ON THE WELL-POSEDNESS AND STABILITY FOR CARBON NANOTUBES AS
COUPLED TWO TIMOSHENKO BEAMS WITH FRICTIONAL DAMPINGS

AISSA GUESMIA

Institut Elie Cartan de Lorraine, UMR 7502, Université de Lorraine
3 Rue Augustin Fresnel, BP 45112, 57073 Metz Cedex 03, France

ABSTRACT. The objective of this paper is to study the well-posedness and stability questions for double
wall carbon nanotubes modeled as linear one-dimensional coupled two Timoshenko beams in a bounded
domain under frictional dampings. First, we prove the well-posedness of our system by applying the
semigroups theory of linear operators. Second, we show several strong, non-exponential, exponential,
polynomial and non-polynomial stability results depending on the number of frictional dampings, their
position and some connections between the coefficients. In some cases, the optimality of the polynomial
decay rate is also proved. The proofs of these stability results are based on a combination of the energy
method and the frequency domain approach.
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1. INTRODUCTION

The system under consideration in this paper is the following:

P — ki (pz + ), — ko (w —¢) + T1a10, =0 in (0,1) x (0,00),
(1.1) Uit — kother + k1 (0 +10) + 20290 = 0 in (0,1) x (0,00),

Wy — k3 (W + 2), + ko (w — @) + 1303w =0 in (0,1) x (0,00),

2tt — kaZag + ks (Wz + 2) + T4a42: =0 in (0,1) x (0,00)

along with the homogeneous Dirichlet-Neumann boundary conditions
12) vz (0,8) = ¥ (0,t) = w, (0,t) = 2(0,£) =0 in (0,00),
‘ e(Lt) = ¢, (Lt) =w(l,t) =2, (1,t) =0 in (0,00)

and the initial data
(13) ¢ (2,0) = o (), ¥ (2,0) = ¢ (z), w(x,0) =wo (z), z(x,0) = 2z (x) in (0,1),

' Pt (I7O) =¥ (I‘), ’l/)t (I,O) :d}l (I)a Wt (1‘70) = w1 (I), 2t (‘T7O) =z (J}) in (Ovl)a
where &; (i o ; R - positive constants,
(1.4) (11,79, 73,74) € {0,1}* and (71, 79,73,74) # (0,0,0,0),
the functions ¢;, ¥;, w; and zj-are fixed initial data,

(¢, 0,w,2) 1 (2,1) € (0,1) x (0,00) = (p(, 1), ¥(x, 1), w(x, 1), (2, 1)) € R*

is the unknown of (1.1)-(1.3), and the subscripts ¢ and x denote, respectively, the derivative with respect
to the time variable ¢ and the space variable x.

In the case kg = 0, both (1.1);-(1.1)2 and (1.1)3-(1.1)4 are reduced to the well-known single Timoshenko
beam introduced in [42], so (1.1) can be seen as coupled two Timoshenko beams thanks to the coupling
terms —ko (w — ) and ko (w — @).
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The well-posedness and stability questions for the single Timoshenko beam have been widely treated
in the literature during the last few decades using various controls, like frictiona (RO oM pings,
memories, heat conduction and boundary feedbacks. Several stability and non-stability results have been
established depending on the considered controls and some connections between the coefficients; we refer
the readers to, for example, [3, 4, 5,.127 13, 14, 18, 19, 20, 28, 29, 30, 31,. 35, 38, 40] and the
references therein. In the particular case of a dissipation related to frictional dampings, it was proved in
[4, 31, 35, 40] (under some boundary conditions) that the following Timoshenko-type system:

prow — k1 (pe +0), + Tiarpr =0 in (0,L) x (0,00),
p2'¢tt - k2'¢ww + kl (3030 + ¢) + 7'2G2¢t =0 in (O’ L) X (07 OO) )

where p1, p2 and L are positive constants, is exponentially stable if

(1.5)

(1.6) (t1,72) = (1,1) or |(m1,72) € {(1,0),(0,1)} and % = % ,

however, when

ki ko
(17) (7_1’7-2) € {(170)7 (071)} and E 7é E’

system (1.5) is not exponentially stable but it is polynomially stable with an optimal decay rate, at
infinity, of type % for the norm of its solution.

Similar exponential and polynomial stability results are obtained in the last few years for Bresse
type systems (coupled three wave equations) and Rao-Nakra sandwish type systems (coupled two wave
equations and one Euler-Bernoulli equation) under various kinds of controls; for more details, see, for
example, [1, 2, 12, 24, 26, 36] and the references therein.

During the last three decades, many authors were interested by the study of finite carbon structures
consisting of needle-like tubes; see, for example, [11, 23, 37, 39, 41, 43, 44, 45, 46, 47, 48]. In these papers,
and according to various physical considerations, several models of carbon nanotubes were descriped and
classified; like single wall carbon nanotubes (SWCNT), double wall carbon nanotubes (DWCNT) and
multi-wall carbon nanotubes (MWCNT). In the case of double wall carbon nanotubes, the modeling
is based on the Timoshenko beam theory (as in [43, 44, 45, 46, 47, 48]) by neglecting some physical
properties of carbon nanotubes and/or assuming some relationships between them.

The authors of [47] proposed the following coupled two Timoshenko beam models to model the double
wall carbon nanotubes:

pALY1 4 — kGAL (Y1 — 1), — P =0,
plior e — Elip1 5o — kGAL (Y12 — 1) =0,
pA2Ys 4t — kGAs (Yo, —@2), + P =0,
plas it — Elops po — kGAs (Yo, — p2) =0,

where the functions Y; and ¢; -represent, respectively, the total deflection and the inclination due
to the bending of the nanotube j, the constants I; and A;, () denote, respectively, the moment of
inertia and the cross-sectional area of the nanotube j, the constants p, E, G and k represent, respectively,
the mass density of the material, the Young’s modulus, the stiffness modulus and the shearn factor, and
P is the Van der Waals force acting on the interaction between the two nanotubes and given by

P = ‘C(YQ - YVl)a

(1.8)

where L is the Van der Waals interaction coefficient for the interaction pressure.

To the best of our knowledge, the stability problem of (1.8) is new and have not been discussed earlier.
Only in order to simplify the mathematical study, we replace Y7, v1,Ys and ¢o by ¢, —t,w and —z,
respectively, replace kGA,, EI,,kGAs, El; and L by kq, ko, k3, k4 and kg, respectively, and, without loss
of generality, assume that pA; = pI; = L = 1, where L is the length of tubes. So (1.8) is reduced to (1.1)
with (71,72, 73,71) = (0,0,0,0).
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Our main objective in this paper is to treat this stability problem for (1.1)-(1.3), where the dissipation
is generated by the frictional dampings 7 a19s, Toa2v, T3aswy and T4a42¢. First, we will show the exis-
tence and uniqueness of solutions of (1.1)-(1.3) in a given Hilbert space, and get some of their smoothness
properties depending on the fixed initial data. Second, we will provide strong, non-exponential, exponen-
tial, polynomial, non-polynomial and optimality stability results for (1.1)-(1.3) depending on the values of
7; in (1.4) and some connections between the coefficients k;. For strong and exponential stability results,
we introduce necessary and sufficient conditions. Moreover, in some cases, we prove the optimality of
polynomial decay rate.

The proof of the well-posedness results is based on the linear semigroul.theory. However, the stability
results are proved using the energy method combining with the frequency domain approach and some
contradiction arguments by constructing judicious counter examples in order to prove the optimality and
non-polynomial stability results.

The paper is organized as follows: in section 2, we prove the well-posedness of (1.1)-(1.3). Section 3 is
devoted to the proof of the strong stability for (1.1)-(1.3). In sections 4, 5 and 6, we show, respectively,
our non-exponential, exponential and polynomial stability results for (1.1)-(1.3). Sections 7 and 8 are
devoted to the proof of our, respectively, optimal polynomial decay rate and non-polynomial stability
results. Finally, we end our paper by giving some comments and issues in section 9.

2. ABSTRACT FORMULATION AND WELL-POSEDNESS
We consider the Hilbert Sobolev spaces
Vo={veH" (0,1):v(0)=0} and Vi={veH'(0,1):v(1)=0},
and we introduce the space
H =V x L?(0,1) x Vo x L*(0,1) x V; x L*(0,1) x V x L*(0,1),
where L? (0,1) is equipped with its standard inner product (-, -) and generated norm || - ||. For
q)j:((pjvcﬁjijvzzj?wjawjvZjv’gj)T, j:172a

we consider on H the inner product

(@1,P2)5, = k1010 + 91,020 +2) + ko (Y10, ¥2.0) + k3 (W10 + 21, W25 + 22)
(2.1) +ky (210, 22.0) + ko (w1 — 01, w2 — p2)

+ (1, P2) + (U1, o) + (W1, Wa) + (71, Z2) -

Using Young’s inequality, we see that there exist a positive constant b; (depending only on k;) such that
(2.2) ki llpe + 017 + ko [9l® + ks [lwe + 2017 + ka [|22]|* + ko w — ¢

2 2 2 2
<b (||%0||H1(0,1) + ||1/’HH1(0,1) + HwHHl(O,l) + ||Z||H1(O,1)) :

On the other hand, using Cauchy-Schwarz and Young’s inequalities, we observe that, for any € > 1,

ki llow + 917 + ko l[al® + ks llws + 217 + ka |2 ]|* + ko w — |

v

B (el + 1017 + 2 (oas ) + Ko lall® + By (Il + 1217 + 2 (we,2) ) + ha 2

2 2 2 2 2 2
> k(1= 2) lwall” + k(1 =€) 017 + Fa vall” + ks (1= ) llwall” + Es(1 =€) |21 + ks |1 227,

therefore, because 1(x = 0) = z(x = 0) = 0, one can apply Poincaré’s inequality to ¥ and z, and get (¢
denotes the Poincaré’s constant)

Fullps + Gl + ko [[9al® + ks llws + 21| + ka ||z ]| + ko [lw — ]”

1 1
> (1 ¢ ) loal o a0 = ol a4 o (1 2 ) el o+ a1 o] el
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then, by choosing 1 < ¢ < 1+ i min {%, Z—;‘}, we observe that there exis‘. a positive constant by
(depending only on k; and c¢y) such that

(2.3) Fallow + 017 + Kz o |” + ks llws + 2]1° + ka [lz2]* + ko llw — o)
> by (el 01) + 130 0.1) + 10300y + 120 ) -
Consequently, we deduce from (2.2) and (2.3) that H, endowed with the inner product (,),,, is a Hilbert
space and its norm || - ||z = \/(*, ), is equivalent to the one of (H*(0,1) x L(0, 1))4.
Now, we put
C=pr, Y=, w=w, 2=z,

~ T
o= (o0, b w, @, 2, 5)

q)() = (3007 ®1, /(/)07 ¢17 Wp, W1, 20, Zl)T
System (1.1)-(1.3) can be formulated in the following first order one:

d, = AD, t € (0,00),
(2.4)
D (t =0) = Dy,
where A is a linear operator defined by
@
k1 (pz + 1), + ko (w — ) — T1a1$
¥
k rxxr k x + - b
(2.5) AP — 21 1 (pz + 1) — T2a2¢)
w
ks (we + 2), — ko (w — ) — T3a30
z

kazpr — k3 (wg + 2) — T4a4Z

with domain given by

_ deH: (p,0,w,2) e (H2(0,1)", (@, 0, w,2) € Vi x Vo x Vi x Vp,
D= { A a;umo=%m 0 "}

Theorem 2.1. For any &g € H, system (2.4) admits a unique solution
(2.6) e C(RyH),

where Ry = [0,00). Moreover, if &y € D(A), then the solution satisfies
(2.7) ®ecC(Ry;H)NC(Ry;D(A).

Proof. First, using (2.1) and (2.5), integrating with respect to « and using the boundary conditions (1.2),
we get, for any ® € D (A),

(2.8) (AD, D), = — (7‘1@1”95”2 + moag||[P]|? + msas]|@||? + T4a4||2||2) <0,
hence A is dissipative in H.
After, we show that 0 € p (A), where p (A) denotes the resolvent of A; that is, for any
Fi=(fi,, )T eH
there exists a unique ® € D (A) satisfying
(2.9) AD = F.
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From (2.5), we remark that (2.9);, (2.9)s, (2.9)5 and (2.9)7 are reduced to

(2.10) g=1/f1, v=1/Fs, w=/fs and Z= fr,

and then

(2.11) (@, ,0,%) € Vi x Vo x Vi x V.

