ={ue E\{0};®(1) < 0}.

Lemma 3.1. J,, is coercive and bounded below on N,,.

Proof. Let u € N, using (he) and iii) of Lemma 2.2, there exists a positive
constant ¢ > 0 such that

(y,u)H (x,u) 2 / : 2
— " “dady < C||H(.,u(. oy < ¢ w|"dx ) = Cllu||5%,
[t HH ) oy < e [ Iul*dn)” = Clul
(3.1)

where % =1-%.
Since p < sr < p*, we get
H H
(yvu) (xvu)dxdy S CHUHQT'
QxQ |z —y|»

On the other hand, using the Holder inequality and the embedding iii) of Lemma
2.2, we obtain

p—1+8 p—1+8

lémmwk%xswmﬂmM|p|mmxnsmmmﬂmmwpuwkﬁ

Return now to J,(u), since u € N, then

_ H(y,u)H(z,u
IVl Tl ol 4l v [ gl o= g [ HODEE) g,
Q axQ |z —y|
(3.2)
thus
3y = 5 (19l + ull ) + 5 (IVall e+ el ) - 775 [ g@lul' e
! p P PV g “ wvVe) 1-8Jq

1 _
s (170l + el + 190l 4 Tl = [ gl o)

2r —op 2r —q
= 5 (19l + ) + =52 (17l + )
1-p8-2r / 1-5
+— [ g(2)|u dx
21— 5) Jo !
2r—q . 2r+p8-1) p=148 g
> 1,V ——C ()| 2] P A,
= min(1, Vp)o(u) 2r(1— ) 19l oo (2|2 [[u
Taking |ju| > 1, then
2r—q . 2r+p-1) p=1+8 _
Ip(u) = min(1, Vo)|lull” — WCHQHLW(Q)\W C ]

The fact that 0 < 8 < 1 implies that J,, is coercive. O
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Lemma 3.2. Under the assumptions (h1) — —(V1), there exists ng > 0 such that
Ng =0, for anyn € (0,m0).

Proof. Through a method of contradiction, we assume that for every value of 7,
there exists u € E'\ {0} such that < J;(u),u >= 0 and &;/(1) = 0. Then

HywH(Ew),

(3.3)

IVul[P+[Vaul|  +ull? v+l v, = / g(x)|u*~Pda+nr
Q QxQ |z — |

and
(p = D[[Vull” + (¢ = D[IVullf o + (p = Dlfull} v + (g = Dull? v,

H(y, wH(z,u) ,

Multiplying (3.3) with 5 and adding it to (3.4) yields
P+ B—=DIVull? + (¢+ B8 = DIIVull§ o + (p+ B = Dllulyy + (@+ 8 = Dlfullg v,

=nr(2r+p5—-1) - Wd dy. (3.5)

Subtracting (3.4) from (3.3) multiplied by (2r — 1), we obtain
2r = p)IVullp + @2r = @)IVull§ , + 2r = p)llully,y + 2r — @)llullg v,
- (3.6)
— @+ 5-1) [ glalul~da.
Q
Defining the functional 7, : ' — R as

1
r(2r+8—1)

H(y
R S AR T T FA T M e e

Ty (u) = P+ B = DIVulj+ (g+ 8- 1[[Vulg,

From (3.3) and (3.4), we see that 7, (u) = 0 for all u € N,

we get
(p+B-1) Hiy »
T = 7”(27"-1-5 llv I? - / |x_ HywH@w , o
(p+8— ) N
Z o+ g =) Vlls — mellulz

Since p < 2r and using Poincarée inequality, we obtain that

(p+B8—-1)

717(“) > W

IVullp = nClVull3"
then

(p+B-1)

To(w) > [ Vull5 @1 A-1)

\|Vu||§_2r —2nC| . (3.7
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Using (3.6), we get

r =PIVl < 2r+5-1) [ golul s
< (2r+ 8= Dlglloolluly™,
and by the Poincarée inequality, we have
2r = p)IVullh < C@2r+ 8 = DlgleclVull, ™,
then

C2r+p-1)

Vull? <
vuly < SEE

glloo V2~

Thus )
C@r+p-1) T
<l 7 .

