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MULTIQUADRIC QUASL-INTERPOLATION METHOD
FOR FRACTIONAL INTEGRAL-DIFFERENTIAL
EQUATIONS

Zigiang Wang* Qing Tan'* Zhongqing Wang® Junying Cao¥l

Abstract

In this paper, Multiquadric quasi-interpolation method is used to approximate
fractional integral equations and fractional differential equations. Firstly, we construct
two operators for approximating the Hadamard integral-differential equation based on
quasi interpolators, and verify their properties and order of convergence. Secondly, we
obtain that the approximation order of the integral scheme is 3, and the approximation
order of the numerical scheme is 3 — p for (0 < o < 1) order for fractional Hadamard
derivative. Finally, the results of numerical experiments show that the numerical

results are in agreement with the theoretical analysis.

Keywords: Multiquadric quasi-interpolation, Fractional integral-differential equations,

Error analysis

MSC(2010) 65R20, 65D30

1 Introduction

Fractional integral equations have significant applications in various fields of applied sci-
ence and engineering, such as fluid mechanics, viscoelasticity, bioengineering and etc [1].

In recent years, these equations have become increasingly attractive in applied science, and
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many numerical methods have been proposed to solve these equations. Radial basis func-
tions (RBFs) are known as a promising tool in approximation theory for reconstructing
functions from scattered values. In [3], it was entered into the field of numerical solution
of partial differential equations. In [4], they constructed a new numerical scheme for spa-
tial fractional diffusion equation by quasi-interpolation operators. Based on the method
of RBFs, they proposed a procedure for approximating fractional derivatives values from
one-dimensional scattered noisy data in [5]. In [6], the Lagrange’s form of RBFs interpo-
lation with zero-degree algebraic precision was used to construct high order order’s finite
difference for differential equations. Multiquadric quasi-interpolation has been extensively
studied in approximation to integral functionals in [7]. They applied a new non-uniform
mesh of points based on modified Legendre polynomial zeros in order to computationally
solve partial integro-differential equation in [8]. In [9], they present a new reduced or-
der model based on RBFs and proper orthogonal decomposition methods for fractional
advection diffusion equations with a Caputo fractional derivative in time. In [10] and
[11], the meshless method were constructed based on spatial trial spaces spanned by the
RBF's for the numerical solution of a class of initial-boundary value fractional diffusion
equations with variable coefficients on a finite domain. In [12], they constructed Spec-
tral approximation method for generalized fractional ordinary differential equation and
Hadamard-type integral equations by a variable transform technique and a-th(a > 0)
order fractional derivative of Jacobi polynomials. In [13], three kinds of numerical formu-
las were proposed for approximating the Caputo-Hadamard fractional derivatives, which
are called L1-2 formula, L2-1, formula, and H2N2 formula, respectively. They construct
and analyze a high-order time-stepping scheme for a(0 < a < 1) order Caputo derivative
in [14] with 3 + « order convergence based on the block-by-block method. In [15], the
finite difference/iterative method for the fractional telegraph equation with Hadamard
derivatives was constructed. For more research, readers can refer to [16]-[21] further. The
advantages of the multiquadric quasi-interpolation method lie in several aspects, such as
good shape preserving properties, very smooth, filter noise and more stable,etc. Recently,
multiquadric quasi-interpolation method becomes increasingly popular in many fields of
applied mathematics. For more details, readers can refer to [8, 22-25]. Considering the ad-
vantages of quasi interpolation algorithms, this paper constructs a log-type Multiquadric
quasi-interpolation method for solving the Hadamard fractional integral-differential equa-

tions with high convergence order based on the idea of [4, 26, 27].

The outline of this paper is as follows. In Section 2, we introduce a log-type quasi-
interpolation operator. In Section 3, we introduce two operators for approximating the
Hadamard integral-differential equation based on the operator Liog(u(z)), and verify their
properties. In Section 4, the convergence order is verified by four examples, and the

validity of the scheme is verified again. Finally, some conclusion are given in Section 5.