So (2.9) has a unique solution ® € D (A) if there exists a unique

(2.12) (p, 0, w,z) € (H*(0,1) N V1) x (H*(0,1) N V) x (H*(0,1) N V1) x (H?(0,1) N Vp)
satisfying

(2.13) 02(0) = Yo (1) = we(0) = 22(1) = 0

and the equations (2.9)2, (2.9)4, (2.9)¢ and (2.9)s. Assuming that such unknown (p, ¥, w, z) exists, then,
multiplying (2.9)2, (2.9)4, (2.9)g and (2.9)g by (@, 9,0, 2) € Vi x Vi x V1 x Vp, respectively, inegrating by
parts and using (2.10) and (2.13), we remark that (¢, v, w, z) is a solution of the variational formulation

(2.14) B (9., w,2), (8,610, 2)) = B(@,,,2), V(, .10, 2) € Vi x Vo x Vi x Vo,
where B is a bilinear form on (Vi x Vi x Vi x Vp)? given by

B((pnw,2), (0, 0,0,2)) = k1 (pa+ 000 +9) + ko (Vo) + o fwy + 2,0, +2)

+k4 <Z€E’ 2w> + ko <w - (p,?f) - 927>
and B is a linear form on Vi x Vy x V; x V defined by

B(¢, ., 2) = — (ra1fi + f2, @) — <Tza2f3 + f471/3> — (733 f5 + fo, W) — (Taqafr + fs, 2) -
According to the fact that F' € H and using (2.2) and (2.3), it is easy to see that B is continuous and
coercive, and B is continuous. Then, the Lax-Milgram theorem implies that (2.14) has a unique solution
(215) (@7¢7W,Z) eVix Vo x Vi x V.

By considering in (2.14) the particular test functions (¢, 0,0, 0), (0,7,/;, 0,0), (0,0,%,0) and (0,0,0, 2), for
(¢, 9,1, 2) € (C°(0,1))*, integrating by parts and using (2.10) and the density of C2°(0,1) in L2(0, 1),
we get, respectively, (2.9)2, (2.9)4, (2.9)s and (2.9)s. Therefore, thanks to (2.11) and (2.15), we get
4

(prz7 ¢ZL’ZE7 Wyg, sz) S (L2(07 1)) 9
s0 (2.12) holds. To show (2.13), we consider in (2.14) test functions ($,0,0,0), (0,1,0,0), (0,0,@,0) and
(0,0,0, 2) such that (¢, v, w, %) € Vi x Vo x Vi x V and

2(0) = (1) = w(0) = (1) =1,

integrating by parts and using (2.9)2, (2.9)4, (2.9)s, (2.9)s and (2.10), we obtain (2.13). Consequently, we
have proved that, for any F' € H, (2.9) admits a unique solution ® € D(.A). By the resolvent identity, we
have AI — A is surjective, for any A > 0 (see [27]), where I is the identity operator. Finally, A is densely
defined (see Theorem 4.6 of [33]) and the Lumer-Phillips theorem implies that A is the infinitesimal

generator of linear Co—semigrou;. of contractions on #H. The linear semigroups theory guarantees the
results of Theorem 2.1 (see [33]). O

Remark 1. From the proof of the dissipativity of A, we observe that (2.4); and (2.8) lead to
0 . ~ . -
(216) o (I913) = 2(80, By, = 2(AD, @)y, = =2 (marll Bl + Taaall I + sl + raas21)

then, if (11, 72,73,74) = (0,0,0,0), the function t — ||®(-,t)|l3 is constant, and so (GG " "ot
posed. This show that, to get the strong stability of (2.4); that is

(217) Vo) € H : tlim ”(b”'H =0,

at least one frictional damping must be considered; this why we are assuming (1.4).
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3. STRONG STABILITY

In this section, we prove our first stability result concerning the strong stability (2.17) for (2.4) in the
following three cases:

(Tla 7_277—377—4) = (1a 07070)7

3.1

31 (k2 = k) (5 + mm)” + k1 — Ko |(k2 = ko) (3 +mm)” + ki = o] # K3 (3 +mm)”, vm €N,
(11, 72,73,74) = (0,0, 1,0),

3.2

32) (ks = ) (5 +mm)” + ks — Ko | (ks — k2) (F +mm)” + ks = | # K3 (F +mm)?, ¥m €N

and

(3.3) (1,72, 75, 74) & {(0,0,0,0),(1,0,0,0), (0,0,1,0)}.

Theorem 3.1. The strong stability (2.17) holds if and only if (3.1) or (3.2) or (3.3) is satisfied.

Proof. A Cy semigroup of contractions e generated by an operator A on a Hilbert space H with a
compact resolvent p (A) in H is strogly stable if and only if A has no imaginary eigenvalues; that is

a(A)NiR =0,

where o(A) is the spectrum set of A (see [6]). According to the fact that 0 € p(A) (proved in section
2) and since D(A) has a compact embedding into #, the linear bounded operator A1 is a bijection
between H and D(A), and A~! is a compact operator, which implies that o(A) is discrete and has only
eigenvalues. Consequently, to get the equivalence between (2.17) and (3.1)-(3.3), it is sufficient to prove
that (3.1) or (3.2) or (3.3) holds if and only if

(3.4) ker (ix] — A) = {0}.

In section 2, we have proved (3.4) for A = 0. So let A € R* and

@ = (4,0, w,,2,%) € D(A)
such that
(3.5) IAND — AD = 0.

We have to prove that ® = 0 if and only if (3.1) or (3.2) or (3.3) is satisfied. From (2.8) and (3.5), we
find

0 = Rei)||®]}3, = Re (iA®, ®),, = Re (A®, )y, = — (r1a1 |8]12 + raasl| 9> + 7o 0] + raas] 2]
then
(3.6) ria1|| @l + roas|[Pl® + Taz ]| @) + TaaaZ]* = 0.
It is enough to consider the two cases
(3.7) (11,72,73,71) € {(1,0,0,0),(0,1,0,0)}.

Indeed, the proof in cases
(Tla 72,73, T4) € {(07 07 17 0)3 (07 07 07 1)}

is identical to the one that will be given in cases (3.7) because (1.1)1-(1.1)2 and (1.1)3-(1.1)4 play sym-
metrical roles, since, by replacing (v, ¥, k1, k2) by (w, 2z, ks, k4) and conversely, we get the same system
(1.1). Then, clearly, ® = 0 holds also in the other cases, where at least two frictional dampings are
present.



COUPLED TWO TIMOSHENKO-TYPE MODELS WITH FRICTIONAL DAMPINGS 7

3.1. Case (11,72,73,74) = (1,0,0,0). In vertue of (2.5)1, (3.5)1 and (3.6), we have

(3.8) o=¢=0.
Then (2.5), (3.5) and (3.8) lead to

) =iy,
W = AW,
Z =1z,
(3.9) k1Yy + kow = 0,

kazx + (>\2 - kl) "/} =0,
ks(wg + 2), + ()\2 - ko) w =0,
k42wz + ()\2 — k‘3) z — kgww =0.

The equation (3.9)4 is equivalent to

—k
(3.10) W= —2h,.
ko
Combining (3.9) and (3.10), we obtain
k
@mb+@—%102—%)¢ = 0.
0

x

Since h = kg(wy + 2) — IIle) (A% — ko) ¢ satisfies h(0) = 0 (according to the definition of D(A)), then
h =0, which implies that (using (3.10))
k1 k1 /.

3.11 = e (N2~ k) 4.
(3.11) z k0¢ +k0k3( 0) ¥
Now, to solve the equation (3.9)5, we distiguish three subcases.

Subcase 1: A2 = k;. Equation (3.9)5 implies that, for some ¢y, co € C, 9(2) = ¢y + co. Therefore,
the boundary conditions
(3.12) $(0) = (1) =0

lead to ¢; = ¢o = 0; that is ¢ = 0. Consequently, according to (3.8), (3.9)1, (3.9)2, (3.9)3, (3.10) and
(3.11), we find ® = 0.

Subcase 2: \? < k;. Equation (3.9)5 lead to, for some c;, cp € C,
I I
Y(x) = cre B (A eV R AT

Similarly, (3.12) implies that ¢; = ¢o = 0, which leads to ® = 0 as in subcase 1.
Subcase 3: A2 > k;. From (3.9)5, we have, for some ¢, ¢y € C,

(@) = e cos ( kiQ(Az - kl)x) + ¢y sin ( k% (A2 — /ﬁ)x> .

The boundary conditions (3.12) lead to ¢; = 0 and

1
(313) 02:0 or ElmGN ]{;7()\2_k1):g+mﬂ-
2

Therefore
1
(3.14) P(z) = casin ( T (N2 — kl):r) ,
2
and so, using (3.10) and (3.11),
_Cgk‘l 1

(3.15) wla) = =224 = (32— ) cos ( é(v —kl)m>
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and

k1 k1

2 2 . 1 2
(3.16) z(x) = ¢ ol (N = ko) — Toka (N — kl)] sin ( = (N2 — k1)x) ,

then, by combining (3.9)7, (3.15) and (3.16), we see that
(3.17) c2=0 or [(ka—ks)A\®+ kiks — koka| [(k2 — ka) \* + kiky — koks] — kok3 (A* — k1) = 0.

Assume by contradiction that ¢y # 0. Then, according to (3.13), we have, for some m € N,
2 m 2
(3.18) A2 = ky (5 n mﬁ) + k.

By combining (3.17)2 and (3.18), we get a contradiction to (3.1)2. Consequently, co = 0, hence we arrive
at @ =0.

On the other hand, if (3.1)2 does not hold, then there exists A € R defined by (3.18) such that i) is an
eigenvalue of A with a corresponding eigenvector given by (3.8), (3.9)1-(3.9)s and (3.14)-(3.16), for any
co € C*.

3.2. Case (11,7T2,73,74) = (0,1,0,0). From (2.5)3, (3.5)5 and (3.6), we have

(3.19) =19 =0.
Then (2.5), (3.5) and (3.19) lead to

Z =1iAz,

(3.20) k1¢zz + (A2 — ko) ¢ + kow =0,

pz =0,

ks(wg + 2)p + (A2 — ko) w + ko = 0,
kazow + (A% — k3) 2 — ksw, = 0.

The equation (3.20)5 with the boundary condition ¢(1) = 0 imply that ¢ = 0, and then, using (3.20)4,
we get w = 0. Therefore, (3.20)g and the boundary condition z(0) = 0 imply that z = 0. Consequently,
using (3.20)1, (3.20)2 and (3.20)3, we conclude that ® = 0. Finally, (3.4) holds and thus the proof of
Theorem 3.1 is ended. O

4. LACK OF EXPONENTIAL STABILITY

The subject of this section is to show that, in the following cases:

(4.1) (m1,712,73,74) € {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1), (1,1,0,0),(0,0,1,1)},
(42) (7—177—277-3’7—4) S {(171a071)7(1a1a150)} and k3 #kéla

(43) (7'1,7'2,7'3,’7'4) € {(0, 1,1, 1), (1707 1, 1)} and k; 75 ko

and

(4.4) (m1,712,73,72) € {(1,0,0,1),(1,0,1,0),(0,1,0,1),(0,1,1,0)} and (k1,ks) # (ka, ks),
system (2.4) is not exponen{ @iy stable; that is the following property is not satisfied:
(4.5) Y@y € H, ey, c2 >0 [|R(t)|,, < cre”t, VE>0.

Theorem 4.1. In cases (4.1)-(4.4), the exponential stability (4.5) does not hold.
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Proof. Tt is known that the exponential stability (4.5) is equivalent to (see [22, 34])

(4.6) iRCp(A) and ilelﬁ H(i)\l — A)leﬁ(H) < 0.

