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1 Introduction

In 2013, Ahmad et al. proposed the concept of a complex-valued metric space, and obtained

common fixed-point results for multivalued mappings with the greatest lower bound property [1].

As a generalization of the b-metric spaces [2], the notion of a complex-valued double-controlled

metric space was presented in [3]; After that, Amiri et al. have established common fixed-point

theorems for multivalued mappings with the greatest lower bound property in this space [4].

Recently, with the establishment of the concept of a F-metric space [5], there are also many

interesting results appeared. For instance, by using orbital α-admissibility, Aydi et al. have

improved the fixed-point theorem for α-ψ-contractive mappings [6], or several generalizations of

the fixed-point results of Reich and Jungck were given in [7]. Furthermore, numerous authors

aim to extend and innovate many known results in the corresponding papers, such as Zhu et

al. introduced the concept of a generalized F-metric space [8], and proved some fixed-point

theorems satisfying Geraghty contraction or JS-contraction, etc, which generalized many fixed-

point results in F-metric spaces. For more details, see [9-20]. Inspired by the above results,

we have some new opinions with generalized F-metric space, some examples and corollaries are

used to enrich our results, and we apply one of the results to solve a class of linear algebraic

equation problems, which satisfies all the conditions of Corollary 3.5.

†∗Corresponding author: Email address: chuanxizhu@126.com(C. Zhu).
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2 Preliminaries

Firstly, let z be the family of all functions f : (0,+∞)→ R, satisfying

(F1): f is nondecreasing;

(F2): lim
n→∞

Sn = 0 if and only if lim
n→∞

f(Sn) = −∞, where {Sn} ⊆ (0,+∞).

Definition 2.1([8]). Let X be a non-empty set, consider the mapping D : X × X → [0,+∞).

For all ξ1, ξ2, ξ3 in X, suppose that there exist (δ, f) ∈ [0,+∞)×z, such that

(D1) D(ξ1, ξ2) = 0 if and only if ξ1 = ξ2;

(D2) D(ξ1, ξ2) = D(ξ2, ξ1);

(D3) f(D(ξ1, ξ2)) ≤ f(D(ξ1, ξ3) +D(ξ3, ξ2)) + δ, if D(ξ1, ξ2) > 0,

then the function D is called a generalized F-metric on X, and (X,D) is called a generalized

F-metric space.

Example 2.1. Let X = R, f(ξ) = − 1
2ξ , δ = 1

2 , and

D(ξ1, ξ2) =


1

2
e|ξ1−ξ2|, ξ1 6= ξ2;

0, ξ1 = ξ2.

For all ξ1, ξ2, ξ3 in X, we have

− 1

e|ξ1−ξ2|
≤ − 1

e|ξ1−ξ3| + e|ξ3−ξ2|
+

1

2
,

thus (X,D) is a generalized F-metric space.

Definition 2.2([8]). Let (X,D) be a generalized F-metric space and {ξn} be a sequence in X.

(1) For any ε > 0, if there exists a positive integer N such that D(ζ, ξn) < ε for all n ≥ N , then

{ξn} is called F-convergent to ζ ∈ X;

(2) For any ε > 0, if there exists a positive integer N such that D(ξn, ξm) < ε for all n,m ≥ N ,

then {ξn} is called a F-Cauchy sequence;

(3) A generalized F-metric space (X,D) is called F-complete if any F-Cauchy sequence in

(X,D) is F-convergent.

From[1], we investigate the multivalued mappings with the greatest lower bound property in

generalized F-metric spaces, some similar definitions are given as follows:

Definition 2.3. Let (X,D) be a generalized F-metric space and NCB(X) be the set of non-

empty, bounded and closed subsets of X. For each ξ1 in R, we denote ∆(ξ1) = {ξ2 ∈ R : ξ1 ≤ ξ2}.