2 Log-type Multiquadric quasi-interpolation

In this section, we will construct a log-type quasi-interpolation operator ﬁlog(u(x)) based
on the idea of [21]. Denoted the function ®4(z) = 1[(log ﬁ)Q + (log(1 + §))?]2 as basis
functions and log A = logzg < logz < --- <logxpy =logB, T = maxo<i<ym—1(Tit1 —

w

Similar to [21], we assume that Ljog(u(z)) has the following form
Liog(u(z)) = (log xo)do( ) + u(log z1) &1 () + u(log xe)do ()
+ Z (log ) () + u(log zpr—2)ans—o(x) (2.1)

+u(log xpr—1)an—1(z) + u(log xar)énr (),

where
p(w) = e ZOkn(@)  Opa(@) —6h(@)  ealr) = 9k()
2log = x’““ log == x’““ 2log = x’““ log 2 x’““ 2log 7 Ik“ log -2k :ck -
= 2(2 O 1(), 3<k<M-3,
2log Ingk .
ao(x) = 1+(10g7) _Oue)  losg, | logs
2 2log 2 log Tt 2log 2 2log 7L’
) = @) O )7 UOgi)Lel( ) log?o log 7
! N 2log 72 log 2log 72 log QIOg% Qlog%
_(logx ) log log——&l( )
2log 22 log ’
Go(r) = Oa(x) — 03(x) ‘91( ) — 92( ) _ 61(x) — Oa(x)
2 2log 7% log 210g log 2log 2 log
(1ogx )2 log log— —01( ) (2.2)
2log 22 log ’ '
ra(@) = oBE) —logs o IOgM”M*(””)ﬁM A(2) — Ours(2)
apr—2(x = T TM—2 TM—2
210g :E]W]”Q log TM-—2 210g LM — 310g TM—4
On—s(x) — On—2(zx)  On—s(z) — On—2(x)
2log z% L log xﬁ ! 2log xﬁ Llog mJ”M[ 3
. log £M log #4) + O/ 0 Ons—
dn-1(2) = 210g o T (ZIi xL)M loMﬁf‘S )+ 21\14 s M—x;(i)
gxl\l gxM—l g'rM—Z ngf 3 Og TM—-2
log 2 (Iog )2 — log AL log 2t + yy_(2)
T - T TM—1 )
21Og I]\/;Ml 210g w]\j”? log TM—2
anlz) = 1, (og %) +0na(x)  log log £
2 2log ;- log ;M- "~ 2log -EM_  2]og LM’
TM—2 TM—1 TM—2

3



1 and O (x),1 <k < M — 2, is defined as

o -
O () = 1 k() k+1(fﬁ)‘ (2.3)
og rjy1 — log g
2 In order to obtain some properties and error estimates of (2.1), we can rewrite it as
s follows
ilog u(:c))
| M2
= 3 {ullog Tk t2,log xp11, log xx| — ullog xgy1,log xp, log xp_1] 10k ()
k=1

—i—%{u(log xo) + ullog x1,log x| (log x — log z)

tullog z2,log x1, log zo](log = — log z0)?}

—i—%{u(log zar) + ullog xar,log xpr—1](log x — log zar) (2.4)
+ullog zar,log war—1,log 2 o) (log x — log mar)*}

1
—iu[log x9,log x1,log zo](log 1 — log zp) (log x — log x¢)
1
—iu[logxM, log zpr—1,1og xpr—o|(log zar — log xpr—1)(log xpr — log x),

s where ullog ki1, logzk, log xx_1] is defined by

ullog x, log xi_1| — ullog xp1, log xk
ullog s, log . log ] = MBI BTt ZWOBTcL B m] )
-1 - +

5 Based on (2.4) and the idea of [21], it is easy to prove the following lemmas.

¢ Lemma 2.1 Quasi-interpolation ﬁlog(u(az)) satisfies the quadric polynomial reproduction
7 property, i.e.