|Vu|p_( (QH?) ||g||oo)

Combining (3.7) and (3.8), we obtain

(3.8)

p—2r

p—B+1
||g||oo) el

Tp(u) = ||Vu||12)r p+p-1) (0(27“ +8-1)

r(2r+8-1) (2r — p)

Taking

l1glloo

)

__ (+B-1) {C(2r+51)
o= 2r(2r+p —-1)C (2r —p)

then for any n € (0, 70), we have 7,(u) > 0 which contradicts that 7, (u) = 0 for all
u € NO. O

Lemma 3.3. For u € E, there exists 1 > 0 such that for any n € (0,11). Then,
there exists tmaz = tmaz(u) > 0, to = to(u),t1 = t1(u) > 0, with t1 < tpmee < t2

such that tyu € NJF, tau € N7, and J,(t1u) = ) in Iy (tu),

p—2r
] p—B+1

Jy(tou) = Jpin I (tu).
Proof. We can write ®] () as

H(y,w)H (z,u)

P (t) = >~ 1 (\Il(t) —nr
K axQ |z —y|"

dxdy) ) (3.9)
where

w(t) = 12 (| Vulls + |lu

II;V) a2 (”Vqu’a + ”u”Z,Va) _4—B—2r+1 /Qg(x)‘mlfﬁdx.

Evidently, the condition for tu € A is equivalent to the statement that W¥(¢) =
Hp ) H@) )

axe |z =yl

lim ¥(t) = —oco, lim ¥(t) =0 and ¥(t) > 0, for ¢t large enough.

t—0t+ t—-+o0

nr
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Let tu € E'\ {0}, then
0=w'(t) = (p—2r) =2 (IFully + ullh ) +(a = 20) 72 (| Vulld o+l o)
—(=p—2r+ 1)t_5_2T/Qg(x)|u|l_'8dm,
equivalent to
(p = 20t ([0l + ) + (g = 20050 (190l + ull )

=(-B-2r+ 1)/ g(x)|uPdz.

Q

(3.10)

Let set
O(t) = (p—20)" =1 (IVully + lull ) +(a=20)e 4 (Vg + el ), ¢ > 0.

i 2 has li t) = li t) = — d O'(t .
Since p < ¢ < 2r, one can astirgl+@() O,t_}inoo(%() oo, and ©'(t) < 0

Thus, through the application of the Intermediate Value Theorem, there exists a
unique tyq, > 0 such that (3.10) holds.
Moreover, if we consider ¥’(¢) > 0, then in place of (3.10) we get, ©(t) > (-8 —

2r + 1)/ g(x)|u'~Pdz, for t < tyae, since © is strictly decreasing. Similarly for
Q

U'(t) < 0 and t > tpey. In addition U(tmes) = max U(t). Moreover, we have
lim ¥(t) =0, lim ¥(t) = —oc.
t—0t+ t—4o0

Observe that

U(t) > tp*2r||Vu||§ — Al /Qg(x)|u|1*’6dm

> 2|Vl — P2 g oo [V,

Set
G(t) = 2| Vullh — P72 (gl oo| | V], 7,
we have
P(t) = (p—2r) P2 Y[Vl — (=B = 2r + Dt Il o | V]| 7.

Taking

e

0 — )

[Vl (p—2r)

then

max (t) = $(to).

t>0

It is clear that W(t) > v(t), and since ¥ is increasing in (0, t,q5), we have

\I/(tmar) > \Il(tO) > w(to),

where

-2 —B—2r+1 -
Y(to) =t [ Vullh — 1577 lglloc [Vl
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e ( gl
—B—2r+1

)
A= (5 gl ) [5”7“ o) "

—2r41

B
ﬂ + 27’ p+h .
[ gl — AV

with

Return now to

W(tas) — 117 M

)dxdy > A||Vu||]2f — nCHVuH%T
QxQ |z — y

= (A —=nO)|Vull}".
Taking n; = %, then for any 7 € (0,71), we have

H(y,w)H (z,u)
axe Tyl
Now, by (3.11) and the variation of ¥ allows us to conclure that there exist ¢; €
(0, timaz) and tg € (tmaz, +00), with t1 < tynee < to such that,