In addition, for each x ∈ X and A,B ∈ NCB(X),

(i) ∆(x,B) =
⋃
b∈B ∆(D(x, b)) =

⋃
b∈B{u ∈ R : D(x, b) ≤ u};
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(ii) ∆(A,B) = (
⋂
a∈A ∆(a,B))

⋂
(
⋂
b∈B ∆(b, A)).

Definition 2.4. Let (X,D) be a generalized F-metric space and R : X → NCB(X) be a

multi-valued mapping. For all x, y ∈ X, define Ax(Ry) = {u ∈ R|u = D(x, z) : z ∈ Ry}.

(i) The multi-valued mapping R has the lower bound on (X,D) if for all x, y ∈ X there exists

u0 ∈ R such that u0 ≤ u for all u ∈ Ax(Ry);

(ii) The multi-valued mapping R has the greatest lower bound on (X,D) if there exists a great-

est lower bound of Ax(Ry) in R, and we write D(x,Ry) = inf{D(x, z) : z ∈ Ry}.

3 Main results

In this section, we introduce a new common fixed-point theorem for the multivalued map-

pings. In addition, we obtain other fixed-point results in this space, which satisfy more general

contractive conditions.

In [8], let Φ be the set of all functions φ : [0,∞)→ [0,∞), where φ satisfies:

(1) continuous and nondecreasing;

(2) for any t > 0, lim
n→∞

φn(t) = 0.

Obviously, φ(0) = 0, and φ(t) < t for any t > 0.

Theorem 3.1. Let (X,D) be a F-complete generalized F-metric space and R,S : X →
NCB(X) be multi-valued mappings. Suppose that there exists φ ∈ Φ, R and S have the

greatest lower bound on (X,D) such that

φ(θ(x, y)) ∈ ∆(Rx, Sy) (3.1)

for all x, y in X, where θ(x, y) = λ
ab
D(x, y) + µ

ab
D(x,Rx)D(y,Sy)

1+D(x,Rx) , a, b > 1 and λ, µ > 0 with

λ+ µ < 1. Then R and S have a common fixed-point.

Proof. By selecting any x0 ∈ X, from (3.1), there exists x1 ∈ Rx0 such that

φ(θ(x0, x1)) ∈ ∆(Rx0, Sx1).

Thus for all a ∈ Rx0, b ∈ Sx1, we have

φ(θ(x0, x1)) ∈ ∆(a, Sx1) =
⋃

b∈Sx1

{u ∈ R : D(a, b) ≤ u},

and

φ(θ(x0, x1)) ∈ ∆(Rx0, b) =
⋃

a∈Rx0

{u ∈ R : D(a, b) ≤ u}.

Since x1 ∈ Rx0, then there exists x2 ∈ Sx1 such that D(x1, x2) ≤ φ(θ(x0, x1)). In addition,

by using (3.1), we obtain

φ(θ(x2, x1)) ∈ ∆(Rx2, Sx1).
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Similarly, owing to x2 ∈ Sx1, thus there exists x3 ∈ Rx2 such that D(x2, x3) ≤ φ(θ(x2, x1)).

By repeating the above process, we can construct a sequence {xn}, where x2n+1 ∈ Rx2n,

x2n+2 ∈ Sx2n+1 for all n ∈ N, thus we have

D(x2n+1, x2n+2) ≤ φ(θ(x2n, x2n+1)), (3.2)

and

D(x2n+2, x2n+3) ≤ φ(θ(x2n+2, x2n+1)), (3.3)

where

θ(x2n, x2n+1) =
λ

ab
D(x2n, x2n+1) +

µ

ab
D(x2n, Rx2n)D(x2n+1, Sx2n+1)

1 +D(x2n, Rx2n)
, (3.4)

and

θ(x2n+2, x2n+1) =
λ

ab
D(x2n+2, x2n+1) +

µ

ab
D(x2n+2, Rx2n+2)D(x2n+1, Sx2n+1)

1 +D(x2n+2, Rx2n+2)
. (3.5)

Suppose that there exists n ∈ N such that x2n = x2n+1, it can be proved that x2n+1 = x2n+2.

