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Abstract

This paper emphasizes the exponential synchronization for a class of stochastic semi-Markov jump systems
with mixed delay via stochastic hybrid impulsive control. The impulsive sequence includes synchronous and
asynchronous impulses with the impulsive gains being a sequence of stochastic variables. Inspired by the idea of
average, a concept of “average stochastic impulsive gain” is used to qualify the impulse intensity. Our approach
expands Dupire functional Itô’s formula to the stochastic semi-Markov jump systems with mixed delay for
the first time. Moreover, in view of the established Lyapunov functional, graph theory, and stochastic analysis
theory, some exponential synchronization criteria for the systems are derived. The theoretical results are applied
to a class of Chua’s circuit systems with semi-Markov jump and mixed delay. Some synchronization criteria for
the circuit systems are provided. The simulation results verify the effectiveness of the theoretical results.

Keywords:
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1. Introduction

Complex network systems (CNSs), being able to describe various actual networks such as neural networks
[1], infectious disease spread networks [2], and circuit networks [3]. Numerous valuable approaches have
been proposed to settle issues of CNSs [4, 5, 6, 7, 8, 9]. Moreover, dozens of uncertainties and stochastic distur-
bances resulting from unanticipated environmental noise always affect the evolution of CNSs, as a consequence,
stochastic complex network systems (SCNSs) have been a fascinating study area worldwide [10, 11, 12, 13].
Most notably, many SCNSs are unavoidably impacted by sudden stimulation like operational errors and fluc-
tuation at random and perform abrupt changes in structure and parameter, which are generally characterized
by Markovian jump systems. However, it is insufficient to explain the parameter jump phenomenon in actual
systems since the states’ transition rates in the corresponding systems are constant. As a result of this, the semi-
Markov jump systems with time-varying state transition rates have evoked the enormous interest of scholars,
which has been extensively explored in recent years [14, 15, 16]. Additionally, time delay is inescapable in
SCNSs on account of wide-ranging existing communication disturbances, signal interference, network packet
failure, and other issues. Hence, many scholars have in-depth investigated the stochastic semi-Markov jump
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systems (SSMJSs) with time delay [17, 18, 19, 20, 21]. For instance, in [18], the exponential synchroniza-
tion criteria of SSMJSs with time-varying delay were introduced via adaptive aperiodically intermittent control.
However, different from the single kind of time delay, the mixed delay can significantly enhance the systems’
use of historical data which improves the adherence to the actual networks, and few pieces of literature discuss
the SSMJSs with mixed delay. For theoretical and practical significance, it is meaningful and important to study
SSMJSs with mixed delay.

Through the recent decades, synchronization acting as one of the most significant cooperative behaviors in
both natural and synthetic networks has been popularly applied in diverse fields like power transmission [22],
multi-vehicle collaboration [23] and communication security [24]. There have been many investigations on
the synchronization of SCNSs. In [25], synchronization of hybrid switching diffusion delayed networks was
investigated and in [26], bipartite synchronization of fractional-order multi-layer signed networks was investi-
gated. In this paper, the theoretical significance and potential for practical applications of research on SSMJSs
synchronization are really what drives our study.

For the sake of achieving synchronization of CNSs, some control strategies have been designed like in-
termittent control [27, 28], pinning control [29], event-triggered control [30], sampled-data control [31, 32]
and impulsive control [33]. Among them, the hybrid impulsive control containing synchronous and asyn-
chronous impulses has been adequately and extensively utilized to investigate the synchronization of CNSs
[34, 35, 36, 37, 38]. For example, in [34] Wang et al. proposed a new definition of “average impulsive gain” to
estimate the intensity of hybrid impulses to discuss the synchronization of a kind of coupled neural networks.
In the above-mentioned literature, the fixed impulsive intensity and density in the control scheme are taken into
account. However, numerous actual systems are affected by random fluctuations, and the systems could be not
clearly defined, thus stochastic hybrid impulsive controllers are designed to deal with the synchronization prob-
lem. Based on the above discussion, we naturally wonder whether stochastic hybrid impulsive control can be
applied to resolve the exponential synchronization issue of SMJSs with mixed delay. In addition, how to deal
with semi-Markov jump with time-varying state transition rate and stochastic hybrid impulsive control with the
impulsive gain being a sequence of stochastic variables is a key issue that needs to be addressed.

On the other hand, as we all know, two famous methods have been established to deal with the stabilization
or synchronization of delayed systems including the Razumikhin method and the Lyapunov functional method.
However, it actually lacks the true sense of functional Itô’s formula for the SCNSs with delay. In view of
that, Dupire extended the Itô’s formula to the case of stochastic functional differential equations [39]. Based
on it, many results have been derived. Nguyen et al. studied almost sure stability, exponential stability of
stochastic functional differential equations and gave some novel conditions for stability in terms of Lyapunov
functionals by using Dupire’s functional Itô’s formula in [40]. And further, he established a new stability theory
for stochastic functional differential systems with random switching in [41]. In our paper, we are aiming to
investigate the exponential synchronization of SSMJSs with the mixed delay with the aid of Dupire functional
Itô’s formula, which has not been touched. We attempt to construct a proper Lyapunov-Krasovaskii functional
to estimate the sign of operate LV by using the defined Dupire horizontal and vertical partial derivatives. Then
through Dupire functional Itô’s formula and Lyapunov theory, some synchronization criteria can be derived,
avoiding using the Razumikhin method. Thus, how to construct a proper functional is another both appealing
and challenging question to be addressed.

Motivated by the above analysis, in this paper, we concentrate on the exponential synchronization of SSMJSs
with mixed delay via stochastic hybrid impulsive control. By applying Dupire functional Itô’s formula, we
shall derive the new exponential synchronization criteria of SSMJSs with mixed delay. Meanwhile, in order to
confirm the applicability of the established outcomes, Chua’s circuit systems are provided, and the numerical
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simulation results demonstrate the validity of derived theories. The chief contributions are presented below:

• Different from the single kind of time-varying delay, the mixed delay effectively utilizes the past informa-
tion of SSMJSs which pre-eminently enhances the reliability of the results. Furthermore, the semi-Markov
jump, which has a time-varying transfer rate as opposed to the Markov jump’s constant transfer rate, is
better capable of capturing the phenomenon of parameter jump in practical systems.

• Unlike the previous work [34], stochastic hybrid impulsive control includes impulsive gains being a se-
quence of random variables at different impulsive times and contains synchronous impulses and asyn-
chronous impulses simultaneously, which is more adaptable in practical systems. Additionally, the notion
of “average stochastic impulsive gain” is proposed to determine the magnitude of such stochastic hybrid
impulsive intensity.

• Based on graph theory, a novel appropriate global Lyapunov functional is constructed via vertex Lyapunov
functional. According to horizontal and vertical derivatives and with the help of Dupire functional Itô’s
formula, some sufficient conditions to achieve exponential synchronization of SSMJSs with mixed delay
are given as the extension of [40].

The rest arrangements of this paper are organized as follows. In Section 2, some preliminaries and model
description are displayed. Section 3 presents the main theoretical results containing some synchronization
criteria. And a kind of Chua’s circuit systems is demonstrated as the application of SSMJSs with mixed delay
in Section 4. In Section 5, the numerical example is derived to illustrate our theoretical results.