M
Z[ao(log :L'k)Q + aylog zy + as)ax(x) = ap(log x)Q + aqlog x + ao,Vag, a1,as € R,
k=0

s where G (x) is defined by (2.2).

s Lemma 2.2 If data {u(log i)}, are from a convez function u(log ) € Clog xo,log x ),

10 then the quasi-interpolation f)log(u(a:)) is also a convex function.

u Lemma 2.3 Ifu”(logx) is Lipschitz continuous, then the approximation capacity ofﬁlog(u(a:))

12 satisfies

Hfflog(u@)) —u(log )|l
< O(7) + O(log(1 4 86)7%) + O((log(1 + 6))*7) + O((log(1 + 6))?).



1 PROOF. Denote 7 = max(logz;+1 — logx;), it is easy to prove that 7 <
1

=

2 For any z € [A, B], denote the first three terms of local Taylor polynomial expression

s of u(t) at point z, i.e.,

1
y(t) = ulz) + u'(2)(t = 2) + Gu"(@)(t = z)”. (2.6)
4 According to Lemma 2.1, we have
M
Z(log:v —logxy) ax(x) =0,r =1,2, (2.7)
k=0
M
ag(z) = 1. (2.8)
k=0

5 Therefore, according to (2.7) and (2.8), we have

M
> y(logp)in(z) = Z (log z) + v/ (log ) (log z, — log z)
=0
1 .
o (log @) (log — log )?)ég ()
M M
= wu(logz) Y ap(x)+u'(logz) Z log x, — log x)dy ()
k=0 k=0
1 M
+5u”(log x) Z(log zp — log )%y () = u(log x).
k=0
6 Because u” (log ) is Lipschitz continuous, then for any &1,& € [A, B,

[u” (log &1) — u” (log &2)] < Collog &1 — log &,

7 where Cy = esssup [u” (log x)|.
A<a<B

8 Therefore, we obtain

M
| Liog (u(z)) — u(logz)| = | Y [u(log zx) — y(log xx)]dy(z)]
k=0

M—2
1 R
= 5] Z u[log xg42,log xg11,log xg, log xk_1](log ko — log xx_1)0k(x)
k=1
" 3 u" (1
+¢ (;g&) (log zg — log )3 + (?)():g&)(logxM — log z)?|
M—2
1 u” (log & A
= 35l > (3! )(108; Tp+2 — log wg—1)0k(2)
k=1



n
1
+(;g&)(log zo — log )3 +

u"(log &)

3l (log xpr — logm)3],

1 where & € (20, 22), & € (zar—2,2r) and & € (Tg—1, Tp—2).

2 Furthermore, we have

IN

IN

IN

IN

IN

IN A

IN

]f)log(u(x)) — u(log )]

M—-2
C .
% > " (log zx 12 — log wx—1)61(x) + (log 2o — log 2)® + (log mpr — log z)?|
1

CoC A
ol X (logauys — loga1)0()

|log x—log x| <7

+H > (logzgis — logzp_1)bi(z) + (log o — log )?|
log z—log x), >7

+| Z (log T 42 — log 2,_1)0k(x) + (log z3r — log z)3|}
log x—log x>7

c C A -
0137 Z |0k (z)| + Co| Z 370 (z) + (log zg — log z)3|

|log x—log x| <7 log z—log x >7

+Cs) > 370k(x) + (logzar — logx)?[}}

log z—log x>7

{37 Z |log = — log z1|\/(log z — log )2 + (log(1 + 0))2

|log z—log x| <7

-l—C’Q\S/ (logz — t)y/(log x — t)2 4 (log(1 + 6))2dt + (log zo — log z)?|
logx—t>7

Co 01

-1-03\3/ (logz — t)\/(logx — t)2 + (log(1 + 0))2dt + (log zpr — log x)?|}
t—logx>7

{37%(7 + log(1 + 0)) 4+ Cs|[(log = — log z¢)? + (log(1 + 5))2]%

—[(logz — (logz — 7))? + (log(1 + 5))2]% + (log 2o — log x)?|

+Cs][(log z — (log z + 7))% 4 (log(1 + 6))?]2

—[(logz — logzp7)* + (log(1 + 6))? ] + (log zps — log z)?|}
O(% #2log(1 +6) + (log(1 + 6))*# + (log(l +4))%)
C(( )? (A) log(1 + 8) + (log(L + 6))2(+ ) + (log(1446))%)
o(r? ) + O(log(1 4 6)72) 4+ O((log(1 + 6))? ) + O((log(1 + 6))?),