If not, consider Definition 2.2, we have

0 < D(x2n+1, x2n+2) ≤ φ(θ(x2n, x2n+1)) ≤ φ(
µ

ab
D(x2n+1, Sx2n+1)) <

µ

ab
D(x2n+1, x2n+2),

contradiction. As a result, x2n+1 is a common fixed-point of R and S.

On the other hand, if x2n+1 = x2n+2 for some n ∈ N, then x2n+2 = x2n+3 and x2n+2 is a

common fixed-point of R and S. If not, it can be deduced that

0 < D(x2n+2, x2n+3) ≤ φ(θ(x2n+2, x2n+1)) ≤ φ(
µ

ab
D(x2n+1, Sx2n+1)) <

µ

ab
D(x2n+1, x2n+2) = 0.

Therefore, we assume that xn 6= xn+1 for all n ∈ N. By using (3.2) and (3.4), we have

D(x2n+1, x2n+2) ≤ φ(θ(x2n, x2n+1))

≤ φ(
λ

ab
D(x2n, x2n+1) +

µ

ab
D(x2n+1, Sx2n+1))

<
λ

ab
D(x2n, x2n+1) +

µ

ab
D(x2n+1, x2n+2),

and so D(x2n+1, x2n+2) <
λ

ab−µD(x2n, x2n+1), where 0 < λ
ab−µ < 1.

Similarly, using (3.3) and (3.5), we obtain

D(x2n+2, x2n+3) ≤ φ(θ(x2n+2, x2n+1))

≤ φ(
λ

ab
D(x2n+2, x2n+1) +

µ

ab
D(x2n+1, Sx2n+1))

<
λ

ab
D(x2n+2, x2n+1) +

µ

ab
D(x2n+1, x2n+2),

thus D(x2n+2, x2n+3) <
λ+µ
ab
D(x2n+1, x2n+2), where 0 < λ+µ

ab
< 1.

As a consequence, D(xn, xn+1) <
λ+µ
ab
D(xn−1, xn). Then,

D(xn, xn+1) <
λ+ µ

ab
D(xn−1, xn) < ... < {λ+ µ

ab
}nD(x0, x1),

it follows that

lim
n→∞

D(xn, xn+1) = 0. (3.6)
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Now, it will be shown that {xn} is a F-Cauchy sequence. According to mathematical induc-

tion, suppose that lim
n→∞

D(xn, xn+k) = 0 for some k ∈ N, consider (D3), we have

f(D(xn, xn+k+1)) ≤ f(D(xn, xn+k) +D(xn+k, xn+k+1)) + δ.

From (3.6), we can get lim
n→∞

D(xn, xn+k) +D(xn+k, xn+k+1) = 0. Moreover, according to (F2),

we obtain

lim
n→∞

f(D(xn, xn+k+1)) ≤ lim
n→∞

f(D(xn, xn+k) +D(xn+k, xn+k+1)) + δ ≤ −∞,

hence,

lim
n→∞

D(xn, xn+k+1) = 0.

As a result, lim
n→∞

D(xn, xn+k) = 0 for all k ∈ N, thus {xn} is a F-Cauchy sequence and there

exists an element β in X such that xn → β.

Finally, we will prove β is a common fixed-point of R and S. From (3.1), we obtain

φ(θ(x2n, β)) ∈ ∆(Rx2n, Sβ) ⊆ ∆(x2n+1, Sβ),

and

φ(θ(β, x2n+1)) ∈ ∆(Rβ, Sx2n+1) ⊆ ∆(Rβ, x2n+2),

where

θ(x2n, β) =
λ

ab
D(x2n, β) +

µ

ab
D(x2n, Rx2n)D(β, Sβ)

1 +D(x2n, Rx2n)
,

and

θ(β, x2n+1) =
λ

ab
D(β, x2n+1) +

µ

ab
D(β,Rβ)D(x2n+1, Sx2n+1)

1 +D(β,Rβ)
.