Notations. Let N = {1, 2, · · · ,N}, S = {1, 2, · · · , S }, H = {1, 2, · · · ,H, · · · }. And R+ denotes the set of non-
negative real numbers, Rk is k-dimensional Euclidean space. For a ∈ Rk, write | · | for the Euclidean norm of the
vector. The superscript “T” stands for the transpose of a vector or a matrix. “tr” is the trace of a square matrix.
For a fixed positive real number α, C([−α, 0];Rk) refers to the space consisting of continuous functions mapped
from [−α, 0] to Rk. For the continuous function F(t), D+F(t) = limϵ→0+

F(t+ϵ)−F(t)
ϵ

represents the right and upper
Dini’s derivative. Let (Ω,F ,F,P) be a complete probability space with a filtration F = {Ft}t≥0 satisfying usual
conditions. E is the mathematical expectation about the probability P.

2. Preliminaries and model description

2.1. Preliminaries
Some related knowledge about Dupire functional Itô’s formula is presented as preliminaries in the following.
Consider the following stochastic functional differential equation with semi-Markov jump β(t)

dx(t) = F(t, xt, β(t))dt + Λ(t, x(t), β(t))dB(t), t ≥ 0. (1)

For χ ∈ C([−α, 0];Rk), x ≥ 0, y ∈ Rk, its horizontal and vertical perturbations are defined as

χx(σ) =
{
χ(x + σ), σ ∈ [−α,−x],
χ(0), σ ∈ [−x, 0], (2)

χy(σ) =
{
χ(σ), σ ∈ [−α, 0),
χ(0) + y, σ = 0.
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Assume that V : C([−α, 0];Rk) × S 7→ R+. The horizontal and vertical partial derivatives of V at (χ, s) are
defined as

Vt(χ, s) = lim
x→0+

V(χx, s) − V(χ, s)
x

,

∂iV(χ, s) = lim
x→0+

V(χxui , s) − V(χ, s)
x

,

where ui is the standard unit vector in Rk, and its ith element is 1, but the other elements are 0. V is continuous
with respect to the first argument. Derivatives Vt, Vl = (∂iV), Vll = (∂i jV) exist and are continuous. V, Vt, Vl is
bounded on the bounded set Br = {χ | ∥χ∥ ≤ r, r > 0}. Define

LV(χ, s) = Vt(χ, s) + Vl(χ, s)F(t, χ, s) +
1
2

tr
(
ΛT(t, l, s)Vll(χ, s)Λ(t, l, s)

)
+

S∑
ŝ=1

ζsŝ(ϵ(t)) (V(χ, ŝ) − V(χ, s)) .

Hence, one gets Dupire Itô’s formula

dV(χ, s) = LV(χ, s)dt + Vl(χ, s)Λ(t, l, s)dB(t).

2.2. Model description
Consider the driving system

dϕm(t) =
[
Γ̃1

m (t, ϕm(t), β(t)) + Γ̃2
m (t, ϕm(t − α1(t))) +

∫ t

t−α2

Γ̃3
m (σ, ϕm(σ)) dσ

+

N∑
n=1

Πmn(β(t))Θ̃mn (t, ϕm(t), ϕn(t), β(t))

 dt + Λ̃m (t, ϕm(t), β(t)) dB(t), t ≥ 0,m, n ∈ N.
(3)

and the response system with impulsive control to synchronize with the driving system is given as below:

dψm(t) =
[
Γ̃1

m (t, ψm(t), β(t)) + Γ̃2
m (t, ψm(t − α1(t))) +

∫ t

t−α2

Γ̃3
m (σ, ψm(σ)) dσ

+

N∑
n=1

Πmn(β(t))Θ̃mn (t, ψm(t), ψn(t), β(t))

 dt + Λ̃m (t, ψm(t), β(t)) dB(t), t ≥ 0, t , th,

ψm(th) − ϕm(th) =Im
u(th)(ψ(t−h ) − ϕ(t−h )),m, n ∈ N, h ∈ H,

(4)

where ϕm(t) ∈ Rk is the state vector of the mth vertex for driving system (3) at time t, ψm(t) ∈ Rk is the state
vector of the mth vertex for response system (4) at time t, β(t) is the semi-Markov jump with the state space
S = {1, 2, · · · , S } and the state transfer probability P is described as

P(β(t + ϵ(t)) = ŝ|β(t) = s) =
{
ζsŝ(ϵ(t))ϵ(t) + o(ϵ(t)), s , ŝ,
1 + ζss(ϵ(t))ϵ(t) + o(ϵ(t)), s = ŝ,

in which limϵ(t)→0 o(ϵ(t)) = 0, ζsŝ(ϵ(t)) > 0 (s , ŝ) is the transfer rate from state s to state ŝ, and ζsŝ(ϵ(t)) =
−

∑S
ŝ=1,ŝ,s ζsŝ(ϵ(t)), Γ̃1

m: R+ × Rk × S 7→ Rk, Γ̃2
m, Γ̃3

m: R+ × Rk 7→ Rk are piecewise continuous functions, Θ̃mn:
R+ × Rk × Rk × S 7→ Rk is the coupling function between the mth node and the nth node, representing the
influence of the nth node on the mth node with the influence intensity being Πmn(·) ≥ 0, Λ̃m: R+ × Rk × S 7→
Rk is a stochastic perturbation function, B(t) is Brownian motion defined in the complete probability space
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(Ω,F ,F,P), α1(t) and α2 are time-varying discrete delay and distributed delay of the system, respectively such
that 0 ≤ α1(t) ≤ α1, α̇1(t) ≤ α∗1 < 1, α1, α2 ≤ α. Besides, Γ̃1

m, Γ̃2
m, Γ̃3

m, Θ̃mn, Λ̃m are all satisfied with the
Lipschitz condition and the linear growth condition. Im

u(th): Rk → Rk is stochastic impulse intensity function,
H̄ = {t1, t2, · · · , tH, · · · } is stochastic impulse sequence, ϕm(t) and ψm(t) satisfy ϕm(t−h ) = limt→t−h

ϕm(t), ϕm(t+h ) =
limt→t+h

ϕm(t), ψm(t−h ) = limt→t−h
ψm(t), ψm(t+h ) = limt→t+h

ψm(t). They are right continuous, that is, ϕm(th) = ϕm(t+h ),
ψm(th) = ψm(t+h ). Suppose that em(t) = ψm(t) − ϕm(t) is the error vector for the mth vertex at time t. Then the
error system of driving system (3) and response system (4) can be depicted as

dem(t) =
[
Γ1

m (t, em(t), β(t)) + Γ2
m (t, em(t − α1(t))) +

∫ t

t−α2

Γ3
m (σ, em(σ)) dσ

+

N∑
n=1

Πmn(β(t))Θmn (t, em(t), en(t), β(t))

 dt + Λm (t, em(t), β(t)) dB(t), t ≥ 0, t , th,

em(th) =Im
u(th)(em(t−h )),m, n ∈ N, h ∈ H.

(5)

Among them,
Γ1

m (t, em(t), β(t)) = Γ̃1
m (t, ψm(t), β(t)) − Γ̃1

m (t, ϕm(t), β(t)) ,

Γ2
m (t, em(t − α1(t))) = Γ̃2

m (t, ψm(t − α1(t))) − Γ̃2
m (t, ϕm(t − α1(t))) ,

Γ3
m (t, em(t)) = Γ̃3

m (t, ψm(t)) − Γ̃3
m (t, ϕm(t)) ,

Θmn (t, em(t), en(t), β(t)) = Θ̃mn (t, ψm(t), ψn(t), β(t)) − Θ̃mn (t, ϕm(t), ϕn(t), β(t)) ,

Λm (t, em(t), β(t)) = Λ̃m (t, ψm(t), β(t)) − Λ̃m (t, ϕm(t), β(t)) .

In order to obtain the theoretical results, some assumptions, definitions, and a lemma about the error system
are presented in the following.