It.sufﬁcient to prove that the second condition in (4.6) does not hold. To do so, we prove that there
exists a sequence (A, ), C R such that

lim H(i)\nI—A)_lH — .
n—00 L(’H)

This is equivalent to prove that there exists a sequence (F, ), C H satisfying

(47) ||F7l||?-[ = H(fl,TH e 7f8,n)THH < 1u Vn eN
and
(4.8) nh_g%o | (IAnd — -A)_l Fyll3 = oo,

For this purpose, let

- T

D = (s P U s Wy Ty 202 ) = (A = A) ' o, ¥n €N,
Then, we have to prove that (®,), C D (A), (4.7) holds,
(4.9) lim | ®,]% =oco and i\, ®, — AP, = F,, Vn c N.

n—oo

From (2.5), we observe that the second equality in (4.9) can be presented as
i)"rl(pn - an = fl,na
Z)\ngan - kl (Son,x + ¢")w - kO (wn - Spn) + Tlalsbn = f2,na
74>\nwn - @n = f3,n7
Z)\n’(;n - k2¢n,xw + kl (@n,w + wn) + 7—2a2'(;n = f4,n7

(4.10)
AWy — Wy, = f5,na
iAWy, — k3 (wn,x + Zn)m + ko (wn - Qon) + T3a3Wy, = fG,na
An2n — Zn = f7,n7
TApZn — k4zn,zm + k3 (wn,z + Zn) + T4042, = f8,n~
We choose
(4.11) {
fl,n = fS,n = f5,n = f’?,n =0.

Then (4.10)1, (4.10)3, (4.10)5 and (4.10); are satisfied. On the other hand, we put

N:g—i—mr

(in order to simplify the computations) and choose

on(x

wp,(x

f2,n

= a1, c08(Nz), Yn(z) = agp,sin(Nz),
Zn(

- —

= agp cos (Nz), ) = aypsin (Nz),

(4.12)
([17) = _62,71 COs (Na?), f4,n($> = _ﬁ4,n sin (NQ?)7
(x) = —Bsncos(Nzx), fon(x)=—Psnsin(Nz),
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where ; , 5;» € C. The choices (4.11) and (4.12) guarantee that ®, € D (A) and F,, € H. Moreover,
(4.10)2, (4.10)4, (4.10)g and (4.10)g are reduced to the following algebraic system:

(/\Z — kN2 — kg — iﬁal)\n) o1+ kiNog gy, + koas , = Ba.n,

EiNaoq ., + ()\31 —koN? — ky — iTgagx\n) 0. = Ban,

koo, + ()\EL — ksN? — kg — iTgag)\n) s+ ksNay, = Ben,

ksNas , + ()\% — k4N? — k3 — iT4a4)\n) 0yn = Pen.

(4.13)

4.1. Case (4.1). It is sufficient to treat the cases
(4.14) (11,72, 73,74) € {(1,0,0,0),(0,1,0,0),(1,1,0,0)}.
Indeed, the proof in cases

(11, 72,73,72) € {(0,0,1,0),(0,0,0,1),(0,0,1,1)}

is similar to the one that will be given in cases (4.14), since (1.1)1-(1.1)2 and (1.1)3-(1.1)4 play symmetrical
roles. We distinguish two subcases.

Subcase 1: (4.14) with k3 # k4. We choose

_ _ _ _ Bon _ k3fB2,n
a1p = Q2 n = /84,n — 07 Qa3 n = ko QY n = ko (ka—Fk3)N >’

_ _KiBan _ ks(ko—k3)B2,n -/
66,71 - ko(:;€42—k73)’ BS,n - 20(24_23)]2\, 5 )\n = k‘3N2 =+ kjo.
We see that (4.13) is satisfied. Moreover, according to (4.11), (4.12)3, (4.12)4 and (4.15), it appears that
2 2 2 2
[fonll™ + 1 fanll™ + 1 fonll” + [ fonl
B+ Bin + Bon+ Bin
k3 k3 (ko — ks)?
< B |1t e ]
’ kg (ks — k3) kg(ks — k3)2N
then one can choose B2, = € > 0 independent of n and small enough so that (4.7) holds. On the other
hand, from (4.12),, we have

(4.15)

2
(72 P9

IN

A

2
([ I3

Y

1
ks ||wn,e + zn||2 = ks (—as N + 044@)2/ sinz(Nx)dm
0

f 1 k.
> ?3(_04&71]\/' + a4’n)2/ [1 —cos (2Nz)] dx = ?3(_013,71]\[ +asn)?,
0

hence (4.8), since (4.15); implies lim ag,N = oo and lim a4, =0, and so
n—oo n— o0

(4.16) nhﬁnéO |@nll,, = oo.

Subcase 2: (4.14) with k3 = k4. We choose

_ _ _ _ B2 __ Ban
Qa1 pn = 02n = 54,n — 0; ag.n = ko Qg n = — ko

56,'@ = _52,7” /BS,n = %ﬁ’na /\n =V kBNQ + kSN-

As in the previous subcase 1, we remark that (4.7), (4.13) and (4.16) are satisfied, by choosing £, = € > 0
independent of n and small enough.

4.2. Case (4.2). We distinguish two subcases.
Subcase 1: (11, 72,73,71) = (1,1,0,1) with ks # ky. We take

_ _ _ _ B2n _ k3Ban
A1n = Q2 p = 54,71 - 07 agn = kOL7 Qq.n = ko(k‘47k:3)N7

 Ek2Bon - k3(k0*k3*ia4\/k3N2+k0)ﬂ2,n - \/27
Bﬁ,n — ma BS,n - ko(ka—k3)N ) )\n - k3N + kO-
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Notice that (4.13) is satisfied and

N ZkS \/gaﬁlﬂzn
ko(ky —ks3)

Then, by choosing 35, = € > 0 independent of n and small enough, we get (4.7) and (4.16).
Subcase 2: (11,72,73,74) = (1,1,1,0) with ks # ks. We choose, for € > 0,

. e[(ka—ka) N?+ko—ks+iasyka N> +F3)
a)p = 02n = 64,n = BG,n =0, as.n = kN Qy4.n = Koks N2 ;

ﬂQ,n:%7 68,71:%7 An = Vk4N2+k3~
We observe that (4.13) is satisfied and

lim ﬂg,n =
n—oo

) (k3 — ka)e

£ 0.

By choosing € > 0 small enough, we get (4.7). Moreover, from (4.12)2, we have

1 1
k k
1903 = b [ = ko N2 [ cos?(Va)do = 5ot N7 [ (14 cos (2Nz) do = S,
0 0

which implies (4.16), since (4.17).

11

N2

4.3. Case (4.3). By symmetry, the proof is similar to the one given in case (4.2), where k; and ko play

the roles of k3 and ky4, respectively.

4.4. Case (4.4). As before, by symmetry, the proof for (71,72, 73,74) = (0,1, 1,0) is similar to the one

that will be given for (71, 72,73,74) = (1,0,0,1). So we need to consider only the cases
(4.18) (r1,7m2,73,72) € {(1,0,0,1),(1,0,1,0),(0,1,0,1)}.

Because we are assuming in this case that (ki,ks) # (ko, k4), then we have k; # ko or ks # ky
distinguish the next four subcases.

, SO we

Subcase 1: (11,7,73,74) € {(1,0,0,1),(0,1,0,1)} with ks # k4. The choices considered in Case

(4.2) - Subcase 1 lead to the desired result.

Subcase 2: (11,72,73,74) = (1,0,1,0) with k3 # k4. Using the choices considered in Case
Subcase 2, we get the desired result.

Subcase 3: (71, 72,73,74) = (0,1,0,1) with k # k. We choose

n k n
a3 np = Qyqn = 68,71 = 07 Q1 n = %a Q2 n = ko(kzﬁfsiﬁ)]\p
_ _KkiBon k1 (ko—k1—iaavEk1 N2+Ko ) Be,n — VEINT T ko

Pam = Wikl)’ Ban = ko(ka—k1)N » An = VEIN? + ko.

Notice that (4.13) is satisfied and, for any s, = € > 0 independent of n,
tk1vkia

(4.19) lim Naj, =00, lim as, =0 and lim B4, = —w.

n—00 ’ n—oo n—oo ko(kg — kl)

Then, by choosing € > 0 small enough, we get (4.7). Moreover, from (4.12);, we see that
1
@l 2 b + G0l = by (aral +a2,)? [ sin (Vo)ds
0
ki 2 ! K 2
> ?(—almN + a2 p) [1 —cos (2Nz)] dx = 5(_%’”]\7 + a2,)%,
0
0 (4.16) holds, since (4.19).
Subcase 4: (71,72,73,71) € {(1,0,0,1),(1,0,1,0)} with ky # ka. We take, for € > 0,

€ 6[(}917’62)N2+k07k1+ia1\/ k2N2+k1]
Qa3 np = Qg n = ﬂ2,n = 68,'@ =0, Xn = N> Y2 = koki N2 s

Bon =1 Ban="T5 A= VhkN2+ki

(4.2) -
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We observe that (4.13) is satisfied and

. (k1 —ka)e
(4.20) Jim = L

# 0.
By choosing € > 0 small enough, we get (4.7). Moreover, using (4.12);, we get
2 2 ! ko !
103 > ko ol = 203 N? [ co(Na)ds = 203 N? [ (14 cos (2N0)] i = 23 N,
0 0
which implies (4.16), since (4.20). This ends the proof of Theorem 4.1. O

5. EXPONENTIAL STABILITY

In this section, we give necessary and sufficient conditions for the exponentailly stability (4.5).

Theorem 5.1. The exponentailly stability (4.5) for (2.4) holds if and only if

(5.1) (11, 72,73, 74) = (1,1,1,1)

or

(5.2) (11,72,73,74) € {(1,1,0,1),(1,1,1,0)} and ks =ky
or

(5.3) (11, 72,73,72) € {(0,1,1,1),(1,0,1,1)} and ky = ko
or

(54) (’7'1,7'2,7'3,7'4) S {(1,0,0,1),(1,0,1,0),(0,1,0,1),(071,1,0)} and (kl,kg) = (kz,]ﬁl).

Proof. According to the results of section 4, (4.5) does not hold if (5.1)-(5.4) are not satisfied. On the
other hand, from the results of section 3, we remark that the first condition in (4.6) holds if (5.1) or
(5.2) or (5.3) or (5.4) is satisfied. Moreover, the exponential stability (4.5) is equivalent to (4.6) (see
[22, 34]). So, to get Theorem 5.1, it is sufficient to prove that the second condition in (4.6) holds in cases
(5.1)-(5.4).

We assume by contradiction that the second condition in (4.6) is false. Then there exist sequences

(An),, C R and (®,), C D (A)-such that

(5.5) |®nlly =1, VneN,
(5.6) nh_)rrgo |An| = 00

and

(5.7) nhHH;O |(iA I — A) @, |5, = 0.

Let, as in section 4,

- T
(58) P, = (Sp’m@nawnawn7wnvu~}n7zna2n) .
We will prove that

(5.9) Jim [| @[3 =0,
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which is a contradiction with (5.5). The limit (5.7) is equivalent to the following convergences:

IAnpn — @Pn — 0 in V1,
iIM@Pn — k1 (Pne + Un), — ko (Wn — n) + 71010, — 0 in L?(0,1),
Ay — n — 0 in Vo,
(5.10) Mt = kot aw + k1 (Pna + n) + T2a2, — 0 in L2 (0,1),
Aty — Dy — 0 in Vi,
iAWy, — k3 (Wn 2 + 2n), + ko (wn — @n) + T3a3W, — 0 in L?(0,1),
iAnzn — Zn = 0 in Vo,
iMZn — kaznpe + ks (Wno + 2n) + TaaaZ, — 0 in L2 (0,1),

where ”— 0” means ”converges to zero when n converges to co”. Taking the inner product of (i A\, I — A) @,
with ®,, in H and using (2.8), we get

Re {(iAn] — A) B, D)y = Re (— AP, @)y = 1101 | §]1° + maa2|[d|* + 7305 @]| + maaal|2])?,
so, (5.5) and (5.7) imply that

(5.11) T1ar|@nll? + moaz ||| + m3as|dnl|® + Taasl|Z ) — 0.

5.1. Case (5.1). By combining (5.1) and (5.11), we find

(5.12) Py Uny Wny 2o — 0in L2(0,1),

and then (5.10)1, (5.10)3, (5.10)5 and (5.10)7 imply that

(5.13) M@y A, AnWn, Anzn — 0 in L?(0,1),
so, from (5.6) and (5.13), we conclude that

(5.14) ©Ony Y, Wn, 2Zp — 0in L?(0,1).

Taking the inner product of (5.10)2 with ¢, in L? (0, 1), integrating by parts and using (5.5) and the
boundary conditions, we entail

(5.15) i {Pn, Ann) — (kK1¥n,z + ko(wn — ¥n) — @18, @n) + k1 ”‘pn,:r”Q -0,
then, combining (5.5), (5.13), (5.14) and (5.15), it follows that
(5.16) ¢ne — 0in L?(0,1).