3 where C1,Cy and C3 are positive constants independent of 7 and 4. Then complete the

4 proof of Lemma 2.3. U



1 3 Quasi-interpolation operators for Hadamard fractional deriva-

> tives and integral based on Ly, (u(z))

s In this section, we will use the quasi-interpolator L (log ) to construct two quasi-interpolation
4+ operators 2Dk fjlog(u(x)) and AHY f)log(u(:v)) to approximate Hadamard fractional deriva-

5 tives and integral, respectively.

s 3.1 The quasi-interpolation operator 4D L, (u(z))

7 Let o =w- d , the left-sided Caputo-Hadamard fractional derivatives of order p(p > 0) on
s (A, B) in [2] are defined by

1 x x dw
Df = — log =)~ ‘
aD2ula) = s [ o D) Hou@) S
9 Base on (2.1), we construct an operator 4D% f)log(u(aﬁ)) for the Hadamard fractional

10 derivatives as following

AD% Ligg(u(z)) = u(log zo)yo(z) + u(log z1)v1(x) + u(log 22)7a(x)
M-3
+ > ullog zp)yk(w) + u(log @rr—2)ya—2 (@) (3.9)
k=3
+u(logzar—1)ym—1(z) + u(log zar)yam (@),

1 where

(z) = Op(@) = Opir(z)  Opa(x) — Or(2)
k 2log L;ZQ logx;—:l 2log =% ’““ log ZktL

Tp—1
o Ol +92"“l s ) 19’“ W s<k<m-s,
210g o og - log = :rk .
(log %)' log 2 (log SR b1 ()
’YO(:E) = - 1 +
2I(2 — p)log T+ I'(2 ,u) log Tt log 22 2log Llog 2
L (ogH)*r (log § ) o
I'(3 — ) log £t log 22 S r(2 - f1) log 32
() = (log %)1_“ B log %(log Z) s (log %)1_“
n 202 — p) log T F( ) log £ log 2I'(2 — p) log
(log % ) él( ) él( )—éz( )

T(3—p) log Ttlog 22 2log Tllog 22 2log 12 log 22
log 2 (log A)1 g log%;(logz)l O ( ) (2—u)
- +
INOES )log log 2I'(2 — p) log T2 log T2
(log §)*~
T(3—p)log 2 log 22




log %(log 2yl (log %)+ fa(x) — B3(x)

n() = ['(2 — p)log 22 log ['(3 — p)log 22 log 2log 72 log
_log%(logz)l “+91( (2 — p) 91( ) — 92( ) 91( )—92( )
20'(2 — p) log 32 log 32 2log 72 log 72 210g S log 72
A 1—p
m-2() = (2 log)mlkojg(lg?fi ?)1 0g ;- +F(3u)(i§ ) lulog”/f
Ta—2 T2 OO Tz
N log 70 (log %)™ fyy_s(2) — fr—s() (3.10)
I'(2— ) log 24 e log ;1M 2log xﬁ 21o gifl ;
_éM—?,( )—9M 2(56) 9M 4( )_9M 3( ) éM 2( )
2log ig’l log ij\t/[T:; 2log % log zﬁ i 2log xj‘é Llog ;V;WQ ’
_ (log Z)t—+ 210%“@(10%2)1 Mt O o (2)T(2 — )
W@ = oRe ) log x”LMl N 20(2 — p1) log 2L Jog A
log 57 g 25 08 )1
'3 —p)log i%:; log ;2 212 — p) log 2= IM_L =, log 2
QIOgW(IOg%)I*“+éM—2($)F(2—M) (10g )
21(2 — )log%log% 2I°(2 — p) log ;72— TV
(log %)>* éM?)() Orr—o(2)
T3 —p)log 2 log 2 2log =) log 1=t
() = (log &)1—n +2logf(log v “+9M 2(#)T(2 — )
M 2T(2 — 1) log 22 20(2 — ) log ;22 log 22
N (log %)*~ (log % ) o
'3 — p)log % log wi{% 2I'(2 — p) log xﬁg ’