H H
U(ty) =nr dedy = U(ty) and ' (t1) > 0 > U'(¢3), that means
axQ =Y

tiu € N, and tyu € N O
Let define 7" = inf, ¢ vt I (w), Iy = inf, ¢\ Jy(u), and taking 1, = min(ng, 71)

U (tmaz) — 1T dzdy > 0. (3.11)

Proposition 3.1. For any n € (0,7.), we have
I <0, (3.12)
and there exists ut € NJ such that

TS5 = Jp(uh). (3.13)

Proof. Let u € N, then we have
H(y, u)H (z, u)

IVl Pl el el o= | ol o [ ZEEE S dady o,
thus
_(1-8-p) (1-8-0q)
Tty = = (17l + ) + 5 5 =50 (Il + Tl
(2T+ﬁ B 1) H(yau)H('Tau)
— ———————dxd
2(1-p) 7 axa |z —yl# o
1
< gy (=8 =) (I9ull 4 el ) + (1= 8 =) (19l + v )

(27’4—5 - 1) H(y,u)H(x,u)
A — — 7~ Zdxdy.
20-8) "Jaxa  Je—ypr Y

Since u € N;f, we have

(=5 —p) (IVul+ ulls ) + (1= 8= ) (IVallt0 + )
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H(y,u)H (x,u)

<—@2r+8-1)r dx dy.
( ) axQ |z —y|~
e Crep-Va-2) [ HypuHEw
r+56—1)(¢g—2r y,u)H(x,u
Iy (u) < W) dredy < 0,
() 20-5) oo -yl

which implies that

JF = inf J,(u) <O.
n UENJ 77()

Now let {u,} C ./\f;‘ such that E&l Ty (un) = j,f. By Lemma 3.1, {u,,} is bounded

in E, then there exists a subsequence still denoted by {u,} and a function u* € E
such that

Up = uy nE, u, »ut in LYQ) and u, — v ae. in Q for any a € [1,p*).
(3.14)

Let’s prove the equi-absolutely continuous of/ g(x)|u, | Pdz. Indeed, form (3.14),
Q

{u,} is bounded in L*(f2), then there exists a positive constant c¢; such that
lunllps < c1 for all n € N.
Let F C Q be a measurable set, we have that

p*—1+8
b)

[ s@lual Pz < fgllmcl 17
F

and

H n H y Un e s X p*—rs
(y7’U/ ) (SU (2 )d:vdy <ec (/ |u|”d$> < CC%T|F| FAin
FxF |z — y[~ F

For any ¢ > 0, there exists 4 > 0 such that for any measurable set F' C € with
|F'| < d, we have
H(y, un)H (2, un)

| B dxdy < e, forany n € N.
FxF r—=y

/g(x)|un\lfﬁdx <e and
F

By Vitali’s convergence Theorem, we get

lim g(as)|un\1fﬁdx:/g(:c)|u+\1fﬁdx, (3.15)
and
H " H " H , + H , +
lim (y, un) H(z, u )dxdy: (y, ™) H(z, u )dxdy. (3.16)
=% Jaxq |z — yl# axQ |z — yl#

With the same arguments as above, we obtain

lim | V(2)(lun|? + a(z) |uyl?) doz = / V(2) (JutP +a(z)|ut|?) dz, (3.17)

the weak lower semicontinuity of the norms leads to

Jy(ut) < liminf J,, (u,) < 0 = J,(0),

n—-+oo



12 O. Benslimane, A. Aberqi & M. Elmassoudi

which implies that u™ # 0 and by lemma 3.3, there exists ¢, such that t;u* € NF.
Now, suppose that lim inf o(Vu,) > o(Vu™), then using (3.17), (3.15) and (3.16),
we have hm 1nf<I> ( ) > P, 4 (t1) = 0, thus @, (t1) > 0 for n large enough.

On the other hand, ®;, (t) <0fort € (0,1) and ®;, (1) =0. And as we have t; > 1

and @+ is decreasmg in (0,¢1], we obtain

T < Jtut) < Jh) < inf Jy(w) = J,
weN,S

which is absurd. Hence u, — u™ strongly in E and J,(u") = J,}.