Therefore, there exist two sequences {un} ⊆ Rβ and {vn} ⊆ Sβ, such that

D(x2n+1, vn) ≤ φ(
λ

ab
D(x2n, β) +

µ

ab
D(x2n, Rx2n)D(β, Sβ)

1 +D(x2n, Rx2n)
),

and

D(un, x2n+2) ≤ φ(
λ

ab
D(β, x2n+1) +

µ

ab
D(x2n+1, Sx2n+1)D(β,Rβ)

1 +D(β,Rβ)
).

It follows that

lim
n→∞

D(x2n+1, vn) ≤ lim
n→∞

φ(
λ

ab
D(x2n, β) +

µ

ab
D(x2n, x2n+1)D(β, Sβ)

1 +D(x2n, x2n+1)
) = φ(0) = 0,

and

lim
n→∞

D(un, x2n+2) ≤ lim
n→∞

φ(
λ

ab
D(β, x2n+1) +

µ

ab
D(x2n+1, x2n+2)D(β,Rβ)

1 +D(β,Rβ)
) = φ(0) = 0,

i.e.

lim
n→∞

D(x2n+1, vn) = 0, (3.7)

and

lim
n→∞

D(un, x2n+2) = 0. (3.8)

According to (D3), we have

f(D(β, vn)) ≤ f(D(β, x2n+1) +D(x2n+1, vn)) + δ,
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from (3.7), we get lim
n→∞

f(D(β, vn)) ≤ lim
n→∞

f(D(β, x2n+1) +D(x2n+1, vn)) + δ ≤ −∞, then

lim
n→∞

D(β, vn) = 0,

i.e. vn → β.

Similarly,

f(D(un, β)) ≤ f(D(un, x2n+2) +D(x2n+2, β)) + δ,

from (3.8), we get

lim
n→∞

D(un, β) = 0,

i.e. un → β.

Owing to Rβ and Sβ are closed subsets, it follows that β ∈ (Rβ
⋂
Sβ), thus the proof is

completed.

Example 3.1. Let X = [0, 1], D(ξ1, ξ2) = (ξ1−ξ2)2 for all ξ1, ξ2 in X, f(x) = ln x and δ = ln 2.

In addition, let Rξ1 = [0, ξ110 ], Sξ2 = [0, ξ220 ], φ(ξ) = ξ
2 , a =

√
2, b = 2 and λ = µ = 1

100 . Anyone

can easily check that D(ξ1, Rξ1) = 81
100ξ

2
1 , D(ξ2, Sξ2) = 361

400ξ
2
2 and ∆(Rξ1, Sξ2) = ∆(( ξ110 −

ξ2
20)2).

Suppose that 2ξ1 < ξ2, we have

(
ξ1
10
− ξ2

20
)2 ≤ 1

400
(ξ1 − ξ2)2

≤ 1

400
(ξ1 − ξ2)2 +

1

400

81
100ξ

2
1

1 + 81
100ξ

2
1

361

400
ξ22

=
1

2
(

1
100

(
√

2)2
D(ξ1, ξ2) +

1
100

(
√

2)2
D(ξ1, Rξ1)

1 +D(ξ1, Rξ1)
D(ξ2, Sξ2))

= φ(θ(ξ1, ξ2)),

then φ(θ(ξ1, ξ2)) ∈ ∆(Rξ1, Sξ2).

Therefore, the conditions of Theorem 3.1 are satisfied, R and S have a common fixed-point

ξ = 0.

If two multi-valued mappings R and S are supposed to be equal, then Theorem 3.1 reduces

to below corollary.