1 and ék(m), 1<k <M-—2,is defined as

. _ ADE®(z) — ADY Py (2)

0 3.11
() log z41 — log zg (3.11)
2 In order to avoid the singularity of the integrand function, we calculate 4Dy ®(z),2 <
3 k<M — 2, as follows
ADPo(2) = —— [T1og 2 Jlog )2 4 (log(1 + 8))2(log %)+
v D(1—p) Ja Tg Tp w w
1 A A x
= —————1log—1/(log—)2 + (log(1 + 6))2(log =)' :
i {tog 2o 202+ log(1-+ 6)2(1og %) .12
log x 2t — 1 2 1 1 2
( ngk) +(Og( +5)) (1ng—t)17‘udt}.
ogA +/(t —logzi)? + (log(1 +6))2
4 In order to analysis some properties and error estimates of (3.9), one can rewrite it as



1

9

10

follows

AD% Ligg (u(x))

N | =

M—2
= =Y {uflogwiis,1og zhi1,log zp] — uflog i1, log wy, log —1] }0r()
k=1
1
+§{ u[log x1,log xo] AD% [log —0] + u[log x2, log x1, log o] AD%[(log ;0)2]}

—i—f{u[logmM,logmM 1]aDklog i] (3.13)
2 TM

x
+ullog zas,log xpr—1,1og xpr—2] aDE|[(log E)Q]}

1
—~ullog s, log 21, log o] log " 4D¥[log ]
2 To Zo

1
——ullog zpr,log xpr—1,log xpr—o] log LM ADElog —J:M],
2 TM-1 T

where u[log zy1,log xk, log x;_1] is defined in (2.5).

Similar to Lemma 2.1, we will study the regeneration property of quadratic polynomial
for D% Liog(u(z)) as follows.

Theorem 3.1 The quasi-interpolation operator ADﬁﬁlog(u(x)) satisfies the Hadamard
fractional derivatives regeneration property of quadratic polynomial, i.e., Yag,a1,a2 €
Ru(r) = apx? + ayx + ag such that

AD;‘[:log(aox? + a1z + az) = aD¥[ag(log x)2 + ay log z + as),
where v () is defined by (3.10).

PROOF. Denote F(x) = apx® + ai1x + as, one can have

M—2
. 1 .
D Liog(F(2)) = 5 > {Fllogapsa, 10g 2p41, Jog 2] — Flog wps, log 2, log 2g—1]}x ()
k=1
1 " T u T 9
+§{[a0(log xo + log 21) + a1] aD*[log x—o] + agaD¥[(log :C—O) ]

I x
—agp log xT)ADI; [log x—o]}

1
+2{[a0(log xp—1 +logxar) + a1]aDE[log —M] + agaD%[(log —M)Q]

“aglog M Dt {log TMy
TM—1 z

[2aglog A + a1](log §)' " 2ap(log % )**
T(2—p) r@—p) ’

and
[2a9log A + a1](log £)1#  2ag(log £)*+
T(2— p) r3—p)

AD"ag(log x)2 +ajlogz + az] =



-
o

where

Fllogxe,logx1,logxy| = F[log zas,log xpr—1,log zar—2] = ap.

Based on the above analysis, one can obtain that
AD! Ligg(a0a® + a1z + a) = aD%[ao(log z)* + a1 log x + as).

Hence, we have proved 4D L,z (u(z)) satisfies the Hadamard fractional derivatives

regeneration property of quadric polynomial and Theorem 3.1 is proved. U

Similar to Lemma 2.3, we will prove the the approximation capacity of 4D} Liog(u(z))

as following.