Similarly, taking the inner product in L?(0,1) of (5.10)4, (5.10)¢ and (5.10)s with 1, w, and z,,
respectively, integrating by parts, using the boundary conditions and (5.5), we find

(5'17) { <7Lm An¢n> + <k1(§0n,x + wn) + a2¢na¢n> + k2 Hd’n,x ‘2 — Oa
(5.18) i (W, M) — (k3zn o — ko(Wn — ©n) — a3, wy) + ks |[wn.]* = 0
and

(5.19) 0 (Zns Anzn) + (k3(Wn,z + 2n) + @aZn, 2n) + ka ||Zn,gc||2 -0,

then, by combining (5.5), (5.13), (5.14) and (5.17)-(5.19), we arrive at
(5.20) Un.os Wna, Zng — 0in L7 (0,1).
The limits (5.12), (5.14), (5.16) and (5.20) lead to (5.9).
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5.2. Case (5.2). We are assuming in this case that ks = k4. We distinguish two subcases.
Subcase 1: (71,72,73,74) = (1,1,0,1) and k3 = k4. According to (5.11), we get

(5.21) @y Uny Zn — 0in L2(0,1),

so (5.10)1, (5.10)3 and (5.10)7 lead to

(5.22) An@ns Antn, Anzn — 0in L?(0,1),

hence, from (5.6) and (5.22), we deduce that

(5.23) s Uny Zn — 0in L?(0,1).

As for (5.16) and (5.20) in the previous case (5.1), taking the inner product in L? (0,1) of (5.10)2, (5.10)4
and (5.10)s with ¢,,, ¥, and z,, respectively, integrating by parts and using the boundary conditions,
we get (5.15), (5.17) and (5.19), then, combining with (5.5), (5.22) and (5.23), it appears that

(5.24) Ones Unas Zne — 0in L2 (0,1).
From (5.5) and (5.10)5, we have

(5.25) (Anwy),, is bounded in L?(0,1),
then, by combining (5.6) and (5.25), we find

(5.26) wy, — 0 in L2 (0,1).

Taking the inner product of (5.10)g with 2, , in L? (0,1), integrating by parts and using the boundary
conditions, (5.5) and (5.24), we obtain

(5.27) (IAn Wy 2 ) — k3 (Wi g, Znw) — 0.

Similarly, taking the inner product of w,, , with (5.10)s in L? (0, 1), integrating by parts and using the
boundary conditions, (5.5), (5.21) and (5.23), we find

(528) <wn,xa i/\ngn> + ky <wn,xw7 Zn,ac> + k3 Hwn,a:||2 — 0,
therefore, adding (5.27) and (5.28), and noticing that k3 = k4, we deduce that
(5.29) ks ||wn o ||* + (idnn, Zne) + (Wn g iAnZn) = 0.

But we observe that
(IAp W, Zn,g) = — (W, 1A Zn,g) = — (Wn, IAnZng — Znz) — (Wn, Zn.z)
and, using also inegrating by parts,
(Wn,a,iAnZn) = = (iAnWna, Zn) = = (IAnWno — Wna, Zn) = (Wn,a, Zn)
= —(iAyWn,p — Wi zy Zn) + (Wn, Zng)

so, by adding the above two identities and using (5.5) and the limits (5.10)5 and (5.10)7, we see that

then, by combining (5.29) and (5.30), we conclude that
(5.31) Wy — 0in L*(0,1).

Taking the inner product in L? (0, 1) of (5.10) with w,,, integrating by parts, using (5.5) and the boundary
conditions and exploiting (5.26) and (5.31), it follows that

(5.32) (AR Wy, Wy ) — 0.
Because
(iAW) = — (Wi, A W) = — (W, iAWy — W) — |||,
then, by combining with (5.10)5 and (5.32), we obtain
(5.33) W, — 0 in L?(0,1).

Finally, the limits (5.21), (5.23), (5.24), (5.26), (5.31) and (5.33) imply (5.9).
Subcase 2: (71,72,73,71) = (1,1,1,0) and k3 = k4. From (5.11), we have
(5.34) Py Pn, Wn — 0in L2 (0,1),
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then (5.10)1, (5.10)3 and (5.10)5 imply that

(5.35) M@ry Antn, Apwn — 0 in L2(0,1),
then, according to (5.6) and (5.35), we deduce that

(5.36) Ons Un, Wy, — 0 in L*(0,1).

Similarly to the prrof of (5.16) and (5.20), taking the inner product in L?(0,1) of (5.10)s, (5.10)4
and (5.10)¢ with ¢, ¥, and w,, respectively, integrating by parts and using (5.5) and the boundary
conditions, we obtain (5.15), (5.17) and (5.18), therefore, by combining with (5.35) and (5.36), we observe
that

(5.37) Onzy Vnas Wne — 0in L?(0,1).
Using (5.5) and (5.10)7, we see that

(5.38) (Anzn),, is bounded in L?(0,1),
then, by combining (5.6) and (5.38), we get

(5.39) z, — 0in L?(0,1).

Taking the inner product of (5.10)¢ with 2, ., in L?(0,1), integrating by parts, using (5.5) and the
boundary conditions and exploiting (5.34) and (5.36), we obtain

(540) <Z/\nwn7 Zn,x> — k3 <wn,mzv Zn,.t> — k3 ||Zn,TH2 — 0.

Similarly, taking the inner product of w, , with (5.10)s in L? (0, 1), integrating by parts and using (5.5),
(5.37) and the boundary conditions, we find

(5.41) (Wn, s 1A Zn) + ka (Wn zay Zn2) — 0.

Therefore, adding (5.40) and (5.41), and noticing that k3 = k4, we conclude that

(5.42) —k3 [|2n2l® + (A, 2n0) + (Wn ey iAnZn) = 0.

As in the previous subcase 1, we remark that (5.30) holds, then, combining with (5.42), we deduce that
(5.43) Zna — 0in L?(0,1).

Taking the inner product in L? (0, 1) of (5.10)g with z,, integrating by parts, using (5.5) and the boundary
conditions and exploiting (5.39) and (5.43), it follows that

(5.44) (tAnZn, 2n) — 0.

But we remark that

(5.45) (iAnZn, 2n) = — (Gnyidnzn) = — (Znyidnzn — Zn) — |Zal?,
then, by combining with (5.10)7 and (5.44), we find

(5.46) %, — 0in L?(0,1).

Consequently, (5.34), (5.36), (5.37), (5.39), (5.43) and (5.46) lead to (5.9).

5.3. Case (5.3). By symmetry, the proof is similar to the one given in case (5.2), where k; and ks play
the roles of k3 and k4, respectively.
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5.4. Case (5.4). As before, by symmetry, the proof for (71, 72,75,74) = (0,1,1,0) is similar to the one
that will be given for (71,72, 73,74) = (1,0,0,1). So we need to consider only the three cases

(5.47) (11,72, 73,74) € {(1,0,0,1),(1,0,1,0),(0,1,0,1)} and (k1,ks) = (ko, k4).
Subcase 1: (71, 72,73,74) = (1,0,0,1) and (k1, k3) = (k2, k4). According to (5.11), we see that

(5.48) @y Zn — 0in L2(0,1),

so (5.10); and (5.10)7 lead to

(5.49) MPns Anzn — 0in L2 (0,1),

then (5.6) and (5.49) imply that

(5.50) ©Ony Zn — 0in L2(0,1).

Taking the inner product in L? (0,1) of (5.10)2 and (5.10)s with ¢,, and z,, respectively, integrating by
parts and using the boundary conditions and (5.5), we get (5.15) and (5.19), then, combining with (5.49)
and (5.50), it appears that

(5.51) Oy Znaz — 0in L2(0,1).

From (5.5), (5.10)5 and (5.10)5, we have

(5.52) (Mtbn),, s (Anwy), are bounded in L (0,1),
then, by combining (5.6) and (5.52), we find

(5.53) U, wy, — 0in L?(0,1).

We observe that (5.27), (5.28), (5.29), (5.30) and (5.32) are satisfied also in this subcase 1, since k3 = kq4
and (73,74) = (0,1) as in Case (5.2)-Subcase 1, so, similarly, this leads to

(5.54) Wy 2y Wp — 0in L?(0,1).

Taking the inner product of (5.10)3 with v, , in L?(0,1), integrating by parts and using the boundary
conditions, (5.5), (5.48), (5.50) and (5.53), we obtain

(555) <Z)\n95na wn,z> - kl <80n,mca ¢n,x> - kl ”7/}71,1”2 - 0

Similarly, taking the inner product of ¢, , with (5.10)4 in L?(0,1), integrating by parts and using the
boundary conditions, (5.5) and (5.51), we find

therefore, adding (5.55) and (5.56), and noticing that k1 = ks, we deduce that
(5.57) k1 [na I + ((AnBns V) + (Pnes iAnthn ) = 0.

On the other hand, we have
(Xns V) = = (P Aabnc) = = (P iAatbne = P ) = (P P
and, using also inegrating by parts,
(¢neidaBn) = = (Mbnarn) = = (Anfnz = Pras P ) = (Gner )
=~ (IMa#na = B O ) + (P B )
so0, by adding the above two identities and using (5.5) and the limits (5.10); and (5.10)3, we see that
(5.58) (XnBns Une) + (o intin ) 0,

then, by combining (5.57) and (5.58), we conclude that
(5.59) Yne — 0in L?(0,1).
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Taking the inner product in L? (0, 1) of (5.10)4 with 1),,, integrating by parts, using (5.5) and the boundary

conditions and exploiting (5.53) and (5.59), it follows that

(5.60) (A, ) = 0.

Because )

(At ) = = (Bsidntbn ) = = (s iaton = G ) = |9

then, by combining with (5.10)3 and (5.60), we obtain

(5.61) Yp — 0in L2 (0,1).

Finally, the limits (5.48), (5.50), (5.51), (5.53), (5.54), (5.59) and (5.61) lead to (5.9).
Subcase 2: (71,72,73,71) = (1,0,1,0) and (k1, k3) = (k2, k4). From (5.11), it appears that

(5.62) @y Wp — 0in L*(0,1),
so (5.10); and (5.10)5 lead to

(5.63) A@Pny Anwy — 0 in L2 (0,1),
then, using (5.6) and (5.63), we find

(5.64) ©On, Wy — 0in L?(0,1) .

Taking the inner product in L2 (0,1) of (5.10)2 and (5.10)¢ with ¢,, and w,, respectively, integrating by
parts and using the boundary conditions and (5.5), we get (5.15) and (5.18), then it follows from (5.63)
and (5.64) that

(5.65) Pryes Wng —0in L?(0,1).

Thanks to (5.5), (5.10)3 and (5.10)7, we have

(5.66) (Mn),, s (Anzn),, are bounded in L?(0,1),

then, by combining (5.6) and (5.66), we find

(5.67) VY, 2n — 0in L2 (0,1).

We notice that (5.55), (5.56), (5.57), (5.58) and (5.60) hold also in this subcase 2, since k; = ko and
(11, 72) = (1,0) as in Case (5.4)-Subcase 1, so we get

(5.68) Y, o = 0in L?(0,1).

On the other hand, we see that (5.40), (5.41), (5.42), (5.44) and (5.45) are still satisfied in this subcase
2 because k3 = k4 and (73,74) = (1,0) as in Case (5.2)-Subcase 2, then we arrive at

(5.69) Znay Zn — 0in L?(0,1).
Consequently, the limits (5.62), (5.64), (5.65), (5.67), (5.68) and (5.69) lead to (5.9).
Subcase 3: (71,72,73,74) = (0,1,0,1) and (k1, k3) = (k2, k4). The identity (5.11) implies that

(5.70) Uy Zn — 0in L?(0,1),
then (5.10)3 and (5.10)7 lead to

(5.71) A®ny Apzn — 0in L?(0,1),
so, using (5.6) and (5.71), we obtain

(5.72) Yy 2n — 0in L2 (0,1).

Taking the inner product in L2 (0,1) of (5.10)4 and (5.10)g with v, and z,, respectively, integrating by
parts and using the boundary conditions and (5.5), we find (5.17) and (5.19), then, combining with (5.71)
and (5.72), it follows that

(5.73) Uy Znz — 0in L2(0,1).
According to (5.5), (5.10); and (5.10)5, we have
(5.74) (Aan),, » (Anwy), are bounded in L?(0,1),
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then, by combining (5.6) and (5.74), we get
(5.75) ©On, wy, — 0in L?(0,1).