Assumption 1. There exist positive numbers γ1
m(s), γ2

m, γ3
m, m ∈ N, s ∈ S such that

eT
mΓ

1
m(t, em, s) ≤ γ1

m(s)|em|
2,

|Γ2
m(t, em)| ≤ γ2

m|em|,

|Γ3
m(t, em)|2 ≤ γ3

m|em|
2.

Assumption 2. There exist positive numbers θmn(s), λm(s), m ∈ N, s ∈ S, and a sequence of stochastic variables
IMPu(th), h ∈ H, satisfying that

|Θmn(t, em, en, s)| ≤ θmn(s)(|em| + |en|),

|Λm(t, em, s)|2 ≤ λm(s)|em|
2,∣∣∣Im

u(th)(e
h
m)

∣∣∣2 ≤ IMPu(th)

∣∣∣eh
m

∣∣∣2 .
Definition 1. If there exist positive numbers ε and L such that for any initial condition ξ = ξψ−ξϕ ∈ C([−α, 0];RkN),

E|e(t)|2 ≤ L∥ξ∥2exp{−εt}, t ≥ 0,

where e(t) = (eT
1 (t), eT

2 (t), · · · , eT
N(t))T ∈ RkN . Then driving system (3) and response system (4) achieve mean-

square exponential synchronization.
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Definition 2. [42] Suppose that NUMH(t, 0) represents the number of impulse occurrences of the impulse
sequence H̄ in the time period (0, t). Then average impulsive interval AI of the impulse sequence H̄ at time
interval (0, t) is defined as

AI = lim
t→∞

t
NUMH(t, 0)

.

Definition 3. The average stochastic impulsive gain AG of the impulse sequence H̄ at time interval (0, t) is

AG = lim
t→∞

EIMPu(t1) + EIMPu(t2) + · · ·EIMPu(tNUMH (t,0))

NUMH(t, 0)
.

Remark 1. In most cases, the impulsive effects can be classified into two most common categories, i.e., syn-
chronous impulses and asynchronous impulses. In [42], the definition of “average impulsive interval” has been
introduced and some unified synchronization criteria both suitable for synchronous and asynchronous impulses
were given. Besides, the definition of “average impulsive gain” was put forward in [34] and some synchro-
nization criteria for an array of coupled neural networks were provided. Furthermore, it is worth noticing that
the impulsive intensity is presumed to be predetermined in the above references, which is seldom to describe
the stochastic factors universally appearing in the impulsive effect. Therefore, by introducing and adopting the
novel definition “average stochastic impulsive gain”, we shall calculate the intensity of the stochastic hybrid
impulse that is being investigated in this paper. As a consequence, some synchronization criteria firmly linking
to Definition 3 will be derived in the next section.

Lemma 1. Assume N ≥ 2, cm is the cofactor of the mth diagonal element of the Laplacian matrix for matrix
T HE = (T HEmn)N×N , it can be concluded that

N∑
m=1

N∑
n=1

cmT HEmnΘmn(t, em, en) =
∑
Q∈Q

W(Q)
∑

(v,v′ )∈E(CQ)

Θmn(t, ev′ , ev),

where Θmn is an arbitrary function, Q denotes the set consisting of spanning uni-cyclic graphs of (G,T HE),
W(Q) is the weight of Q, CQ represents the directed cycle of Q. In particular, if (G,T HE) is strongly connected,
then cm > 0, m ∈ N.

Based on the above discussions, the following so-called Lyapunov-type theorem and Cofficient-type theorem
will be presented for driving system (3) and response system (4) to achieve exponential synchronization.

3. Main results

In this section, we will give some synchronization criteria which are included in the last two theorems. And
the first theorem illustrates a fact that ensures the validity of the theoretical results in this paper as basics.

To illustrate a fact, we will prove that functional derivative calculating by the defined horizontal movement
and conventional method of calculating the derivative of the integral is equal.

Theorem 1. Suppose Y(t) is a continuous function on [0,+∞), for a fixed t, Yt ∈ C([−α, 0];Rk), Yt(σ) = Y(t+σ),
σ ∈ [−α, 0]. If V(Yt) =

∫ 0

−α

∫ t

t+σ
Y(µ)dµdσ, then one obtains Vt(Yt) = limx→0+

V((Yt)x)−V(Yt)
x = αY(t)−

∫ t

t−α
Y(µ)dµ =

d
dt

(∫ 0

−α

∫ t

t+σ
Y(µ)dµdσ

)
.
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Proof. Based on (2), one gets

(Yt)x (σ) =

Yt(x + σ), σ ∈ [−α,−x],
Yt(0), σ ∈ [−x, 0].

Then according to

V(Yt) =
∫ 0

−α

∫ t

t+σ
Y(µ)dµdσ,

one derives

V ((Yt)x) =
∫ −x

−α

∫ t

t+σ
Y(µ + x)dµdσ +

∫ 0

−x

∫ t

t+σ
Y(0)dµdσ.

Moreover, one has

Vt(Yt) = lim
x→0+

1
x

(∫ −x

−α

∫ t

t+σ
Y(µ + x)dµdσ +

∫ 0

−x

∫ t

t+σ
Y(0)dµdσ −

∫ 0

−α

∫ t

t+σ
Y(µ)dµdσ

)
= lim

x→0+
−

∫ t

t−x
Y(µ + x)dµ +

∫ −x

−α

∫ t

t+σ
Ẏ(µ + x)dµdσ +

∫ t

t−x
Y(0)dµ

=

∫ 0

−α

∫ t

t+σ
Ẏ(µ)dµdσ

=

∫ 0

−α

(Y(t) − Y(t + σ)) dσ

=αY(t) −
∫ t

t−α
Y(µ)dµ.

This completes the proof.

Remark 2. Since Dupire functional Itô’s formula was put forward in [39], numerous theoretical results have
been inspired [40, 41], in which some stability criteria were derived for the stochastic functional differential
equation and random switching system. Different from them, we consider the stochastic complex network with
semi-Markov jump and distributed delay in this paper. Due to the existence of distributed delay, we construct a
different functional Vm(t, χm, s) = V1

m(lm, s) + V2
m(t), V1

m(lm, s) = w̄m(s)|lm|
2, V2

m(t) =
∫ t

t−α1(t)

∣∣∣Γ2
m(σ, em(σ))

∣∣∣2 dσ +∫ 0

−α2

∫ t

t+σ

∣∣∣Γ3
m(µ, em(µ))

∣∣∣2 dµdσ. When using Dupire functional Itô’s formula, Vt should be calculated and Vt

depends on the defined Dupire horizontal partial derivative. In Theorem 1, we prove that the result is the same
as the conventional method of calculating the derivative of integral, which is an additional and necessary result
to ensure the validity of the theoretical results of this paper.

Theorem 2. For s ∈ S, suppose there exists a function Vm(χ, s) defined on C([−α, 0];Rk)×S such that Vm(χ, s) =
V1

m(lm, s) + V2
m(t) in which V2

m(th) = 0. Vm(χ, s) is a continuous function that is twice differentiable with respect
to the first variable. If the following conditions hold:
WX1. There exist positive constants d1

m(s), d2
m(s) satisfying that

d1
m(s)|lm|

2 ≤ V1
m(lm, s) ≤ d2

m(s)|lm|
2. (6)

WX2. When t , th, there exist positive constants ηm(s), T HEmn ≥ 0 and function Θmn satisfying

LVm((em)t, s) ≤ ηm(s)Vm((em)t, s) +
N∑

n=1

T HEmnΘmn(t, em(t), en(t)). (7)
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When t = th, one derives

Vm
(
(em)th , β(th)

)
≤ IMPu(th)Vm

(
(em)t−h

, β(t−h )
)
. (8)

WX3. Digraph (G,T HE) is strongly connected, T HE = (T HEmn)N×N , T HEmn = maxs∈S{Πmn(s)θmn(s)}. For
each digraph (G,T HE), we have ∑

(m,n)∈E(CQ)

Θmn(t, em(t), en(t)) ≤ 0.