Theorem 3.2 Assumed that the second derivative of u(logx) is Lipschitz continuous, the

approzimation capacity of AD;’Lfleog(u(x)) satisfies

| ADY Ligg (u()) — aDku(log )||oo
< 0(7'3*“ + log(1 + 5)7’2*“ + (log(1 + 5))27'17“ + (log(1 + 5))27'*“).

PRrROOF. For any fixed = € [A, B], suppose y(t) be the first three items of local Taylor

polynomial expansion of u(t) at point z, i.e.,

y(t) = u(z) +u'(z)(t — 2) + %u"(x)(t — )2

According to Theorem 3.1, we know

M M
T\ _ i oA _ _
kzo(log ;k) ’Yk(x) - ADg[kZO(log xk) ak(.fC)] - 07 r= 17 27
M M
> () = aDE[Y (@) = aD1],
k=0 k=0
where i, (z) = aDkég(z),k =0,---, M, then,
M M zp  u’(logx) x
> ullogar)y(z) = aD[Y (ullog) +u'(log)log —* + —— == (log ~*)?)ix(x)

k=0 k=0

M M
= aD[ullogx) Y én(a)] + aD%[u (log ) Y log ()]
k=0

k=0
M
AD“ "(log x) Z log— (z)]
2|
k=0

= aDz[u(log z)].



Using the above equation, one can rewrite | 4D fjlog(u(x)) — aD%u(log )| as follows

M

[ADY Liog (u(x)) — aDu(log 2)| = | u(log ax) — yllogay) (@)l (3.14)
k=0
M

= ADg‘Z[U(IOgajk) — y(log $k)]€¥k(az)|
: 3 z,_,dw
- F(l—u)’/ kz u(log zy,) — y(log z4)) dx(w)]'w(log —) ™ —|

1 ¢ g M
— — o ~
= p(l_u)’/A (log =) d[g(wlogxk) y(log 1)) (w)]]
log x

= —— (logx —t)~
F(l - M)’ log A

1 log x
= |/ (logx —t)~
F(l _M) logxz—T1

logx—T1
+/ (logx —t)"#d]|
1

og A

(log zx) — y(log xk))ak(t)”

(log zx) — y(log z,) ) éu (t)]

oo
ot

M=

(u(log zx) — y(log zx))a(t)]]

e
I

0

IN

1 /loga:
_— logx —¢|™# (log zx) — y(log xg dt
ey L |Z NaL(0)

1 logz—T7 M
F— / logz —t|7"d[)Y (u(logzk) — y(log x))d (t
o, 3 Dan(t)l,

where t = logw.

Because u”(log ) is Lipschitz continuous, then for any x1,z9 € [A, B], there exists Lo,
such that

|u" (log z1) — u” (log x2)| < Lo|log x1 — log x3|.

M
Next let’s start with the integral of the first part in (3.14). First, for ]Z (log zy) —

k=0
y(log zr))a(t)], t € (logx — 7,log ), according to (2.4), because |u(logs) — y(log s)| <

Lo|log s — log |3, similar to the proof in [21], we know

rZ (log 2) — y(log o))} (1)]

IN

f| Z ullog xg+2,log xp41,log x| — ullog x4, log zk, log xx_1])
—( [log Tht2,10g Tt 1, log zx] — y[log T4 1, log xk, log k1)) 0} (t)]

11



+L1[|t —log $0|3]' + Lo[|log zpr — t]g]'

IN

Z [ (&) — " ()10 (8)] + La[t — log zof’] + Lallog zar — tf°)

| —~ log g o —logwy o

O ()] + L[|t —1 37 4 1.0 3y
log 11 — log 19%()] + La[lt —log zo|"] + La[log 2 — ¢

VAN
Mg
R

k=1
—2
3L x
< 2031 ag 0]+ Ll — logano) + Lalllog ans — '
k=1 -
3BLy =
< 4A0 > |t — log zp|\/(t — log zx,)% + (log(1 + 8))2 + L[|t — log o)
k=1
+Lo[[log zps — t*]
3BLO 2 2 2
< 1A Z [t —log x|/ (t — log z1)2 + (log(1 + 6))2 + Ly|t — log zo|
[t—log zx|<T
+Lollog xpr — t)?
3BLO 2
< 1A Z T[T 4+ log(1 + d)] + L1|log zpr — log x|
[t—logzy|<T
+Lo|log 23 — log g + 7
M M
< Lor[r +log(1+0)] + Ly (——)% 4 Lo(—— +7)°