We remark that (5.27), (5.28), (5.29), (5.30) and (5.32) hold also in this subcase 3, since k3 = k4 and
(13,74) = (0,1) as in Case (5.2)-Subcase 1, hence

(5.76) Wp 2y Wy — 0in L2(0,1).

Taking the inner product of (5.10)y with v, , in L% (0, 1), integrating by parts and using the boundary
conditions, (5.5) and (5.73), we obtain

(577) <ZAn¢na wn,1> - kl <§0n,ww7 wn,a:> — 0.

Similarly, taking the inner product of ¢, , with (5.10)4 in L? (0, 1), integrating by parts and using the
boundary conditions, (5.5), (5.70) and (5.72), we find

(578) <S0n,m7 7«>\n¢~)n> + k2 <(Pn,mm7 wn,r> + kl ||30n,m|‘2 — 0,

therefore, adding (5.77) and (5.78), and exploiting the property k; = ks, we deduce that

(5.79) b [nell® + (iAnBns Ve + (@nes iAnthn ) = 0.
On the other hand, we observe that (5.58) holds, and then, by combining with (5.79), we conclude that
(5.80) @ne — 0in L?(0,1).
Taking the inner product in L? (0, 1) of (5.10)2 with ¢,,, integrating by parts, using (5.5) and the boundary
conditions and exploiting (5.75) and (5.80), we get
(5.81) (iAn@n, on) — 0.
Because
. S S 5 S o2

<ZATL()071) (Pn> = - <§0na ZA’rL(pn> = - <<P7L32An<pn - Qpn> - ||<pn|| ’

then, by combining with (5.10); and (5.81), we obtain

(5.82) @n — 0in L2(0,1).
Hence, the limit (5.9) holds according to the limits (5.70), (5.72), (5.73), (5.75), (5.76), (5.80) and (5.82).
Finally, the proof of Theorem 5.1 is completed. O

6. POLYNOMIAL STABILITY

In this section, we study the decay rate of solutions in the following cases:

(6.1) (11,72,73,74) € {(0,1,0,0),(0,0,0,1)},

(6.2) (11,72,73,74) € {(1,1,0,0),(0,0,1,1)},

(6.3) (11,72,73,72) € {(1,1,0,1),(1,1,1,0)} and kg # ky,
(6.4) (11, 72,73,72) € {(0,1,1,1),(1,0,1,1)} and ki # k2
and

(6.5) (m1,7m2,73,71) € {(1,0,0,1),(1,0,1,0),(0,1,0,1),(0,1,1,0)} and (ky1,ks3) # (k2, k),

where the strong stability (2.17) is satisfied but the exponential one (4.5) does not hold (see sections 3
and 4). We will prove that the decay rate of solutions in these cases is at least of polynomial type; that
is, there exists § > 0 such that

(6.6) ¥®o € D(A), Fe>0: [|[®(t)||,, < ct™®, Vt>0.

Theorem 6.1. The polynomial decay (6.6) is satisfied in cases (6.1)-(6.5) with

6
= in case (6.1),
(6.7) d=1< =5 in case (6.2),

1
1 in cases (6.3)-(6.5).
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Proof. Tt is known by now (see [7, 9, 10]) that (6.6) holds if

(6.8) iRCp(A) and sup |3
IAI>1

(AT — A)_1H < o0.

L(H)
We have proved in section 3 that the first condition in (6.8) holds in cases (6.1)-(6.5). So we will prove
that the second condition in (6.8) is also satisfied. This will be done by contradiction arguments. Let
us assume that the second condition in (6.8) is false, then, there exist sequences (®,), C D (A) and

(An),, C R,-satisfying (5.5), (5.6) and

(6.9) Tim a3 (A0 T — A) @]y, = 0.

The contradiction will be obtained by proving (5.9). Let define ®,, by (5.8). From (6.9), we get
A3 [iAnn — @n] = 0 in Vi,
Anl? [iAn@n — k1 (nz + ¥n), — ko (wn — n) + T1a18,] — 0 in L2(0,1),
Anl [Mntﬁn - in} -0 in Vo,

(6.10) Anl? [Mnl/;n — kot aw + k1 (Pre +¥n) + 72(121;[;”} — 0 in L*(0,1),
An|? [iApwn — wn] = 0 in V4,
IAnl % [iAni0n — k3 (W p + 20), + Ko (wn — @n) + T3azw,] — 0 in L2(0,1),
An|? [iAnzn — Zn] = 0 in Vp,
Anl® [iAnZn — kazn e + k3 (W o + 2n) + TaaaZ,] = 0 in L2 (0,1).

Taking the inner product of |\, | (i A, I — A) @, with &, in H and using (2.8), we get

Re <|An|% (iAo — A) @y, @">H = —|A|? Re (AD,, D),

Aal¥ (raaa |12 + raaa [ D] + 7|2 + raaal2]2)

so, (5.5) and (6.9) imply that

(6.11) Aal¥ (r101@nll? + T2asllihnl|? + msas@nl|® + TaaalZa]2) = 0.

Multiplying (6.10);, (6.10)3, (6.10)5 and (6.10)7 by |)\n|7%71 and using (5.5) and (5.6), we obtain
(6.12) Oy Uny Wh, 2n — 0in L2(0,1).

Multiplying (6.10)1, (6.10)3, (6.10)5 and (6.10)7 by |)\n|_% and exploiting (5.5) and (5.6), we deduce that
(6.13) (M@n)ys Antn), s Aawn),, s (Anzn), are bounded in L?(0,1).

Multiplying (6.10)2, (6.10)4, (6.10)s and (6.10)s by |/\n|_%_1 and using (5.5) and (5.6), it appears that
(6.14) (A;lapn,m)n , (A;lwn,m)n , ()\,_Llwn’m)n , ()\T_len’m)n are bounded in L% (0,1).

Taking the inner product of (6.10)s with |)\n|7% ¢, in L%(0,1), using (5.5) and (5.6), integrating by parts
and using the boundary conditions, we find

‘2 - <k11/)n,m + kowy, — kO‘pn — T141Pn, (pn> — 0,

- - -2
— <<Pn7l)\n§0n - Spn> - H‘Pn” + k1 ||S‘7n,/ch

then, using (5.5), (6.10); and (6.12), we observe that the first and last terms of this limit converge to
zero, and so

(6.15) kit [|nzl* = l|@nl* = 0.
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Similarly to the proof of (6.15), taking the inner product of (6.10)4, (6.10) and (6.10)s with, respectively,
|)\n\7% U, |)\n|7% wy, and |)\n|7% zp, in L?(0,1), using (5.5) and (5.6), integrating by parts and using the
boundary conditions, it follows that

-2
(6.16) k2 ||wn,:v||2 - ‘ 'L/)n — O,
(6.17) k3 [|wn o ||* = @] * — 0
and

(6.18) ky ||Zn,x ‘2 - Hgn”2 — 0.

Taking the inner product of (6.10); with i\,¢p, in L? (0,1) and using (6.13), we find

Al 2 1oall = 18al7] = (@ns oal? (Dnpn = B0)) >0,
so, according to (5.5) and (6.10)1, it is clear that the last term of this limit converges to zero, hence
(6.19) Pal® [A2 llenl® = I8al?] = o.

Similarly to the proof of (6.19), taking the inner product of (6.10)3, (6.10)5 and (6.10); with, respectively,
iAW, IApwy, and i\, z, in L?(0,1), we arrive at

1 ~ 2
(6:20) Ptk [ 1 = ] 0.
1 ~
(6.21) Aal® (A2 llwnll® = ll@a]*] =0
and
(6.22) Aal® A2 [1zall” = l1202] = 0.

Now, we notice that we need to treat only the cases

(m1,72,73,72) = (0,1,0,0) and 6 = %)

(6.23) (11,72,73,72) = (1,1,0,0) and § = ﬁ,
(m1,m2,73,72) € {(1,0,0,1),(1,0,1,0),(1,1,1,0),(1,1,0,1),(0,1,0,1)} and 6 = %
since (as in section 3), the proof in cases

(11, 72,73,74) = (0,0,0,1) and § = %,

(11,72, 73,74) = (0,0,1,1) and § = f?’
(T1,72,73,74) € {(0,1,1,0),(1,0,1,1),(0,1,1,1)} and § = 1.
is, by symmetry, identical to the one that will be given in cases (6.23).

6.1. Case (11,72,73,74) = (0,1,0,0) and ¢ = ﬁ. In vertue of (6.11), it is clear that

(6.24) A 4h, — 0in L2(0,1),
and then, according to (6.20), we get
(6.25) A0, — 0 in L2(0,1).

Taking the inner product of (6.10); with A%, in L?(0, 1), integrating by parts and using the boundary
conditions, (5.5) and (5.6), we find

kZA}LOHan,w”Q + <Z)‘n1;n + kl (‘Pn,w + 1%) + a2dna )‘»}Lown> — 0»
therefore, using (5.5), (6.24) and (6.25), we observe that

(At + Kt (P + W) + a2, A0 ) = 0,
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hence, by combining the above two limits, we arrive at
(6.26) Ny — 0in L2 (0,1).

Taking the inner product of (6.10), with A%, , in L?(0,1), integrating by parts and using (5.5), (5.6)
and the boundary conditions, we arrive at

kl)\i”@n,xHQ + k2)‘i <wn,wa (Pn,wm> + <’L)\?L'(/;n + kl)‘iwn + a2)\§l’¢;n7 (pn,z> — 0;
therefore, exploiting (5.6), (6.24) and (6.25), we entail

<Z)‘?11;n + k1A§L¢n + a2)\§1w~na <pn,1> — 07
so, by combining the above two limits, we get
(6.27) kiXy on,2lI” + k25, (¥ zs ©na) = 0.

Taking the inner product of (6.10)2 with A, 1%, , in L? (0,1), integrating by parts and using (5.5), (5.6)
and the boundary conditions, it follows that

(628) _kl)‘i”d}n,m”2 + ko <wn,m — Pn,x A§L¢n> - <i)\n¢n,zv Aqsﬂ/}n> - k1>\181 <90n,:mc; wn,x> — 0.
On the other hand, exploiting (5.6), (6.25) and (6.26), it appears that
(629) _kl/\i”wn,w”Q + kO <wn,w — Pn,xs )\iwn> — 0.

Moreover, we have

- <i/\n¢n,xa Ai%} = <<Pn,xa A;O¢n> -1 <)‘2L (@n,x - i/\n@n,x) s 1/’n> ,
therefore, using (6.10); and (6.25), we find

(6.30) — (A @,z Agthn) = 0,
then, from (6.28), (6.29) and (6.30), we deduce that

(6.31) S
therefore, by combining (6.27) and (6.31), we obtain

(6.32) A on . —0in L2(0,1),
hence, by combining (6.15) and (6.32), we see that

(6.33) @n — 0in L2(0,1).

Taking the inner product of (6.10)y with A, 'w,, ., in L?(0,1), integrating by parts and using (5.5),
(5.6), (6.14) and the boundary conditions, it follows that

(634) kOAgL”wn,'p |2 - klAi <§0n,fcma wn,.’rr> - Ai <7)\n§5nm7 wn,x>

_kl <)\i¢n,zv )‘Elwn,zz> - kO <)\i(¢0n,z7 wn,x> — 0
By exploiting (6.14), (6.26) and (6.32), we get

(6.35) —k1 (A2 a, Ay Wi wa) — ko (A2 @ 0, Wy 2 ) — 0.

Moreover, we see that

_>\72L <i)\n§5n,x7 wn,x> = <Z)\§l (i)\n(;on,x - Sbn,x) awn,x> + <)\;11§0n,:c7 wn,x> ,
then, according to (6.10); and (6.32), we conclude that

(6.36) =2 (iAn B,z Wnoa) — 0,
and @ by combining (6.34), (6.35) and (6.36), we obtain
(6.37) koA || wno||” = k122 (@n,0m, Wn,za) — 0.