WX4. If the average stochastic impulsive gain AG and the average stochastic impulsive interval AI satisfy

ln AG
AI

= k < k1 < 0, k1 + η < 0, η = max
m∈N,s∈S

{ηm(s)}.

Then driving system (3) and response system (4) achieve mean-square exponential synchronization.

Proof. Suppose V(et, s) =
∑N

m=1 cmVm((em)t, s), here cm represents the cofactor of the mth diagonal element of
the Laplacian matrix for matrix T HE. Assume that (G,T HE) is strongly connected, we can get cm > 0, m ∈ N.
Impulse instants and non-impulse instants are discussed separately below.

When t , th, based on (7), it can be obtained that

LV(et, s) =
N∑

m=1

cmLVm((em)t, s)

≤

N∑
m=1

cm

ηm(s)Vm((em)t, s) +
N∑

n=1

T HEmnΘmn(t, em(t), en(t))


≤ηV(et, s) +

N∑
m=1

N∑
n=1

cmT HEmnΘmn(t, em(t), en(t)). (9)

By Lemma 1, W(Q) ≥ 0, it can be written as
N∑

m=1

N∑
n=1

cmT HEmnΘmn(t, em(t), en(t)) =
∑
Q∈Q

W(Q)
∑

(v,v′ )∈E(CQ)

Θmn(t, ev′(t), ev(t)) ≤ 0. (10)

Substituting (10) to (9), it can be concluded that

LV(et, s) ≤ ηV(et, s).

It’s given by Dupire Itô’s formula that

D+EV(et, s) ≤ ηEV(et, s). (11)

When t = th, according to (9), one gets

V
(
eth , β(th)

)
=

N∑
m=1

cmVm
(
(em)th , β(th)

)
≤

N∑
m=1

cmIMPu(th)Vm

(
(em)t−h

, β(t−h )
)

=IMPu(th)V
(
(em)t−h

, β(t−h )
)
, (12)
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then

EV
(
(em)th , β(th)

)
≤E

[
IMPu(th)V

(
(em)t−h

, β(t−h )
)]

=E
[
E

[
IMPu(th)V

(
(em)t−h

, β(t−h )
)
| Fh−1

]]
=E

[
V

(
(em)t−h

, β(t−h )
)]
E

[
IMPu(th) | Fh−1

]
=EV

(
(em)t−h

, β(t−h )
)
EIMPu(th).

Depending on the method of inductive, it holds that

EV (et, s) ≤ EVo

H∏
h=1

EIMPu(th) exp{ηt}, t ∈ [tH, tH+1), (13)

where
EVo = sup

t∈[−α,0]
EV (et, s) .

When t ∈ [−α, 0], one derives EV (et, s) ≤ EVo, and it obviously holds. When t ∈ (0, t1), from (11), we can
derive the following inequalities:

EV (et, s) ≤ EV (e0, s) exp{ηt} ≤ EVo exp{ηt}.

Thus, one concludes that

EV
(
et1 , β(t1)

)
≤ EIMPu(t1)EV

(
et−1
, β(t−1 )

)
≤ EIMPu(t1)EVo exp{ηt1}.

When t ∈ [t1, t2),
EV (et, s) ≤ EV

(
et1 , β(t1)

)
exp{η(t − t1)} ≤ EIMPu(t1)EVo exp{ηt}.

Hence, when H = 1, (13) holds. If (13) is true for H, then for H + 1,

EV
(
etH+1 , β(tH+1)

)
≤ EIMPu(tH+1)EV

(
et−H+1

, u(t−H+1)
)
≤

H+1∏
h=1

EIMPu(th)EVo exp{ηtH+1}.

When t ∈ [tH+1, tH+2),

EV (et, s) ≤ EV
(
etH+1 , β(tH+1)

)
exp{η(t − tH+1)} =

H∏
h=1

EIMPu(th)EVo exp{ηt}.

Therefore, (13) holds for H + 1, and based on the method of inductive, we can conclude that (13) is valid for all
H ≥ 1, so

EV (et, s) =
NUMH(t,0)∏

h=1

EIMPu(th)EVo exp{ηt}

≤EVoν
NUMH(t,0) exp{ηt}

=EVo exp{NUMH(t, 0) ln ν} exp{ηt}

≤EVo exp
{ t ln ν

t/NUMH(t, 0)

}
exp{ηt}, (14)
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in which

ν =
EIMPu(t1) + EIMPu(t2) + · · ·EIMPu(tNUMH (t,0))

NUMH(t, 0)
.

Since AG = limt→∞ ν and AI = limt→∞
t

NUMH(t,0) , it can be described as follows:∣∣∣∣∣ln ν/ t
NUMH(t, 0)

−
ln AG

AI

∣∣∣∣∣ < k1 − k, (15)

Substituting (15) into (14), one derives

EV (et, s) ≤ EVo exp{(k1 + η)t}, t ≥ 0.

In view of et(0) = e(t), one gets

EV1 (e(t), s) ≤ V1
o exp{(k1 + η)t}, t ≥ 0,

where
V1

o = sup
t∈[−α,0]

V1 (e(t), s) .

According to condition WX1, it concludes

V1
o =

N∑
m=1

cm(V1
m)o(em(t), s) ≤ sup

t∈[−α,0]

N∑
m=1

cmd2
m(s)|em(t)|2 ≤ max

m∈N,s∈S
{cmd2

m(s)} sup
t∈[−α,0]

|e(t)|2 ≜ d2∥ξ∥
2,

EV1
o (e(t), s) = E

N∑
m=1

cm(V1
m)o(em(t), s) ≥ E

N∑
m=1

cmd1
m(s)|em(t)|2 ≥ min

m∈N,s∈S
{cmd1

m(s)}E|e(t)|2 = d1E|e(t)|2.

Consequently, we have

E|e(t)|2 ≤
d2

d1
∥ξ∥2 exp{(k1 + η)t}, t ≥ 0.

On the basis of condition WX4, k1 + η < 0 can be obtained, then driving system (3) and response system (4)
can reach mean-square exponential synchronization.

Remark 3. There have been many investigations on the synchronization of coupled systems by graph theory and
the Lyapunov method [43, 44, 45]. In [45], global Lyapunov function was constructed as V(e, t) =

∑n
i=1 ciVi(ei, t)

through vertex Lyapunov function. Referring to this method, we construct the global Lyapunov functional as
V(t, et, s) =

∑N
m=1 Vm(t, (em)t, s) through vertex Lyapunov functional, in which cm is the cofactor of the mth

diagonal element of the Laplacian matrix for matrix T HE. From this condition, we can also see that the
synchronization is related to the network’s topological structure.

In the following, Coefficient-type theorem attaching to the coefficients in driving system (3) and response
system (4) is derived to give some other synchronization criteria.

Theorem 3. Suppose Assumption 1 and Assumption 2 hold and the following conditions are satisfied:
HD1. Directed graph (G,T HE) is strongly connected, T HE = (T HEmn)N×N , T HEmn = maxs∈S{Πmn(s)θmn(s)}.
HD2. The average stochastic impulsive gain and the average stochastic impulsive interval satisfy that

ln AG
AI

= k < k1 < 0, k1 + η < 0, η = max
m∈N,s∈S

{ηm(s)}.