Corollary 3.1. Let (X,D) be a F-complete generalized F-metric space and R : X → NCB(X)

be a multi-valued mapping. Suppose that there exists φ ∈ Φ, and R has the greatest lower bound

on (X,D), such that

φ(θ(x, y)) ∈ ∆(Rx,Ry)

for all x, y in X, where θ(x, y) = λ
ab
D(x, y) + µ

ab
D(x,Rx)D(y,Ry)

1+D(x,Rx) , a, b > 1 and λ, µ > 0 with

λ+ µ < 1. Then R has a fixed-point.

Obviously, if two multi-valued mappings R and S are supposed to be self-mappings, then the

following corollary holds.

Corollary 3.2. Let (X,D) be a F-complete generalized F-metric space and R,S : X → X be

self-mappings. Suppose that there exists φ ∈ Φ such that

D(Rx, Sy) ≤ φ(θ(x, y))
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for all x, y in X, where θ(x, y) = λ
ab
D(x, y) + µ

ab
D(x,Rx)D(y,Sy)

1+D(x,Rx) , a, b > 1 and λ, µ > 0 with

λ+ µ < 1. Then R and S have a common fixed-point.

In [9], let L be the family of all continuous and nondecreasing functions ω : [0,+∞) →
[0,+∞), where ω satisfies:

(1) ω(0) = 0, and ω(x) > 0 for each x > 0;

(2) lim
n→∞

xn = 0 if and only if lim
n→∞

ω(xn) = 0, where {xn} ⊆ (0,+∞).

Theorem 3.2. Let (X,D) be a F-complete generalized F-metric space and R,S : X → X be

self-mappings. Suppose that there exists ω ∈ L such that

D(Rx, Sy) ≤ M(x, y)− ω(M(x, y)) (3.9)

for all x, y in X, where

M(x, y) = max{D(x,Rx), D(y, Sy), D(x, y)}.

Then R and S have a unique common fixed-point.

Proof. By selecting any x0 ∈ X, we can construct a sequence {xn} such that x2n+1 = Rx2n
and x2n+2 = Sx2n+1. If x2n = x2n+1 for some n ∈ N, then x2n+1 = x2n+2, and so x2n+1 is a

common fixed-point of R and S.

In fact, if x2n+1 6= x2n+2, from (3.9), we have

D(x2n+1, x2n+2) = D(Rx2n, Sx2n+1) ≤ M(x2n, x2n+1)− ω(M(x2n, x2n+1)),

where

M(x2n, x2n+1) = max{D(x2n, x2n+1), D(x2n+1, x2n+2), D(x2n, x2n+1)} = D(x2n+1, x2n+2).

It follows that

0 < D(x2n+1, x2n+2) ≤ D(x2n+1, x2n+2)− ω(D(x2n+1, x2n+2)) < D(x2n+1, x2n+2),

contradiction. Similarly, if x2n+1 = x2n+2 for some n ∈ N and x2n+2 6= x2n+3, then

D(x2n+2, x2n+3) = D(x2n+3, x2n+2) = D(Rx2n+2, Sx2n+1) ≤ M(x2n+2, x2n+1)−ω(M(x2n+2, x2n+1)),

where

M(x2n+2, x2n+1) = max{D(x2n+2, x2n+3), D(x2n+1, x2n+2), D(x2n+2, x2n+1)} = D(x2n+2, x2n+3).

So we have

0 < D(x2n+2, x2n+3) ≤ D(x2n+2, x2n+3)− ω(D(x2n+2, x2n+3)) < D(x2n+2, x2n+3),

contradiction, thus we get x2n+2 = x2n+3, and x2n+2 is a common fixed-point of R and S.

As a consequence, we suppose that xn 6= xn+1 for all n ∈ N, and it can be easily deduced

that

D(x2n+1, x2n+2) ≤ D(x2n, x2n+1), (3.10)

and

D(x2n+2, x2n+3) ≤ D(x2n+1, x2n+2). (3.11)
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Owing to (3.10) and (3.11), we obtain D(xn, xn+1) ≤ D(xn−1, xn) for all n ∈ N. Moreover,

{D(xn, xn+1)} is a monotonous nonincreasing sequence and we assume that lim
n→∞

D(xn, xn+1) =

e ≥ 0.