On the other hand, taking the inner product of (6.10)g with A, 1%, ;. in L% (0, 1), integrating by parts
and using (5.5), (5.6), (6.14) and the boundary conditions, we entail

(638) _k?)Ai <wn,a:;t; (Pn,zx> - <iwn,w7 )‘fﬁpn,l> + kS <)\7:1Zn,$7;7 )\i@n,1> - kO <wn,1; - Qon,an )\i@n,1> — 0
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Thanks to (6.14) and (6.32), it appears that
(6.39) ks (O 200, Ao @ne ) — ko (Wno — Pnas Ao@ne) — 0.
On the other hand, we have
— (i, Ao Pz ) = (i (IXnWne — Wnoz) s A3 @nz) + (Wn oy APz ) s
so, using (6.10)5 and (6.32), we find

(6.40) — {in,q, A Pz) — 0.
By combining (6.38), (6.39) and (6.40), we get

(6.41) X (Wn o2y Pnea) = 0,

hence, (6.37) and (6.41) imply that

(6.42) Ay, — 0 in L?(0,1),
and then, using (6.17),

(6.43) Wy, — 0 in L?(0,1).

Taking the inner product of (6.10)g with A\, 182, , in L?(0,1), integrating by parts and using (5.5), (5.6),
and the boundary conditions, it follows that

_kSHZn,z ||2+k3 <)\nwn,a:7 )\»len,:r:v> _kO <wn,w — Pn,xy Zn) —1 <1I]n,z - i)\nwn,a:v )\nzn>+ <)\nwn,a:7 )\nzn> — 07
because, according to (6.10)s, (6.13), (6.14), (6.32) and (6.42),
k3 <)\nwn,m7 Aglzn,rz> - kO <wn,z - Qon,za Zn> - Z <'lz}n,m - i)\nwn,r; Anzn> + <)\nwn,r; Anzn> — 07

we see that the above two limits lead to

(6.44) Zna — 0in L?(0,1),
and by combining (6.18) and (6.44), we get
(6.45) %, — 0in L?(0,1).

Finally, the obtained limits (6.12), (6.24), (6.26), (6.32), (6.33), (6.42), (6.43), (6.44) and (6.45) imply
(5.9), which is a contradiction with (5.5).

6.2. Case (11,72,73,74) = (1,1,0,0) and ¢ = ﬁ. In virtue of (6.11), it is clear that

(6.46) A @, ANap, — 0in L2(0,1),
and then, according to (6.19) and (6.20), we get
(6.47) Mo, A4, — 0in L2(0,1).

Taking the inner product of (6.10); with ., %1, in L?(0, 1), integrating by parts and using the boundary
conditions, (5.5) and (5.6), we find

kQ}‘i”d’ﬂ,IW + <Z)‘n7;/~}n + k1 (Pn,z +Pn) + azl/;n, /\781'1/}n> -0,
therefore, using (6.46) and (6.47), we observe that

(Mt + Eir (P + ) + a2th, Aythn ) =0,
hence, by combining the above two limits, we arrive at
(6.48) N, — 0in L2 (0,1) .

Similarly, taking the inner product of (6.10)y with A\ %, in L?(0,1) and using the same arguments as
for (6.48), we find

(6.49) M one — 0in L?(0,1),
which coincides with (6.32). Taking the inner product of (6.10)2 with A, *?w,, ., in L? (0,1) and pro-
ceeding as is subsection 6.1, we get (6.37) (using (6.48) instead of (6.26) to find (6.35)). On the other

hand, taking the inner product of (6.10)s with A, *%¢,, ;. in L? (0,1) and following the same arguments
as in subsection 6.1, we find (6.42) and (6.43). Therefore, the prrof can be completed as in subsection 6.1
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by taking the inner product of (6.10) with A, 14z, , in L?(0,1) to get (6.44) and (6.45). Consequently,
(5.9) holds.

6.3. Case (11,72,73,74) = (1,0,0,1) and § = % According to (6.11), we have

(6.50) MnPrs AnZn — 0in L2(0,1),
and then, thanks to (6.19) and (6.22), we find
(6.51) Mo, A2z, — 0in L*(0,1).

Taking the inner product of (6.10), and (6.10)s, respectively, with ¢,, and z, in L?(0,1), integrating by
parts and using the boundary conditions and (5.5), we obtain
kl)‘i”‘ﬁn,IHQ + <Z)\n¢)n - klwn,w - kO (wn - LPn) + al@na )\i@n> —0
and
ka2 || 2n.]1® + <i)\n2n + kg (W2 + 2n) + 42, )\izn> — 0,
therefore, according to (5.5), (6.50) and (6.51), it is clear that
<Z)\n¢n - kﬂ/’n,z - kO (wn - Spn) + a1¢n7 )\i@n> —0
and
<i)\n2n + kg (Wn,p + 2n) + @aZn, )\izn> — 0,
then, from the above four limits, we deduce that
(6.52) MPnzy AnZne — 0in L?(0,1).
Similarly, taking the inner product of (6.10)2 and (6.10)s, respectively, with A2, , and A, %w, , in
L?(0,1), integrating by parts and using the boundary conditions, (5.5) and (5.6), we arrive at
—ky ||1/)n,$||2 + <Z>\n¢n - kO (wn - @n) + al@na "pn,z> + kq <>\n90n,z7 Aglwn,zz> —0
and
k3Hwn,a:||2 + <i/\n§n + k3zp, + a4Zp, wn,x> + k4 </\nzn,xa )\;Llwn,xac> — 0,
so, according to (6.12), (6.14), (6.50) and (6.52), it is clear that
<Z)\n95n - kO (wn - L;Dn) + al()brw wn,w> + kl <)\n(pn,z7 A;Iwn,xm> — 0
and
<z)\n2n + kBZn + a42n7 wn,m> + k4 <)\nzn,m7 Aglwn,xm’> — 07
hence these four limits imply that

(6.53) ey Wne — 0 in L2 (0,1),
and by combining (6.16), (6.17) and (6.53), it follows that
(6.54) U, W — 0in L2 (0,1),

Finally, the obtained limits (6.12), (6.50) and (6.52)-(6.54) lead to (5.9).
6.4. Case (11, 72,73,74) = (1,0,1,0) and § = 1. From (6.11), it appears that

(6.55) M@y Aptly, — 0 in L2(0,1),

therefore, according to (6.19) and (6.21), we have

(6.56) N on, A2w, — 0in L*(0,1).

The limits

(6.57) My Uz — 0in L2(0,1)

can be proved exactly as in subsection 6.3, and therefore, by exploiting (6.16), we find
(6.58) Un — 0 in L2(0,1).

On the other hand, taking the inner product of (6.10)¢ with w, in L?(0,1), integrating by parts and
using the boundary conditions and (5.5), we obtain

k3/\721||wn,w||2 + <Z'/\nﬁ’n - k?»zn,x + ko (wn - 9071) + azWn, )\iwn> — 0,
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therefore, according to (5.5), (6.55) and (6.56), it appears that

<i)\nﬁ)n — kszn,z + ko (Wn, — @n) + a3y, /\fLwn> — 0,
then these two limits imply that
(6.59) AWy — 0 in L?(0,1).

Similarly, taking the inner product of (6.10)¢ with A2z, . in L?(0,1), integrating by parts and using the
boundary conditions, (5.5) and (5.6), we get

_k/iSHZn,avH2 + <Z)\nwn + kO (wn - (pn) + (137:[]”, zn,z> + kS <)\nwn,a:a )\rzlzn,a:w> — Oa
then, using (6.14), (6.55), (6.56) and (6.59), we obtain
<Z)\n’LDn + kO (wn - (pn) + a37~bn7 zn,:z:> + k3 <)\nwn,17 )\Elzn,a:m> — 07

hence

(6.60) Zne — 0in L7 (0,1),
and by combining (6.18) and (6.60), we find

(6.61) Z, — 0in L?(0,1).

Consequetly, the limit (5.9) can be directly deduced from the ones (6.12), (6.55) and (6.57)-(6.61).
6.5. Case (71,72,73,74) = (1,1,1,0) and § = 1. The limit (6.11) implies that

(6.62) A@ns Anln, Apth, — 0 in L2(0,1),

which implies (6.55), so the proof can be finished as in subsection 6.4.

6.6. Case (71,72,73,74) = (1,1,0,1) and § = 1. We deduce from (6.11) that

(6.63) MA@y Aatn, AnZn — 0 in L2(0,1),

which implies (6.50), then the proof can be ended as in subsection 6.3.

6.7. Case (71, 72,73,74) = (0,1,0,1) and § = . The limit (6.11) leads to

(6.64) Aatny AnZn — 0 in L2(0,1).
The limits

(6.65) A2, Anzne — 0in L2(0,1)
can be proved as in subsection 6.3. Similarly, we can prove the limits
(6.66) Ny Antbn — 0 in L2(0,1)

(by exploiting (6.20) and multiplying (6.10)4 with 1,; we omit the details here). On the other hand,
taking the inner product of (6.10)s with A, 2w, , in L?(0, 1), integrating by parts and using the boundary
conditions, (5.5) and (5.6), we find

k3||wn,:v||2 + <Z)\n2n + k3zn + 0/42”, wn,m> + k4 <)\nzn,wa )\len,wz> — 07
then, using (6.14), (6.64) and (6.65), we find

Z)\ngn +k32n+a4§nuwnz +k4 )\nzn 17)\_1wn T _>07
( : s An W,

hence

(6.67) Wy — 0 in L?(0,1),
and by combining (6.17) and (6.67), we deduce that

(6.68) W, — 0in L?(0,1).

Similarly (using (6.10)4 and A, %¢,, . instead of (6.10)s and A, 2wy, .., respectively, and exploiting (6.15)),
we have

(6.69) Onzy Pn — 0in L?(0,1).
Consequently, the limit (5.9) holds. The proof of Theorem 6.1 is then completed. O
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7. OPTIMALITY OF THE POLYNOMIAL DECAY RATE: CASES (6.3)-(6.5)

In this section, we prove that the polynomial decay rate given in Theorem 6.1 in cases (6.3)-(6.5) is
optimal in the sense that there is no € > 0 such that

(7.1) V0o € D(A), Je>0: [|O(t)]l,, <t 27, V> 0.
Theorem 7.1. For any € > 0, the polynomial decay (7.1) does not hold in cases (6.3)-(6.5).

Proof. To prove Theorem 7.1, it is sufficient to show that (see [9, 10])
(7.2) limsup A™? || (iA] — A)_lHL(H) > 0.
A—00

To get (7.2), it will be enough to find sequences (A\n)n C R, (Fp), C H and (®,), C D(A), (I
satisfying

ZAn(I)n - A(pn = L'n,

HFn||7-l < 1a

(7.3) lim A, = oo,
n—oo

lim A, ?(|®, |y > 0.
n—roo

T
. . - ~ _ - T
As in section 4, let ®,, := (gpn,gon,z/)n,wn,wn,wn,zn,zn> s Fo = (fin, -+ fag) and N := T +nm.

Then (7.3); is equivalent to (4.10). By considering the choices (4.11) and (4.12), we see that (F},), C H,
(®)n C D(A) and (7.3); is reduced to the algebraic system (4.13). In order to simplify the computations,
we put

Ji =22 —k1N? — ko — iTia1 M\,
Jy = )\% — koN? — k1 — imoa0 Ay,
J3 = A2 — k3N? — ko — im3a3\,,
Jy= M2 — kyN? — k3 — im4a4)\n,

(7.4)

50 (4.13) can be presented in the form
Jiay,, +kiNag, + koas,n = B2.n,
kiNog gy + Joo p = Bap,
koo n + Jsag, + ksNoyn = Ben,
ksNog p + Jaou n = Bs pn.

(7.5)

Now, because we need here to prove the stronger limit (7.3)4 than the one (4.16) needed in section 4, we
have to consider other choices of A, &, and f;,. On the other hand, to cover the cases (6.3)-(6.5), we
need to treat only the cases (6.3) and

(76) (7_1;7—277—377—4) € {(1707071)3(1707130)7(0717031))} and (klakS) 7é (k23k4)a

since, by symmetry, the proofs in cases (6.4) and (71,72, 73,74) = (0,1,1,0) are similar to the ones of,
respectively, (6.3) and (71,72, 73,74) = (1,0,0,1).