Then driving system (3) and response system (4) can reach mean-square exponential synchronization.
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Proof. Assume V1
m(em, s) = w̄m(s)|em|

2, V2
m(t) =

∫ t

t−α1(t)

∣∣∣Γ2
m(σ, em(σ))

∣∣∣2 dσ +
∫ 0

−α2

∫ t

t+σ

∣∣∣Γ3
m(µ, em(µ))

∣∣∣2 dµdσ, con-
dition WX1 apparently holds. Based on Assumption 1, Assumption 2 and Lemma 1, computing LVm along
system (5), we can get the following conclusions. When t , th, it has

LVm((em)t, s) =2w̄m(s)eT
m(t)

[
Γ1

m(t, em(t), s) + Γ2
m(t, em(t − α1(t)))

+

∫ t

t−α2

Γ3
m(σ, em(σ))dσ +

N∑
n=1

Πmn(s)Θmn(t, em(t), en(t), s)
]

+ w̄m(s)tr
[
ΛT

m(t, em(t), s)Λm(t, em(t), s)
]
+

∑
ŝ∈S

ζsŝ(ϵ(t))w̄m(ŝ)|em(t)|2

+
∣∣∣Γ2

m(t, em(t))
∣∣∣2 − (1 − α̇1(t))

∣∣∣Γ2
m(t, em(t − α1(t)))

∣∣∣2
+ α2

∣∣∣Γ3
m(t, em(t))

∣∣∣2 − ∫ t

t−α2

∣∣∣Γ3
m(σ, em(σ))

∣∣∣2 dσ

≤2w̄m(s)γ1
m(s)|em(t)|2 + w̄m(s)γ2

m|em(t)|2 + α2w̄m(s)γ3
m|em(t)|2

+ 2w̄m(s)Πmn(s)θmn(s)|em(t)|2 + 2w̄m(s)Πmn(s)θmn(s)|em(t)||en(t)|

+ 2w̄m(s)eT
m(t)Γ2

m(t, em(t − α1(t))) − (1 − α∗1)
∣∣∣Γ2

m(t, em(t − α1(t)))
∣∣∣2

+ 2w̄m(s)eT
m(t)

∫ t

t−α2

Γ3
m(σ, em(σ))dσ −

∫ t

t−α2

∣∣∣Γ3
m(σ, em(σ))

∣∣∣2 dσ

+ w̄m(s)λm(s)|em(t)|2 +
∑
ŝ∈S

ζsŝ(ϵ(t))
w̄m(ŝ)
w̄m(s)

w̄m(s)|em(t)|2. (16)

In view of the following inequalities

−

∫ t

t−α2

∣∣∣Γ3
m(σ, em(σ))

∣∣∣2 dσ + 2w̄m(s)eT
m(t)

∫ t

t−α2

Γ3
m(σ, em(σ))dσ

≤ −

∣∣∣∣∣∣
∫ t

t−α2

Γ3
m(σ, em(σ))2dσ

∣∣∣∣∣∣2 + 2w̄m(s)eT
m(t)

∫ t

t−α2

Γ3
m(σ, em(σ))dσ

= −

∣∣∣∣∣∣
∫ t

t−α2

Γ3
m(σ, em(σ))dσ − w̄m(s)eT

m(t)

∣∣∣∣∣∣2 + w̄2
m(s)|em(t)|2

≤w̄2
m(s)|em(t)|2, (17)

− (1 − α∗1)
∣∣∣Γ2

m(t, em(t − α1(t)))
∣∣∣2 + 2w̄m(s)eT

m(t)Γ2
m(t, em(t − α1(t)))

= −
∣∣∣∣(1 − α∗1)

1
2Γ2

m(t, em(t − α1(t))) − w̄m(s)(1 − α∗1)−
1
2 eT

m(t)
∣∣∣∣2 + w̄2

m(s)
1 − α∗1

|em(t)|2

≤
w̄2

m(s)
1 − α∗1

|em(t)|2, (18)

and
2Πmn(s)θmn(s)|em(t)||en(t)| ≤ Πmn(s)θmn(s)|em(t)|2 + Πmn(s)θmn(s)|en(t)|2, (19)
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Πmn(s)θmn(s)|en(t)|2 = Πmn(s)θmn(s)|em(t)|2 + Πmn(s)θmn(s)(|en(t)|2 − |em(t)|2), (20)

according to (17)-(20) and V2
m(t) > 0, we obtain

LVm((em)t, s) ≤2w̄m(s)γ1
m(s)|em(t)|2 + w̄m(s)γ2

m|em(t)|2 + α2w̄m(s)γ3
m|em(t)|2 + w̄m(s)λm(s)|em(t)|2

+ 4w̄m(s)
N∑

n=1

T HEmn|em(t)|2 +
w̄2

m(s)
1 − α∗1

|em(t)|2 + w̄2
m(s)|em(t)|2 +

∑
ŝ∈S

ζsŝ(ϵ(t))
w̄m(ŝ)
w̄m(s)

w̄m(s)|em(t)|2

+ ηm(s)V2
m(t) +

N∑
n=1

T HEmnΘmn(t, em(t), en(t))

≤

(
2γ1

m(s) + γ2
m + α2γ

3
m + λm(s) + 4

N∑
n=1

T HEmn +
w̄2

m(s)
1 − α∗1

+ w̄2
m(s) +

∑
ŝ∈S

ζsŝ,s′
w̄m(ŝ)
w̄m(s)

)
w̄m(s)|em(t)|2

+ ηm(s)V2
m(t) +

N∑
n=1

T HEmnΘmn(t, em(t), en(t))

≤ηm(s)
(
V1

m(em(t), s) + V2
m(t)

)
+

N∑
n=1

T HEmnΘmn(t, em(t), en(t))

=ηm(s)Vm((em)t, s) +
N∑

n=1

T HEmnΘmn(t, em(t), en(t)),

where

ηm(s) = 2γ1
m(s) + γ2

m + α2γ
3
m + λm(s) + 4

N∑
n=1

T HEmn +
w̄2

m(s)
1 − α∗1

+ w̄2
m(s) +

∑
ŝ∈S

ζsŝ,s′
w̄m(ŝ)
w̄m(s)

,

Θmn(t, em(t), en(t)) = max
s∈S
{w̄m(s)}

(
|en(t)|2 − |em(t)|2

)
.

When t = th, it follows that

Vm
(
(em)th , β(th)

)
=V1

m (em(th), β(th))

=w̄m(s)|em(th)|2 = w̄m(s)
∣∣∣Im

u(th)(em(t−h ))
∣∣∣2

≤w̄m(s)IMPu(th)

∣∣∣em(t−h )
∣∣∣2

=IMPu(th)V1
m
(
em(t−h ), β(t−h )

)
=IMPu(th)

(
V1

m
(
em(t−h ), β(t−h )

)
+ V2(t−h )

)
=IMPu(th)Vm

(
em(t−h ), β(t−h )

)
Therefore, condition WX2 holds. In addition, HD1 and HD2 conclude that conditions WX3 and WX4 hold,
respectively. Consequently, driving system (3) and response system (4) can achieve mean-square exponential
synchronization.

Remark 4. Note that digraph (G,T HE) in Theorem 3 is strongly connected implying there are directed paths
between any two different nodes in the maximum graph (G,T HE). According to T HEmn = maxs∈S{Πmn(s)θmn(s)},
it is not a requisite for each sub-network to be strongly connected. Besides, ln AG/AI < 0 represents the average
impulsive gain is less than 1, which means the impulse plays a synchronous effect on the whole. And k1 + η < 0
indicates the impulse indeed synchronizes the response system to the driving system.
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4. Application to stochastic semi-Markov jump Chua’s circuit system with mixed delay

Chua’s circuit systems are widely used in various fields and have received widespread attention in recent
years. In this part, we will apply the theoretical results to a kind of semi-Markov jump Chua’s circuit systems
with mixed delay. To make the driving Chua’s circuit system and the corresponding response Chua’s circuit sys-
tem achieve synchronization, we apply stochastic hybrid impulsive control to the response system. Additionally,
some synchronization criteria for the circuit systems are given.