A
< Lot[r +log(1+6)] + L% + Lo7?,

A

1 where ¢ € (log z, log 2112),n € (log vx—1,log Tp11)-
M
2 Bringing | (u(log z) — y(log zx)) &) (t)| for t € (logx — 7,log z) into the first part in

k=0
3 (3.14), one get

1 logx
/ llog.x — 1]~ “\Z (log k) — y(log 1) )&y ()| dt
1

F(l _:u’) ogTr—T
Lo7[r 4+ log(1 + 6)] + L1712 +L27’ log _
F(l _:u’) log:c 7'
- Lom? M1 +log(1 + 6)] + L1737 # + Lo73~
- (1 —p)

< LO(T?’*“ + r2H log(1+44)) + L3 H 4 Lor3H,

4 here Lq, Ly are two positive constants and independent of § and 7.

5 For the last part in (3.14), using direct calculation one can be obtained that
1 logxz—T7 M
=T logz —t|7#d[} _(u(logzr) — y(log xk))du(t)]
F(l - :U') /logA kZO
—u M
T A~
= Ipq =y D llos i) — y(oge))a(log x —7)
k=0

12



1 B _, M )
_m(log Z) kzo(u(log 1) — y(log Tx))é(A)
logz—7 M
_ﬁ /1 i Z log flfk IOg xk))ak( )](]ng _ t)*p«fldt’
0og ke 0

{T_“\Z (log ) — y(log zk)) by (log x — )|

M

B _ .
+(log —) “I;O(U(log zk) — y(log zp))dy(A)l
M
+ur Y (u(logzy) — y(log ax))an(1)]
k=0
Ty M
+p(log =5) | (u(log zx) — y(log x))dn ()|}
k=0
1
= P+ P+ P34+ Fy). 3.16
- )( | + Py + P34 Py) (3.16)
1 For Py, using Lemma 2.2 and Lemma 2.3 one can obtain
P =7 "]Z (log xx) — y(log ) )éx (log x — 7)| (3.17)

<7 “!Z (log i) — y(log zx)) (G (log z — 7) — éy(log )|

M

+77> u(log zy,) — y(log xx )y (log )|
k=0

IN

T “ZW (log ) — y(log zx)| |6k (log x — ) — d(log z)|

+7 “|Z (log zx) — y(log zy,)éu(log )|

IN

— Tk A
#0025 g )

k=0
+O(7 3=p log(1+ 0)7 2=p (log(1 + 5))271_“ + (log(1 + 5))27_“)
- “Z 5Tl log o)

+O(r 3 4+ log(l+d)7 2=p 4 (log(1 + 8))2riH 4 (log(1 + 5))27_“)
O3 " + log(1 + 0)7** + (log(1 + 8))>71# + (log(1 + 8))%7H).

IN

IN

13
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2

7

9

For P,, we have

B M
P, = (log Z)_“|Z(U(log$k) —y(log zx))ax(A)] (3.18)
k=0
< (BTfA)*HO(TS T log(1+ 8)r% + (log(1 + 6))27 + (log(1 + 6))2).

For P; and P4, we obtain

IN

<

Ps + P4 (3.19)

Ty ”|Z (log xx) — y(log zk))ax (t)]

u(log 2 A ”|Z (log zx) — y(log zx))éu(t)]

(1+48))*r7H)

)*#

D>cm

O(r* 1) + 0(10g(1 +0)7* ) 4+ O((log(1 + 6))*7' ) + ((
+O(T3 +log(1 + (5)7’2 + (log(1 + 5)) T+ (log(1 + 5))2)( i
O(m37") 4+ O(log(1 + 8)727*) 4+ O((log(1 4 6))*717) + O((log(1 4 8))*r7H).