7.1. Case (71,72,73,74) = (1,1,0,1) and k3 # k4. We choose

2

k
(7.7) Bon = Pan =PBsn=0, Bsn=1 and )\n:\/kSN2+k0+k 3]{’
3 — Ky

for n € N such that ks N2 + ko + % > 0. We see that (7.3)2 and (7.3)3 are satisfied, since, according
to (4.11)2, (4.12)3, (4.12)4 and (7.7), we have

1
(7.8) IEull5, = I fonll® = / cos?(Nz)dz < 1.
0
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On the other hand, by a direct computations, it appears that (7.5) has the unique solution
—kOJQ J4

OLn = (G i—k3N?) (J1Jo—k2N2)—k3 T3 Ja’
P kok1 JaN
2 (T3 Ja—k3N?) (1 Ja—kIN?)—kZJ2Js”
(7.9) _ Ja(J1Ja—kIN?)
Q3.n = (JsJu—k3N2)(J1J2—kIN2)—kZJ2Js’
_ —k3N(J1Ja—kiN?)
Hn = (G Ti—k3N?) (J1J2—k2NZ) K3 Ja s
We have
2 \72 2 \72 2 k‘% : kska
(J3J4 — ]{33N ) (J1J2 — I{ZlN ) — k0J2J4 = za4)\n — I{/’Q + X
]C4 — k3 k4 - k3
5 . k3 9 . k3 2 A72
X (kg — kl)N — Za1>\n + — (kg — kQ)N — Zag)\n + ko — kl + — klN
k‘g — ]{)4 kS - k4
2 2 . k?% 2 . ksky
—kJO (k3 — kQ)N —dag A, + ko — k1 + (k3 - k4)N —dasN, + ko + R
ks — ka ks — k4

then, we denote Hj @Iy ptotic equivalence when n goes to infini{fffnd we find
(k3 — k1) (ks — ko)N*  if kg & {k1, ko},

Z'al\/E(k’g — k’g)NS if kig = k‘l and k3 7é kJQ,

(7.10) JiJy —kIN? ~
iag\/E(kl — kg)Nz)’ if kg 75 ]{71 and k3 = k27
— (a1a2k3 + k%) N2 if ks = k1 = ko
and
(7.11) (J3Jy — k3N?) (J1J2 — kIN?) — ki JoJy
ia4k§\/ggglz3:ki1)(k3*k2)]v5 if ks & {ky, ko),
3 2 P 2 -
vl ok (k)T (hs —h) if by = ky and kg # ko,
azaski(ks —ki) pya if ky # k1 and kg = ko,
i Rs[Riea(mnanhs T thooatho bl s i gy gy =
therefore, by combining (7.10) and (7.11), we deduce from (7.9)s5 and (7.9)4 that
i (ks = ka)N, —ks) if ks & {k1, k2},
ek (ks — ka) N, —ks) if ky = ki and ks # ko,

(7.12) (agn; an) ~ § iy —py)
a4k§\/@

i(k37k4)(a1a2k:3+kf)
\/E[k§a4(a1a2k3+k%)+k3a2(ks—k4)2]

On the other hand, from (4.12)3, we have

((1{33 — /{34>N, —k‘3) if k‘3 7é kl and kg = k‘Q,

(ks — k)N, —ksg)  if ks = k1 = ko.

1
(7.13) 1@nll3, > kallwne + zal” = kslagnN — a4,n|2/ sin?(Nz)dx
0
k3 5 1 k3 )
> ?|a37n]\7 — | [1 —cos (2Nz)] dx = ?|a37nN — ol
0
then
k3
k SlasnN — oyl
(7.14) A2 [y > ,/é”x;zmg,nN I [ ,

k}2
k3N2+k0+ﬁ



COUPLED TWO TIMOSHENKO-TYPE MODELS WITH FRICTIONAL DAMPINGS

hence (7.12) and (7.14) lead to

— 2 .
(’?ﬁafzé if ks & {k1,ka},
ks —kyq)? .
\/i[alailk(gikg(lzgsz;)ﬂ if k3 = k1 and k3 # ko,
(7.15) lim A2 ||®,,, > )
n=roo (kfifié if ks # ky and ks = ko,
(k3—ka)?(arasks+k7 ) . . _
\/Ekg[kgazx(a1¢12k3+k%)+k3¢12(k3*k4)2} if ks = k1 = ka,
which implies (7.3).
7.2. Case (11,72,73,74) = (1,1,1,0) and k3 # k4. We take
ksk
(7.16) Brn = Ban=Pon =0, Pon=1 and Xy =[kaN? 4+ =,
4 — K3

27

for n € N such that kyN? + k3 + ,mkfg'ks > 0. We remark that (7.3)2 and (7.3)3 hold because, thanks to
(4.11)2, (4.12)3, (4.12)4 and (7.16), we have

1
(7.17) 1l = I fsnl® = / sin®(Na)de < 1.
0

On the other hand, (7.5) admits the unique solution

Q1 n =

)

A2n =

)

(7.18)

Qa3 n =

Q4 n =

koksJa N

(JsJa—kZN2)(J1J2—k3N2)—kZJ2Js’

—kok1ks N?

(JsJa—k3N?2)(J1Ja—k2N2)—kZJ2Js’

—ksN(J1Ja—kIN?)

(JsJa—kZN2)(J1J2a—k3IN2)—kZJ2Js’

Js(J1J2—kiN?)—kg J2

(JsJa—kZN?)(J1J2—k3IN2)—kZJaJs’

Similar computations to the ones done in subsection 7.1 show that

(7.19) (J3Js — K3N?) (J1J2 — kIN?) — kg JoJy
SN ORINT ik ¢ (ko).
—ereokihalbet) 4 if kg = ky and ky # ko,
—ozaskihalhs—ka) 4 if kg # k1 and ky = ko,

1asz/ k}4k}§ (a1a2k4+kf)

ka—Fs3
and

(7.20) Js (J1Jo — kIN?) — kg Jo ~

N3 ifky =ki =ko

(ka — k1) (ks — ko) (ka — k)N
—ia1vka(ka — ko) (ks — kz)N®
—iag\/ky(ky — k1) (kg — k3)N°®
- (a1a2k4 + kf) (kg — k3)N*

then we deduce from (7.18)4, (7.19) and (7.20) that

(7.21)

i(ky — k3)?

n~ N.

if ky & {ki, kol
if ky = ky and ky # ko,
if ky # ky and ky = ko,
if ky = ky = ko,
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On the other hand, from (4.12)3, we have

1
(7.22) [®nl7, > k4\|zn7$||2:k4|a4’n|2N2/ cos?(Nz)da
0

v

k ! k

?4|0447n|2N2/ [1+ cos (2Nz)] dz = ?4|a47n|2N2,
0

then, according to (7.21) and the above inequality (7.22), we find (7.3)4.

7.3. Case (11,72,73,74) = (1,0,0,1) and (k1, ks3) # (ko, ks). Because (ki1, ks) # (ka, ks), we distinguish
the two subcases [k # ko] and [kl = ko and k3 # ky].
Subcase 1 : (11,72,73,74) = (1,0,0,1) and k; # ko2. We choose
kiko
ky — ki’
for n € N such that koN2 + ky + k > 0. We observe that (7.3)3 hold‘md moreover, in virtue of
(4.11)2, (4.12)3, (4.12)4 and (7.23), we have

(723) 52,71 = BG,n = BS,n = 07 54,71 =1 and >\n = k2N2 +

1
(7.24) IEAZ, = [ fanll? = / sin?(Nz)dz < 1,
0

hence (7.3)3 is satisfied. On the other hand, (7.5) has the unique solution

—k1N(JsJa—k3N?)

Ol = (G Ti—k3N?) (J1 J2— 2 N2) k2 T2 da
. Ji(JsJa—k3N?)—k Ja
(7 25) a27n - (J3J4—k§N2)(JlJz—k%N2)—ng2J47
e — koky N Jy
3 T (J3Ja—k3N?) (1 Ja—kIN?)—kZ T2 Js’
P —kokikaN?

(JsJa—k3N2)(J1Ja—k2N2)—k3JpJs

As in subsections 7.1 and 7.2, direct computations lead to

(7.26) (J3Jy — k3N?) (J1Jo — kiN?) — kg JoJs
77,0,1]6 @(2k2k1k3)(k2 k4)N5 if kQ ¢ {k‘3,k4}7
—ia1 k2VEs [(ka—ka) ( 2122 — ko ) — K2 i
[ kzi)iglkrkl o)) N3 if ko # ke — k2 4=, ko = kg and ky # ku,
~ —[a1askok?k24+k2k? (ko —ks)? .
[os S i I 2 if ko = gk — Rk = ky and kg # ky,
—oaaskiha(hs ko) s if iy # ks and ky = ks,
Mll]i kk\l/E]\f3 if k?z = k‘3 = ki4
and
(7.27) Ji (J3Jy — k3N?) — k3 Jy
(kg — k1) (kg — k3) (kg — kq)N© if ko & {ks, ka},
(k2 = ) |(k2 = ko) (52 — ko) — R3] N*if ko # 225 — i by = kg and ky # ki,
~\ —iasvka(ky — k1) ( k1k2 ko) if ko = klzl_klil k2 i~ ko = k3 and ko # ku,
—Z.CL4\/E(]€2 — kl)(k‘g — k‘3)N if k‘g 7é ]4;3 and k‘g = k4,
—k%(kz — k) N4 if ko = k3 = ky,

then, by combining (7.25)2, (7.26) and (7.27), we get, for some ¢ > 0,
(7.28) lag n| ~ cN.
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Moreover, from (4.12);, we see that

1
(7.20) @0l = e nal® = haloanPN? [ cos’(Va)da
0
ko ! ko
> E|a2’n\2N2/ [1 4+ cos (2Nz)] dx = ?|a2’n\2N2,
0

then (7.3)4 holds thanks to (7.28) and (7.29).

Subcase 2 : (7y,72,73,71) = (1,0,0,1), ky = k2 and ks # k4. The proof is similar to the one given
in subsection 7.1 by considering the choices (7.7) to get (7.8), (7.9), (7.10)1, (7.11),

(7.30) JiJy —k2N? ~ —kIN? if by = ko = ks
and
ask2k2\/E
7.31 Jads — E2N?) (J1Jo — K2N?) — k2JoJy ~ faakiksVhs s ki = ko = k3
3 1 0

ks — k4

(that is (7.30) and (7.31) correspond to (7.10)4 and (7.11)4, respectively, with az = 0). Noticing that the
two cases [ks = k1 and ks # k2] and [k3 # k1 and ks = k2] considered in (7.10), (7.11) and (7.12) can
not be considered here because k1 = k. Then we deduce from (7.9)3, (7.9)4, (7.10)1, (7.11)1, (7.30) and
(7.31) that, for some ¢y, c3 > 0,

(7.32) lasn| ~ N and oy | ~ co,

hence, by using (7.14) and (7.32), we arrive at (7.3)4.

7.4. Case (11,72, 73,74) = (1,0,1,0) and (k1, k3) # (ke2,ks). When k; # ko, the proof is similar to the
ones given in subsection 7.3 - subcase 1 by considering the same choices (7.23), so (7.24) and (7.25) hold,
and therefore, by exploiting (7.25)2, we get (7.28), and then (7.3)4 holds according to (7.29). We omit
the details here.

When k; = ko and k3 # k4, we follow the same arguments as in subsection 7.2 by considering the
choices (7.16), we find (7.17), (7.18), (7.19)1, (7.19)4 with as = 0, (7.20); and (7.20)4 with az = 0 (the
two cases [ky = k1 and ky # ko] and [ky # k1 and kg = ko] considered in (7.19) and (7.20) can not be
considered here because k1 = k2), so (7.21) holds, and then, by combining (7.18)4, (7.21) and (7.22), we
deduce (7.3)4.

7.5. Case (71,72,73,74) = (0,1,0,1) and (ki, k3) # (ko, k4). We distinguish the three subcases [k # k2
and [k‘l 7é kg or k‘l = k‘4]], [k‘3 7é ]C4 and [k’l 7’5 /4}3 or k‘g = kg]] and [kl = k‘3 and ]Cl ¢ {]{12, k‘4}] We observe
that these three subcases are equivalent to (k1, k3) # (k2, k4).

Subcase 1 : (71,72,73,74) = (0,1,0,1), k1 # ko and [k # k3 or k; = ky4]. We choose

2

(733) 547,“ — 667” = 68,71 — O, ﬁl" =1 and An = \/kﬁlNg + ko + 3 kl 3 3
1 — h2

for n € N such that ki N2 + ko + % > 0. We remark that (4.11)9, (4.12)3, (4.12)4 and (7.33) lead to
1

(7.34) 1Eull3, = 1 fonll® = /0 cos?(Nz)dz < 1

(which implies (7.3)2) and (as for (7.13))

1
(7.35) 18], > k1 lone + tull? = krlara NV — az,n|2/ sin?(N2)dz
0

\%

k ! k
?1|0417n]\7 — a2 / [1—cos (2Nz)] do = 51|a17n]\7 —agn|?
0
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On the other hand, according to (7.33), simple computations imply that the unique solution of (7.5) is

J2(J3Ja—kiN?)