A single uncoupled Chua’s circuit system is known to be described as follows.
C1dU1(t) =

[
1
I

(−U1(t) + U2(t)) − Γ̃(U1(t))
]

dt,

C2dU2(t) =
[
1
I

(U1(t) − U2(t)) + U3(t)
]

dt,

MdU3(t) = − (U2(t) + I0U3(t)) dt,

(21)

where U1(t) and U2(t) are the voltages of capacitors C1 and C2, respectively, U3 is the current through inductor
M, I and I0 represent linear resistors. Γ̃(U1(t)) = ν2U1(t) + 1

2 (ν1 − ν2)(|U1(t) + 1| − |U2(t) − 1|), where ν1 and
ν2 represent the slopes of the inner region and the outer region, respectively. Next, we consider the following
coupled stochastic semi-Markov jump Chua’s circuit system with mixed delay as the driving system. dΦm1(t)

dΦm2(t)
dΦm3(t)

 =

 −τm1(β(t)) τm1(β(t)) 0
τm2(β(t)) −τm2(β(t)) τm3(β(t))

0 τm4(β(t)) −τm5(β(t))


 Φm1(t)
Φm2(t)
Φm3(t)


+

 −ξm1Γ̃m (t,Φm1(t − α1(t)))
0
0

 +
∫ t

t−α2

Γ̃3
m(σ,Φm(σ))dσ

+

N∑
n=1

Πmn(β(t))Θ̃mn(t,Φm(t),Φn(t), β(t))

 dt (22)

+ Λ̃m(t,Φm(t), β(t))dB(t), t ≥ 0,m, n ∈ N,

in which Φm(t) = (Φm1(t),Φm2(t),Φm3(t))T ∈ R3 is the state vector of the mth circuit system at time t. τm1(β(t)) =
1

Im(β(t))Cm1
, τm2(β(t)) = 1

Im(β(t))Cm2(β(t)) , τm3(β(t)) = 1
Cm2(β(t)) , τm4(β(t)) = 1

Mm(β(t)) , τm5(β(t)) = Im0(β(t))
Mm(β(t)) , ξm1 =

1
Cm1

. Γ̃m

and Γ̃3
m are continuous function. Θ̃mn is the coupling function between the mth circuit and the nth circuit, and

represents the influence of the nth circuit on the mth circuit with the influence intensity being Πmn(β(t)). Λ̃m

is the stochastic perturbation function, and B(t) is a one-dimensional Brownian motion. In the following, the
response system with stochastic impulsive control that makes the response system synchronize with driving
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system (22) is given as follows.

 dΨm1(t)
dΨm2(t)
dΨm3(t)

 =

 −τm1(β(t)) τm1(β(t)) 0
τm2(β(t)) −τm2(β(t)) τm3(β(t))

0 τm4(β(t)) −τm5(β(t))


 Ψm1(t)
Ψm2(t)
Ψm3(t)


+

 −ξm1Γ̃m (t,Ψm1(t − α1(t)))
0
0

 +
∫ t

t−α2

Γ̃3
m(σ,Ψm(σ))dσ

+

N∑
n=1

Πmn(β(t))Θ̃mn(t,Ψm(t),Ψn(t), β(t))

 dt

+ Λ̃m(t,Ψm(t), β(t))dB(t), t ≥ 0, t , th,

Ψm(th) − Φm(th) =Im
u(th)(Ψm(t−h ) − Φm(t−h )),m, n ∈ N, h ∈ H,

(23)

where Ψm(t) = (Ψm1(t),Ψm2(t),Ψm3(t))T ∈ R3 is the state vector of the mth response circuit system at time t.
Suppose that ēm1(t) = Ψm1(t) − Φm1(t), ēm2(t) = Ψm2(t) − Φm2(t), ēm3(t) = Ψm3(t) − Φm3(t), thus the error system
of driving system (22) and response system (23) can be described as

 dēm1(t)
dēm2(t)
dēm3(t)

 =

 −τm1(β(t)) τm1(β(t)) 0
τm2(β(t)) −τm2(β(t)) τm3(β(t))

0 τm4(β(t)) −τm5(β(t))


 ēm1(t)

ēm2(t)
ēm3(t)


+

 −ξm1Γm (t, ēm1(t − α1(t)))
0
0

 +
∫ t

t−α2

Γ3
m(σ, ēm(σ))dσ

+

N∑
n=1

Πmn(β1(t))Θmn(t, ēm(t), ēn(t), β(t))

 dt

+ Λm(t, ēm(t), β(t))dB(t), t ≥ 0,
ēm(th) =Im

u(th)(em(t−h )),m, n ∈ N, h ∈ H,

(24)

where ēm(t) = (ēm1(t), ēm2(t), ēm3(t))T, Γm (t, ēm1(t − α1(t))), Γ3
m(t, ēm(t)), Θmn(t, ēm(t), ēn(t), β(t)), Λm(t, ēm(t), β(t))

can be denoted as

Γm (t, ēm1(t − α1(t))) = Γ̃m (t,Ψm1(t − α1(t))) − Γ̃m (t,Φm1(t − α1(t))) ,

Γ3
m(t, ēm(t)) = Γ̃3

m(t,Ψm(t)) − Γ̃3
m(t,Φm(t)),

Θmn(t, ēm(t), ēn(t), β(t)) = Θ̃mn(t,Ψm(t),Ψn(t), β(t)) − Θ̃mn(t,Φm(t),Φn(t), β(t)),

Λm(t, ēm(t), β(t)) = Λ̃m(t,Ψm(t), β(t)) − Λ̃m(t,Φm(t), β(t)).

Define

Mm(β(t)) =

 −τm1(β(t)) τm1(β(t)) 0
τm2(β(t)) −τm2(β(t)) τm3(β(t))

0 τm4(β(t)) −τm5(β(t))

 ,
Γ̂m (t, ēm1(t − α1(t))) =

 −ξm1Γm (t, ēm1(t − α1(t)))
0
0

 ,
14



then system (24) can be written as

dēm(t) =
[
Mm(β(t))ēm(t) + Γ̂m (t, ēm(t − α1(t))) +

∫ t

t−α2

Γ3
m (σ, ēm(σ)) dσ

+

N∑
n=1

Πmn(β(t))Θmn (t, ēm(t), ēn(t), β(t))
]
dt + Λm (t, ēm(t), β(t)) dB(t), t ≥ 0, t , th,

ēm(th) =Im
u(th)(ēm(t−h )),m, n ∈ N, h ∈ H.

(25)

Some sufficient conditions for system (22) and system (23) reach synchronization are derived below.

Theorem 4. If the following conditions are satisfied:
ZN1. There are positive numbers γ3

m, θmn(s), λm(s), m, n ∈ N, s ∈ S and a sequence of stochastic variables
IMPu(th), h ∈ H such that

|Γ3
m (t, ēm) |2 ≤ γ3

m|ēm|
2,

|Θmn (t, ēm, ēn, s) | ≤ θmn(s)(|ēm| + |ēm|),

|Λm (t, ēm, s) |2 ≤ λm(s)|ēm|
2,∣∣∣∣Im

u(th)

(
ēm

(
th
m

))∣∣∣∣2 ≤ IMPu(th)

∣∣∣ēh
m

∣∣∣2 .
ZN2. The directed graph (G,T HE) is strongly connected, T HE = (T HEmn)N×N , T HEmn = maxs∈S{Πmn(s)θmn(s)}.
ZN3. The average stochastic impulsive gain and the average stochastic interval satisfy

ln AG
AI

= k < k1 < 0, k1 + η < 0,

in which η = maxm∈N,s∈S

{
2γ1

m(s) + γ2
m + α2γ

3
m + λm(s) + 4

∑N
n=1 T HEmn +

w̄2
m(s)

1−α∗1
+ w̄2

m(s) +
∑

ŝ∈S ζsŝ,s′
w̄m(ŝ)
w̄m(s)

}
.