If e > 0, so by letting n→∞ at both sides of (3.10) and (3.11), we get

e < e− ω(e) < e,

contradiction. It can be easily shown that lim
n→∞

D(xn, xn+1) = 0, following the proof process of

Theorem 3.1, we get {xn} is a F-Cauchy sequence and there exists an element β in X such that

xn → β.

Now, we will prove β is a unique common fixed-point of R and S. If β 6= Rβ, then

0 < inf{D(x, β) +D(x,Rx) : x ∈ X}
≤ inf{D(x2n, β) +D(x2n, Rx2n) : n ∈ N}
≤ 0 as n→∞,

contradiction, thus β = Rβ.

Uniqueness: Suppose that β and η are two common fixed-points of R and S, β 6= η, so that

0 < D(β, η) = D(Rβ, Sη) ≤ M(β, η)− ω(M(β, η)),

where

M(β, η) = max{D(β,Rβ), D(η, Sη), D(β, η)} = D(β, η).

Hence,

0 < D(β, η) ≤ D(β, η)− ω(D(β, η)) < D(β, η),

contradiction.

It follows that D(β, η) = 0, i.e. β = η, the proof is completed.

Example 3.2. Let X = R, for all x, y in R, Rx = (x−1)
4 + x, Sy = (y−1)

4 + 1, and ω(t) = 1− 1
et

for all t ≥ 0.

Furthermore, let f(t) = −1
t , δ = 1, and

D(x, y) =

{
e|x−y|, x 6= y;

0, x = y.

It can be proved that (X,D) is a generalized F-metric space (see [5]), and

D(Rx, Sy) =

{
e|

x−y
4

+x−1|, Rx 6= Sy;

0, Rx = Sy.

Suppose that 2 ≤ 4|x− 1| ≤ |x− y|, we have

e|
x−y
4

+x−1| ≤ e
|x−y|

2 ,

and

e
|x−y|

2 + 1 ≤ e|x−y|.
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Thus,

D(Rx, Sy) ≤ D(x, y)− ω(M(x, y)) ≤ M(x, y)− ω(M(x, y)),

where M(x, y) = max{D(x,Rx), D(y, Sy), D(x, y)}.

Obviously, the conditions of Theorem 3.2 are satisfied, R and S have a unique common

fixed-point ξ = 1.

It is clear that if R and S be equal, then Theorem 3.2 reduces to the following corollary.

Corollary 3.3. Let (X,D) be a F-complete generalized F-metric space and R : X → X be a

self-mapping. Suppose that there exist φ ∈ Φ and ω ∈ L, such that

D(Rx,Ry) ≤ φ(M(x, y))− ω(M(x, y))

for all x, y in X, where

M(x, y) = max{D(x,Rx), D(y, Sy), D(x, y)}.

Then R has a unique fixed-point.

Theorem 3.3. Let (X,D) be a F-complete generalized F-metric space R,S : X → X be

nondecreasing mappings. Suppose that there exists a continuous and nonincreasing mapping

T : X → [0, 1), such that

D(Rx, Sy) ≤ (Tx− Ty)M(x, y) (3.12)

for all x, y in X, where

M(x, y) = max{D(x, y), D(x,Rx), D(y, Sy)}.

If f ∈ z is an invertible function, then R and S have a unique common fixed-point.

Proof. By selecting any x0 ∈ X, according to the property of R and S, we can construct a

nondecreasing sequence {xn}, such that x2n+1 = Rx2n ≥ x2n and x2n+2 = Sx2n+1 ≥ x2n+1 for

all n ∈ N. Inspired by the proof process of Theorem 3.1 and Theorem 3.2, we also assume that

xn 6= xn+1 for all n ∈ N. From (3.12), we get

D(x2n+1, x2n+2) = D(Rx2n, Sx2n+1) ≤ (Tx2n − Tx2n+1)M(x2n, x2n+1),

where
M(x2n, x2n+1) = max{D(x2n, x2n+1), D(x2n, x2n+1), D(x2n+1, x2n+2)}

= max{D(x2n, x2n+1), D(x2n+1, x2n+2)}.