O
Proposition 3.2. For any n € (0,7.), we have
J, >0, (3.18)
and there exists
u~ € N, such that J,” = Jy(u™). (3.19)
Proof. Let u € N, then we have
_ H(y,uw)H(z,u
IVl Tl talf g [ g al oy [ HODEE g,
Q QxQ |z — yl
thus
(1-B8-p) (1-8-9q)
70 = =220 (o s iz, ) + 2= (o, 4 )
n(u) ) IVl + [Jull, =5 IVullg o + llullg v

(27"+B_1) H(y,u)H(SU,’U,)
AR —— — 7~ Zdxd
20-8) "Jaxa  Je—ypr Y

> ﬁ (@5 —p) (IVulg+ ulZy) + (1~ 5= 0) (IVullg + el )

erep-1) [ HuwHew,
2(1-p) axe |z —yl*
Since u € N7, we have
(-5 -) (I9ull + Jul2y) + (0~ 8- @) (IVul o + )
—2r+pB8-1)m —H(y, wH (@, u) dzdy,
QxQ |z — yl~
thus
Jp(u) >0,
and

J, = inf J,(u) >0.
ueN;

Let now {un}n C N, as a sequence such that lim J,(u,) = inf J,(u) = J, .
n—oo UEN7

By Lemma 3.1, {up } is bounded in E and then, there exists u~ € E such that up

to a subsequence
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Up, = u”in E and u, — u” in L*(Q) for o € [1,p").
And as above, we find that

lim | g(z)|u,|'Pde = / g(x)|u~|*Pdz, (3.20)
=0 Joxa |z —yl~ axQ |z —yl» 7

and

lim [ V(2) (Junl? + a(x)|uy|?) do = /QV(ac) (|lu™]” + a(z)|u”|?) dz.  (3.22)

n— oo Q

Let assume that u,, - u~ strongly in E, then we have

1 1 1 1
/ <|Vu_|p + a(a:)|Vu_|q> dzr < liminf/ (Vun|p + a(x)|Vunq) dx.
Q \P q n—oo Jo \P q

On the other hand, there exists ¢t > 0 such that tou™ € N; Moreover, as u,, € N,f,
the map ¢t — J, (tuy,) attains its maximum at t = 1.
Jy(tau™) < linrgigf Iy (toun) < linrr_1>i£f In(un) = T,

which contradicts the fact that tou™ € Nn_ . Therefore u,, — u~ strongly in E and
Jy(u™) =T, O
Proposition 3.3. Let (h1) — —(Vi) hold. Let s € W'M (Q) and n € (0,7]. Then,
there exists co > 0 such that for all t € [0, c2] we have

I (u+) <J, (u+ + ts) .
Proof. Let introduce (s : [0;+00) — R given by

G = —1) (IVu+tVs] + lu+ts]? ) + (= 1) (IIVu+t9sll2, + fu+ ]l
H (y,u) H (x,u+ts)
axQ |z —y|~

Since u™ € N, we have (; (0) > 0. Thanks to [18, Proposition 3.5], there exists
@ (t) > 0 for all ¢ € [0, ¢a] such that

() (ut +ts) e NJF and () =1 as t — 0%, (3.23)

+ B/ g(2) |u|175 dx —nr(2r — 1) dxdy.
Q

By Proposition 3.1, we have
T =dy (ub) < Jy(e(t) (u™ +ts)) VEe[0,c.

By (3.23) and the previous fact, there exists x € [0, ¢a] sufficiently small such that
j,f =Jy (u*) <Jy (u+ + ts) for all ¢t € [0,k].

Since the continuity of ®” in t, and @/, (1) > 0 we obtain @/, , (1) > 0 for all

t € [0, k] with k € (0, ¢2]. which achieve the proof. O

Proof of Theorem 3.1 : To demonstrate that the minimizers found in Propositions
3.1 and 3.2 are non-trivial solutions to the problem (1.1). We use similar arguments
to [18, propositions 3.6 and 3.9], which complete the proof of Theorem 3.1.
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