Then driving system (22) and response system (23) can reach mean-square exponential synchronization.

Proof. Consider

ēT
m(t)M(s)ēm(t) = (ēm1(t), ēm2(t), ēm3(t))

 −τm1(s) τm1(s) 0
τm2(s) −τm2(s) τm3(s)

0 τm4(s) −τm5(s)


 ēm1(t)

ēm2(t)
ēm3(t)


≤ −

1
2
τm1(s)|ēm1(t)|2 +

(
1
2
τm1(s) +

1
2
τm3(s) +

1
2
τ4(s) − τm2(s)

)
|ēm2(t)|2

+

(
1
2
τm3(s) +

1
2
τm4(s) − τm5(s)

)
|ēm3(t)|2

≤max
{
−

1
2
τm1(s),

1
2
τm1(s) +

1
2
τm3(s) +

1
2
τ4(s) − τm2(s),

1
2
τm3(s) +

1
2
τm4(s) − τm5(s)

}
|ēm(t)|2

≤γ1
m(s)|ēm(t)|2,
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and

|Γ̂m (t, ēm(t − α1(t))) | = ξm1|Γm (t, ēm1(t − α1(t))) |

=ξm1

∣∣∣∣∣ν2ēm1(t − α1(t)) +
1
2

(ν2 − ν1) (|ēm1(t − α1(t)) + 1| − |ēm1(t − α1(t)) − 1|)
∣∣∣∣∣

≤ξm1 |ν2ēm1(t − α1(t))| + ξm1 |(ν2 − ν1)ēm1(t − α1(t))|
=ξm1(2ν2 − ν1) |ēm1(t − α1(t))|

≤γ2
m |ēm1(t − α1(t))| ,

combining with ZN1, it can be seen that Assumption 1 and Assumption 2 are both valid. From ZN2 and ZN3,
we can conclude that all the conditions in Theorem 3 are valid. Therefore, driving system (22) and response
system (23) achieve mean-square exponential synchronization.

Remark 5. Circuit systems have become a relatively popular topic in recent years due to their wide range of
practical applications [46, 47, 48]. Different from them, we consider semi-Markov jump and mixed delay in
this paper. Besides, we give the synchronization criteria for the driving system and the response circuit system,
which extends the theoretical results and practical applications of the circuit systems.

5. Numerical example

This section utilizes a numerical example to verify the theoretical results in Section 4.
Firstly, we consider driving system (22) and response system (23) on digraph G with N = 18, S = 2, and the

topological structures are presented in Figure 1 considering s = 1 and s = 2. Moreover, the non-zero elements
of the adjacency matrices Π1 = (Πmn(1))18×18 and Π2 = (Πmn(2))18×18 corresponding to the two states of the
semi-Markov jump are chosen in Table 1, and the other elements are installed as zero, meaning there is no arc
between the two nodes. In addition, the coupling functions are chosen as

Θ̃mn(t,Φm(t),Φn(t), 1) = sin(Φm(t)) − sin(Φn(t)),

Θ̃mn(t,Φm(t),Φn(t), 2) = 1.2(sin(Φm(t)) − sin(Φn(t))),

Θ̃mn(t,Ψm(t),Ψn(t), 1) = sin(Ψm(t)) − sin(Ψn(t)),

Θ̃mn(t,Ψm(t),Ψn(t), 2) = 1.2(sin(Ψm(t)) − sin(Ψn(t))),

and
Θmn(t, ēm(t), ēn(t), 1) = sin(Ψm(t)) − sin(Ψn(t)) − sin(Φm(t)) + sin(Φn(t)),

Θmn(t, ēm(t), ēn(t), 2) = 1.2(sin(Ψm(t)) − sin(Ψn(t)) − sin(Φm(t)) + sin(Φn(t))).

From ZN1, we get θmn(1) = 1, θmn(2) = 1.2. Let T HEmn = maxs∈S {Πmn(s)θmn(s)}, then (G,T HE) is strongly
connected, and the sketch map is depicted in Figure 2.

Next, we choose ν1 = −0.45, ν2 = −0.21, and the settings of τm1(s), τm2(s), τm3(s), τm4(s), τm5(s) at s = 1
and s = 2 are introduced in Table 2 and Table 3 respectively, as well as the values of ξm1 are chosen in Table 4.
Then we get γ1 = maxm∈N,s∈{1,2}{γ

1
m(s)} = maxm∈N,s∈{1,2}{τm2(s), τm1(s)+τm3(s)−τm4(s), τm3(s)+τm4(s)−τm5(s)} =

0.0455, γ2 = maxm∈N{γ
2
m} = maxm∈N{ξm1(2ν2−ν1)} = 0.0830. We suppose that α1(t) = 0.01 cos2 t, α2 = 0.01, and

we have α1 = α
∗
1 = 0.01. The initial conditions are picked as Φm1(t) = −0.02, Φm2(t) = 0.02, Φm3(t) = −0.04,

Ψm1(t) = −0.07, Ψm2(t) = 0.04, Ψm3(t) = −0.08. Besides, we set that

Γ̃m (t,Φm1(t − α1(t))) = Φm1(t − α1(t)), Γ̃m (t,Ψm1(t − α1(t))) = Ψm1(t − α1(t)),
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Figure 1: Digraph (G,Π1) (left) and (G,Π2) (right).
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Figure 2: Digraph (G,T HE).
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Table 1: The non-zero elements of adjacency matrices Π1 and Π2.
Π5,6(1) Π6,7(1) Π7,8(1) Π8,9(1) Π9,10(1) Π10,11(1) Π11,12(1) Π12,5(1) Π13,14(1)
0.001 0.001 0.002 0.001 0.002 0.004 0.005 0.006 0.006
Π14,15(1) Π15,16(1) Π16,13(1) Π14,18(1) Π18,13(1) Π16,17(1) Π17,15(1) Π1,2(2) Π2,3(2)

0.002 0.001 0.002 0.001 0.003 0.004 0.002 0.002 0.002
Π3,4(2) Π4,1(2) Π1,6(2) Π6,16(2) Π16,5(2) Π5,1(2) Π2,8(2) Π8,15(2) Π15,7(2)
0.002 0.003 0.003 0.003 0.003 0.001 0.004 0.001 0.001
Π3,10(2) Π10,14(2) Π14,9(2) Π4,12(2) Π12,13(2) Π13,11(2) Π11,4(2) Π17,18(2) Π18,17(2)
0.002 0.001 0.002 0.001 0.004 0.005 0.006 0.008 0.009

Table 2: Settings of some parameters of system (25) at s = 1.
m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9