If M(x2n, x2n+1) = D(x2n+1, x2n+2), then

D(x2n+1, x2n+2) ≤ (Tx2n − Tx2n+1)D(x2n+1, x2n+2),

contradiction. Hence,

D(x2n+1, x2n+2) ≤ (Tx2n − Tx2n+1)D(x2n, x2n+1).

Similarly, we have

D(x2n+3, x2n+2) = D(Rx2n+2, Sx2n+1) ≤ (Tx2n+2 − Tx2n+1)M(x2n+2, x2n+1),
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where

M(x2n+2, x2n+1) = max{D(x2n+2, x2n+1), D(x2n+2, x2n+3), D(x2n+1, x2n+2)}
= max{D(x2n+2, x2n+1), D(x2n+2, x2n+3)}.

Obviously, M(x2n+2, x2n+1) = D(x2n+2, x2n+1), hence,

D(x2n+3, x2n+2) ≤ (Tx2n+2 − Tx2n+1)D(x2n+2, x2n+1).

As a result, D(xn, xn+1) ≤ (Txn−1 − Txn)D(xn−1, xn) for all n ∈ N, we obtain

D(xn, xn+1)

D(xn−1, xn)
≤ Txn−1 − Txn,

and so
n∑
k=1

D(xk, xk+1)

D(xk−1, xk)
≤

n∑
k=1

(Txk−1 − Txk) = Tx0 − Txn <∞,

then

lim
k→∞

D(xk, xk+1)

D(xk−1, xk)
= 0,

which implies there exist κ ∈ (0, 1) and n0 ∈ N such that D(xn, xn+1) ≤ κD(xn−1, xn) for all

n ≥ n0, it can be easily proved that

lim
n→∞

D(xn−1, xn) = 0.

By continuing the proof process of Theorem 3.1, we get {xn} is a F-Cauchy sequence and

there exists an element β in X such that xn → β.

Now, we will prove Rβ = β, if not, owing to (D3), we have

f(D(β,Rβ)) ≤ f(D(β, x2n+2) +D(x2n+2, Rβ)) + δ

= f(D(β, x2n+2) +D(Rβ, Sx2n+1)) + δ

≤ f(D(β, x2n+2) + (Tβ − Tx2n+1)M(β, x2n+1)) + δ,

where
M(β, x2n+1) = max{D(β, x2n+1), D(β,Rβ), D(x2n+1, x2n+2)}

= D(β,Rβ) as n→∞.

It yields that

f−1[f(D(β,Rβ))− δ] ≤ D(β, x2n+1) + (Tβ − Tx2n+1)D(β,Rβ),

by using the property of T , we obtain lim
n→∞

f−1[f(D(β,Rβ))− δ] ≤ 0, then

lim
n→∞

f(D(β,Rβ)) ≤ −∞,

which is contradict with D(β,Rβ) > 0. Therefore, β = Rβ.

Similarly, owing to the continuity of T , we have

f(D(β, Sβ)) ≤ f(D(β, x2n+1) +D(x2n+1, Sβ)) + δ

= f(D(β, x2n+1) +D(Rx2n, Sβ)) + δ

≤ f(D(β, x2n+1) + (Tx2n − Tβ)M(x2n, β)) + δ

= −∞ as n→∞,
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as a result, β = Sβ.

Uniqueness: Assume that β and γ are two common fixed-points of R and S, γ 6= β, and so

0 < D(β, γ) = D(Rβ, Sγ) ≤ (Tβ − Tγ)M(β, γ),

clearly, M(β, γ) = D(β, γ), thus,

0 < D(β, γ) ≤ (Tβ − Tγ)D(β, γ), (3.13)

and

0 < D(γ, β) ≤ (Tγ − Tβ)D(γ, β). (3.14)

According to (D2), if Tβ 6= Tγ, it can be proved that (3.13) and (3.14) cannot be established

at the same time. As a consequence, D(β, γ) = 0, i.e. β = γ, the proof is completed.