Ol = (G i—k3N?) (J1J2— k2 N?) k3 T2 Ja
_ —k1N(JsJa—k3N?)
(7.36) Q2,n = (JsJa—k3N2)(J1Ja—k2N2)—kZJ2Js’
asp = —koJaJa
T (JsJa—kEN2)(J1J2—kEN2)—kZ T2 s’
e — koks N J
A T (I3 Ja—kINZ) (J1J2—K2N?) k2 T2 ds’
therefore
(7.37) (J3Jy — k3N?) (J1J2 — kIN?) — ki JoJy
_ia2k%\/k71k(lki;2k3)(kl_k4) N5 lf kl ¢ {k37 k4}7
—k%(kl — kg)(k‘l — k‘4)N4 if ]{)1 = 1{33 and 1{31 75 k4,
—oaauhy (k1 ko) pya if k1 # kg and by = ky,
VRekihi skt b | s gy — ky = ey
1 2
and
(k1 — k3)(ky — ky)N*  if ky & {ks, ka},
hilha—ka) 2 if ky = ks, k1 # kg and kg # ka,
(7.38) JaJs = KEN? o~ o teakiVBy if iy = kg, k1 # kg and ky = ks,
—ia4\/ﬁ(k1 — kd)N?’ if kl 7é kg and ]€1 = k4,
—k2N? if ey = kg = K,

so, according to (7.36)1, (7.36)2, (7.37) and

—~

7.38), a1, and s, satisty, for some ¢, ¢z > 0,

(ClN, 62) if kl ¢ {k’37k4},
(Cl,%) if kl :kg, kl 7ék4andk2 %k4,
(739) (\al,n\, ‘Ckz’n‘) ~ (%7 %) if kl = ]fg, kl 7& k4 and kg = k4,

ClN, CQ) if kl 75 k‘3 andk1 = k4,
ClN, 02) if kl = ]€3 = k‘4;

(
(
we omit the details here. Because we are assuming in this subcase 1 that [k # k3 or k; = k4], then

(7.39)2 and (7.39)3 can not be considered in this subcase 1, so the properties (7.35), (7.39)1, (7.39)4 and
(7.39)5 lead to (7.3)4.

Subcase 2 : (11,72,73,74) = (0,1,0,1), k3 # k4 and [k1 # ks or ko = k3]. As in subsection 7.1, we
consider the choices (7.7) and we get (7.8), (7.9) and (7.14). Moreover, we have

(7.40) (J3Jy — k3N?) (J1J2 — kIN?) — kg JoJy

_ia4k§\/k7:;€(3kj;4k1)(k3—k2)N5 if kg ¢ {kjl, kQ}’

—k%(kjg — k‘g)(k‘?, — k‘4)N4 if kl = k‘3 and k‘g 75 k3,

—oataky(ks ki) pya if ki # kg and by = ks,

ivks|aak3 ki +askd (ks —ka)?]
k37k4

N3 ifk'l:kQ:k‘?,
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and
(ks — k1)(ks — ko) N*  if ks & {k1, ko),
Bilha—ka) 2 if k1 = ks, ko # ks and ks % ku,
(7.41) Jio = KIN? ~ § ZiaahidBs if ky = kg, ky # ks and by = ki,
—Z'ag\/g(kg — ]{il)NS if ]{?1 75 kg and k‘g = ]{33,
—k2N? if k1 = ko = ks,

so, as for (7.39), according to (7.9)s, (7.9)4, (7.40) and (7.41), a3, and @y, satisty, for some c1, ¢z > 0,
(1N, o) if ks ¢ {k1,ko},

(01, %) if k1 = ks, ko # ksand ko # ky,
(7.42) (Josnl, laaml) ~ < (%, 5%)  if k1 = ks, ko # ks and ko = kg,

(c1N,co) if ky # ksand ko = ks,

(c1N,co) if ky = ko = ks.

We remark that (7.42), and (7.42)3 can not be considered in this subcase 2 thanks to the assumption
[k1 # k3 or ko = k3], then (7.14), (7.42)1, (7.42)4 and (7.42)5 show that (7.3)4 is satisfied.

Subcase 3 : (7'1,7'2,7’3,7'4) = (O, 1,0,1), kl = kg and kl ¢ {kg,k'4}. We take

(7.43) Bom =Ban=PBsm=0, Bon=1 and A\, = VEkN2+ky+b,
for n € N such that ki N2 + ko + b > 0, where
2 4 2
(7.44) b= 2121725251762)?;1 —k/:z) " \/kg " 4<k1k—1(1~22)2(kk14)— k4%
Then (7.8) and (7.9) hold. Moreover, we see that
(7.45) Jody ~ (k1 — ko) (k1 — kg )N*,  JuN ~ (k; — kg) N3
and
(7.46) (J3Js — K3N?) (J1Jy — kIN?) — kg JoJy

= [b [(k?l — k’4)N2 —dagA, + b+ ko — kl] - k‘%Nz] [b [(kl - k‘g)N2 —dagA, +b+ ko — k/’l] — k%Nz]
—kg [(kl —ko)N? —idas), + b+ ko — k‘1] [(lﬁ — ksy)N? —iagh, + b+ ko — kl} )

since k1 = k3. On the other hand, direct computations show that the coefficient of N* in the right hand
side of (7.46) vanishes; that is

(k1 = ka)b = k7] [(k1 — k)b — k] — k3 (k1 — k2) (k1 — ka) =0,
therefore
IsN3  if I5 0,
(7.47) (J3Jy — k3N?) (J1J2 — kIN?) — kg JoJy ~{ IbN? if I3 = 0 and I # 0,
LN  ifl3=1I,=0and I, #0,
where
ivki [as [KE(ky — k) + k3b — (k1 — ka)b?] + ay [k3 (k1 — ko) + k3b — (k1 — k2)b?]]  if m =3,
I =13 (b+ko— ki) [(b—k2) (2k1 — ko — ka) — 2k?] — krasas (b* — K3) if m =2,
—ivki(az + ag)(b+ ko — k1) (b* — k3) if m=1.
Observing that (I1, Is, I3) # (0,0,0). Indeed, if I; = 0, then b*> = k3 or b = ky — ko. If b*> = k3, then

I3 = Z'k%\/ klb(ag + CL4) # 0.
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And if b* # k3 and b = k; — ko, then
I = —kiagaq (b* — k) # 0.
Consequently, (7.47) implies that there exists m € {1, 2,3} such that
(7.48) (J3Jy — k3N?) (J1Jo — kIN?) — kg Jody ~ L, N™.
Finally, we deduce from (7.9)1, (7.9)2, (7.45) and (7.48) the existence of ¢1, ¢a > 0 such that
(7.49) (lotnls lazn]) ~ (cl N4 ca N3
hence (7.3)4 holds, since (7.35) and (7.49) lead to

7.50 AZ2(|®, ||l ~ — N3,
(7.50) Pl ~

The proof of Theorem 7.1 is then ended. O

8. LACK OF POLYNOMIAL STABILITY: CASES (3.1) AND (3.2)

In the last cases (3.1) and (3.2) (where also the strong stability (2.17) holds but the exponential one
(4.5) is not satisfied; see sections 3 and 4), we will prove that even the polynomial stability (6.6) does
not hold in general.

Theorem 8.1. For any 6 > 0, the polynomial decay (6.6) does not hold in the following two cases:

kok
(8.1) (r1,72,73,72) = (1,0,0,0), (k1. ks) € {(ks, k3), (ko ka)} and ks = ——
ko + k4
and
koko
(8.2) (T17T2,7'377'4) = (0,0, 1,0), (k37k4) S {(k’l,k‘l), (k‘o,kg)} and 1{31 = .
ko + ko

Proof. We need to treat only the case (8.1), since, by symmetry, the other case (8.2) can be treated in a
similar way.

As in section 7, to prove Theorem 8.1, it is sufficient to show that, for any m € N*|

(8.3) limsup A~ ||(iA] — A >0,
A—00

) e

since (8.3) implies that (6.6) does not hold, for any ¢ > % (see ]9, 10]).

To get (8.3), it is sufficient to find sequences (A,)n, C R, (F,), C H and (®,), C D(A)
satisfying (7.3)1, (7.3)2, (7.3)3 and (8.3). Let ®,,, Fy,, N and J; (ISR in scction 7. Then (7.3);
is equivalent to (7.5). By considering (4.11) and (4.12), it is clear that (F,), C H and (®,), C D(A).
Let m € N* and take

(84) 62,n = 64,11 = ﬂG,n =0, ﬂ&n =1 and A, = \/k2N2 + ki + Nﬁmila

for n € N. Tt appears that (7.3)2 and (7.3)3 are satisfied (thanks to (7.17)) and the solution of (7.5) is
given by (7.18). Moreover, we have Jo = N~™~! and, according to the connections between k; assumed
in (8.1),

J3Jy — k3N? = N7V [(2ky — ks — ka) N> 4+ 2k — ko — ks + N7 71]
therefore (noticing that 2k — k3 — k4 # 0 because of (8.1))
(8.5) (J3Jy — k3N?) (J1Jo — kiN?) — kg JoJs ~ —k3 (2ky — k3 — ka) N>,
then (7.18) and (8.5) imply that

koks m—1
k1 |2k — k3 — ky| ’

(8.6) lovg | ~

hence, by using (7.29) and (8.6),

laa p | koks

(8.7) Tim AL @y, > lim

T Vo (V)T N /By 2k — s — kal (VE2)T
which leads to (8.3). This ends the proof of Theorem 8.1. O

>0,
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9. COMMENTS AND ISSUES

1. Our results hold true for one of the following Dirichlet-Neumann boundary conditions:
0 (0,t) = ¥, (0,t) = w(0,t) = 2, (0,¢£) =0 in (0,00),
vz (L) = ¥ (1,t) =w, (1,t) = 2(1,t) =0 in (0,00),

0.1) ¢z (0,t) = ¥ (0,t) = wy (0,¢) = 2(0,t) =0 in (0,00),
' 0o (1) = ¥ (Lt) = wy (1,) = 2 (1,¢) =0

—~

and

(9.2)
0 (1,t) = ¥y (L,t) =w(1,t) = 2, (1,£) =0 in (0,00).

In cases (9.1) and (9.2), and without loss of generality (thanks to some change of variables as in Remark
2.1 of [17] for Bresse-type systems), one can, respectively, assume that

/01 p(z,t)der = /01 w(z,t)de =0

{ @0 (0,t) = 1, (0,t) = w(0,t) = 2, (0,¢) =0 in (0,00),

and

1 1
/ Y(x,t)de = / z(x,t)dx = 0,
0 0

which allows to apply Poincaré’s inequality to ¢, 1, w and z. The situation is more delicate when [p and
Y] or [p and z] or [ and w] or [w and z] have the same boundary condition at 0 or at 1, and also when
[¢ and w] or [ and z] have different boundary conditions at 0 or at 1.

2. Similar stability results to the ones proved in this paper can be obtained by replacing the coupling
terms —ko (w — ) and kg (w — ¢) by —ko (z — 1) and ko (z — ¥), respectively, and adding them to (1.1)9
and (1.1)4, respectively. Similarly, —ko (w —¢) and ko (w — ¢) can be replaced by —ko(z —¢) and
ko (z — ), respectively, and added to (1.1); and (1.1)4, respectively, or they are replaced by —kg (w — 1)
and ko (w — 1), respectively, and added to (1.1)2 and (1.1)s, respectively.

3. The frictional dampings a1¢;, agt);, asw; and asz¢ (or some of them) can be replaced by other
kinds of dissipation like, for example, memory, heat conduction and Kelvin-Voigt effects. Similar stability
results to ours can be proved in these situations (see, for example, [1, 15, 16, 21] for other Timoshenko-type
systems).

4. In section 7, we proved the optimality of the polynomial decay rate obtained in cases (6.3)-(6.5).
However, in cases (6.1) and (6.2), we do not know if the polynomial deacy rates are optimal or not;
perhaps, they can be improved.

|
A
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