τm1(1) 0.6666 0.7943 0.9660 1.0233 0.6922 0.9108 0.7617 0.7544 0.7717
τm2(1) 1.1694 1.4361 1.2232 1.3408 1.4569 1.3636 1.3558 1.5123 1.3847
τm3(1) 0.6465 0.4910 0.7563 0.7340 0.6590 0.5006 0.4574 0.4469 0.5323
τm4(1) 0.5403 0.6446 0.7160 0.5408 0.8139 0.6243 0.5961 0.6408 0.5822
τm5(1) 0.9353 0.7483 0.7332 0.8288 0.7822 0.7714 0.7850 0.7671 0.7547

m=10 m=11 m=12 m=13 m=14 m=15 m=16 m=17 m=18
τm1(1) 0.9005 0.8279 1.1219 0.8034 0.5747 0.9848 0.5780 1.1202 1.0388
τm2(1) 1.6119 1.4065 1.4166 1.4252 1.3521 1.5358 1.4707 1.3767 1.4685
τm3(1) 0.4547 0.6118 0.4555 0.6788 0.6337 0.4934 0.6906 0.6920 0.5825
τm4(1) 0.5229 0.7765 0.7333 0.5594 0.5376 0.6151 0.7057 0.5541 0.4557
τm5(1) 0.7714 0.6692 0.8859 0.5736 0.6042 0.6790 0.8034 0.7819 0.8517

Table 3: Settings of some parameters of system (25) at s = 2.
m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9

τm1(2) 1.0061 1.0311 1.4162 1.5171 1.2910 1.2600 1.2155 0.9690 1.1897
τm2(2) 1.7388 1.9025 1.8591 1.8568 1.6898 1.7398 1.8819 1.7484 1.8078
τm3(2) 0.7400 0.8363 1.0356 0.7781 0.8733 0.9952 1.0159 0.8134 0.9331
τm4(2) 0.8097 0.8524 1.0521 0.7899 0.9827 0.8602 0.9626 0.8611 0.8264
τm5(2) 1.3353 1.1483 1.1332 1.2288 1.1822 1.1714 1.1850 1.1671 1.1547

m=10 m=11 m=12 m=13 m=14 m=15 m=16 m=17 m=18
τm1(2) 1.4147 1.1934 1.1356 1.2580 1.4495 1.2459 1.1230 1.0485 1.3224
τm2(2) 1.9365 1.9054 1.9178 1.7826 1.8516 1.8068 1.7420 1.8056 1.8713
τm3(2) 1.0500 0.9452 0.7234 0.9132 0.7308 0.7342 0.7951 0.8567 0.9544
τm4(2) 0.8078 0.8108 0.8756 0.8923 0.8192 0.7281 1.1214 0.9101 0.9050
τm5(2) 1.1714 1.0692 1.2859 0.9736 1.0042 1.0790 1.2034 1.1819 1.2517
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Table 4: Settings of ξm1 of system (25).

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9
ξm1 1.9714 1.3768 2.4213 1.0542 1.5858 1.3177 2.7668 2.2056 2.0735

m=10 m=11 m=12 m=13 m=14 m=15 m=16 m=17 m=18
ξm1 1.5608 1.1651 1.4751 2.2815 2.6628 2.7065 1.4289 2.2735 2.5872

and
Γm (t, ēm1(t − α1(t))) = Ψm1(t − α1(t)) − Φm1(t − α1(t)) = ēm1(t − α1(t)).

In the following, we select

Γ̃3
m(t,Φm(t)) = sin(Φm(t)), Γ̃3

m(t,Ψm(t)) = sin(Ψm(t)),

and
Γ3

m(t, ēm(t)) = sin(Ψm(t)) − sin(Φm(t)).

From ZN1, we have γ3
m = 1. The stochastic perturbation functions are picked as

Λ̃(t,Φm(t), 1) = 0.2Φm(t), Λ̃(t,Φm(t), 2) = 0.4Φm(t),

Λ̃(t,Ψm(t), 1) = 0.2Ψm(t), Λ̃(t,Ψm(t), 2) = 0.4Ψm(t),

and
Λm(t, ēm(t), 1) = 0.2(Ψm(t) − Φm(t)) = 0.2ēm(t),

Λm(t, ēm(t), 2) = 0.4(Ψm(t) − Φm(t)) = 0.4ēm(t).

According to ZN1, we derive λm(1) = 0.1, λm(2) = 0.2. Furthermore, we let the state transition rate of the
semi-Markov jump is 0.1 ≤ ζ12(∆(t)) ≤ 0.25 and 0.25 ≤ ζ21(∆(t)) ≤ 0.4. We have ζ12,1 = 0.1, ζ12,2 = 0.25,
ζ21,1 = 0.25, ζ21,2 = 0.4. And we choose w̄(1) = 0.1, w̄(2) = 0.12, then we can get

η = max
m∈N,s∈S

{ηm(s)}

= max
m∈N,s∈S

2γ1
m(s) + γ2

m + α2γ
3
m + λm(s) + 4

N∑
n=1

T HEmn +
w̄2

m(s)
1 − α∗1

+ w̄2
m(s) +

∑
ŝ∈S

ζsŝ,s′
w̄m(ŝ)
w̄m(s)


=0.7496.

We attempt to add the stochastic hybrid impulsive control on response system (23) to make it synchronize
with driving system (22). The impulse gains are a sequence of stochastic variables valued from [0.2,1.2] and
obey uniform distribution. The impulsive intervals are valued from [0.3,0.5]. Then average impulsive gain can
be calculated as AG = 0.7 < 1, AI = 0.4. It is obvious that ln AG

AI = k < k1 = −0.8917 < 0, k1 + η = −0.1421 < 0.
Thus, conditions in Theorem 4 are all satisfied and response system (23) can synchronize with driving system
(22) in theory. Three-dimensional state trajectories of system (22) and system (23) are presented in Figure 3,
Figure 5, Figure 7. Indeed, they reach synchronization and it can be seen from Figure 4, Figure 6, Figure 8,
which performs the tending-to-0 state trajectories of error system (24). Besides, it also can be seen that the mean
square state trajectories of error system (24) tend to 0. The above results illustrate the effectiveness and validity
of the theoretical results.
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Figure 3: State trajectories Φm1(t) of drive system (22) (left) and Ψm1(t) of response system (23) (right).
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Figure 4: State trajectories ēm1(t) (left) and mean square trajectories E|ēm1(t)|2 (right) of error system (24).
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Figure 5: State trajectories Φm2(t) of drive system (22) (left) and Ψm2(t) of response system (23) (right).
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Figure 6: State trajectories ēm2(t) (left) and mean square trajectories E|ēm2(t)|2 (right) of error system (24).
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Figure 7: State trajectories Φm3(t) of drive system (22) (left) and Ψm3(t) of response system (23) (right).
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Figure 8: State trajectories ēm3(t) (left) and mean square trajectories E|ēm3(t)|2 (right) of error system (24).

6. Conclusion

This paper investigated the exponential synchronization of stochastic semi-Markov jump systems with mixed
delay via stochastic hybrid impulsive control. And Dupire functional Itô’s formula has been firstly used in
the synchronization of the mixed delayed systems under impulsive control. A definition of average stochastic
impulsive gain has been put forward to estimate the strength of the stochastic mixed impulses. Based on that,
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some synchronization criteria for the systems have been provided, related to the topological structure, semi-
Markov jump, stochastic disturbance intensity and impulsive control. The theoretical results have also been
applied into a class of circuit systems and the related synchronization criteria have been derived. This study
provides a new thought on the synchronization of mixed delayed systems and gives a further exploration on the
impulsive control systems. And nodes of the complex systems may be connected in a variety of ways, which
emerges the investigations on multi-links complex systems. In addition, the time-varying distributed delay is
widely presented in communication networks and control systems. It has some limitations when applying the
theoretical results of this paper to the multi-links stochastic functional systems with time-varying distributed
delay. In the future, we will explore the new method to investigate the synchronization problem of multi-links
stochastic semi-Markov jump systems with time-varying distributed delay.
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