Using Theorem 3.3 with R = S, we can easily obtain the following corollary.

Corollary 3.4. Let (X,D) be a F-complete generalized F-metric space and R : X → X be

a nondecreasing mapping. Suppose that there exists a continuous and nonincreasing mapping

T : X → [0, 1), such that

D(Rx,Ry) ≤ (Tx− Ty)M(x, y)

for all x, y in X, where

M(x, y) = max{D(x, y), D(x,Rx), D(y,Ry)},

then R has a unique fixed-point.

Since 0 ≤ T (x) < 1, thus Theorem 3.3 can reduce below corollary.

Corollary 3.5. Let (X,D) be a F-complete generalized F-metric space and R,S : X → X be

self-mappings. Suppose that there exists k ∈ [0, 1) such that

D(Rx, Sy) ≤ kM(x, y)

for all x, y in X, where

M(x, y) = max{D(x, y), D(x,Rx), D(y, Sy)},

then R and S have a unique common fixed-point.

Let R = S in Corollary 3.5, it follows that

Corollary 3.6([8]). Let (X,D) be a F-complete generalized F-metric space and R : X → X

be a self-mapping. Suppose that there exists k ∈ [0, 1) such that

D(Rx,Ry) ≤ kD(x, y)

for all x, y in X, then R has a unique fixed-point.

4 Application

In this section, we will apply Corollary 3.5 to solve a system of linear algebraic equations as

follows:

11



Consider the following linear algebraic equations:
a11x1 + a12x2 + ...+ a1nxn + β1 = 0,

...

an1x1 + an2x2 + ...+ annxn + βn = 0,

(4.1)

and 
c11y1 + c12y2 + ...+ c1nyn + β1 = 0,

...

cn1y1 + cn2y2 + ...+ cnnyn + βn = 0.

(4.2)

Then (4.1) can be written as Ax + β = O, where A = (aij)n×n, O = (0, 0, ..., 0)T , x =

(x1, x2, ..., xn)T and β = (β1, β2, ..., βn)T . Similarly, (4.2) can be written as Cy + β = O, where

y = (y1, y2, ..., yn)T and C = (cij)n×n.

Let X = Rn, for all x, y in X, D(x, y) = max
1≤ i≤n

|xi−yi|2, f(x) = ln x and δ = ln 2. Moreover,

we define two self-mappings R,S : Rn → Rn as

Rx = Bx+ β, (4.3)

and

Sy = Dy + β, (4.4)

where B = (bij)n×n, bii = aii + 1 and bij = aij if i 6= j, and also D = (dij)n×n, dii = cii + 1 and

dij = cij if i 6= j .

Clearly, the linear algebraic equations (4.1) and (4.2) have a common solution x∗ in X if and

only if x∗ is a common fixed-point of R and S. For all 1 ≤ i ≤ n, suppose that

n∑
j=1

(bijxj − dijyj) ≤ max
1≤ j≤n

√
k(xj − yj), (4.5)

where 0 ≤ k < 1. From (4.3)-(4.5), we get

D(Rx, Sy) = max
1≤ i≤n

[
n∑
j=1

(bijxj − dijyj)]2 ≤ max
1≤ j≤n

k(xj − yj)2 ≤ kM(x, y).

Obviously, all conditions of Corollary 3.5 are satisfied, R and S have a common fixed-point

x∗, and so x∗ is a common solution of the linear algebraic equations (4.1) and (4.2).

5 Conclusion

In short, we have obtained some interesting and latest fixed-point results in generalized F-

metric spaces, and also an application for solving the linear algebraic equations. Applying these

results to the field of integral equation or differential equation is worth spending more time to

study.
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