Substituting (3.17), (3.18), (3.19) into (3.16), one can obtain immediately that Vz €

(4, B),

<

| ADH Log (u(z)) — aDPu(log z)|
O(T3™) + O(log(1 + 6)72") + O((log(1 + 8))?71 ") + O((log(1 + 8))27H).

Therefore, one can obtain that

14D% Liog (u(z)) — aDku(log 2) o
< O3 F 4 log(1 + 6)727H + (log(1 + )27+ + (log(1 + 8))%7#).

The proof is completed. O

Remark 3.1 When § = O(71%), we have

| AD% Loy () — aDeu(log ) oo < O(7).

3.2 The quasi-interpolation operator 4H* L, (u(z))

The left-sided Hadamard fractional integrals of order p(u > 0) are given by [2] as follows

AHfu(m):F(lu)/: (w)(log 2y 1‘3", 1€ (A, B).

14



1 Similar to (2.1), we will construct an operator 4H% Liog(u(x)) for the Hadamard frac-

> tional integral as follows

AHY Ligg(u(z)) = u(logz)Bo(x) + u(log 21)B1(z) + u(log z2)Ba(x)
M-3

+ Z u(log xx) Bk (x) + u(log zpar—2) Bar—2(x) (3.20)
k=3
+u(log xar—1)Bu—1(x) + u(log ) Bu (x),

3 where

Bulz) — Op(z) = Opra(z) — Or-1(z) — Ou(@)
k QIOg%log% 2log =% xk“ log i:*i

B Op—1(x) — Op(x) n 9k—2( ) — Op—1(z)

Th+1 Tk Tk 1 Tk
—otl —k_ 0
2log T log o T log o5

(log§)* _ loggi(log )" (log§)**!
2l(p+1)  20(p+1)log Tt 20(p+ 2)log &
(log Z)2(log %) = 61 (x)T(p+1)  log & (log et
20 (p + 1) log Tt log T2 F(u+2) log 1 log 22
(log &)++2 log 7o (log §)*  (log &)+
L'(p + 3)log £+ log 22 C o (p+ log 2> 2T(u+2)log 22’
Buz) = log (log T N (log Zyutl B [(log %)2(log o
! N 2F(u+ Dlog 3t 20'(p+2)log T 2w+ 1)
log 7 (log §)#*1  (log )42 O 1
F(u +2) I(p+3) 2
1 . {log (log 3)*  (og )", L
2F(u+ 1) 2l(p+2)
10g 4 01(x) — ba(x)
log log 2log 72 log 33
(logf) (log*) N 10g s (log )r 1 02(z) — 05(x)
20'(p + 1) log 2 log 2 F(u+2) log $2log 2 2log £ log £2

. 3<k<M-3,

log 7+ log

log 2log 22 log 32

(log & )/Hr? log 7+ log (logA)
I'(p+ 3)log 22 log T2 2F(u+1)log 2 log 32

g B (oE A AN ) i) - B)  rle) ~ Bol)
20 (p + 2) log 32 log 32 2log 72 log 72 210g Slog 73

Borale) = (log ;3-)?(log %) . logf(log )“+1
M2 o (p+1) log = log ;2 T'(pu+2)log ZM -1

(log % )“*2 log M log “L (log % )*

TM—1

T(p + 3)log 4=L Jog —ZA 2T (1 + 1) log 23 TM -1 =, log ;2

TM—2 TN —2 TM—2

log —£M_
TM—2 TM—2

15



1

3

L losgyhllee r Orr—2(z) (3.21)
TM—1 T TM—1 g °
%F(,u +2)log 7=, log ;T 2log 7= log M
9M3()9M2() ~ On—s(x) — Or—2(2)
Z‘]\[ 2 TM—1 TM— TM—
2log 2=2log 2= 2log 1= log 1=
Ori—a(a ) — Onr—3(2)
TM—2 TM—2 )
2log log IV
Byra(d) = — log I—M(log O (eg )t [éM_g(x)
MR o0+ 1) log 224 2D (1 + 2) log 22 2
(log A-)%(log £)*  log A-(log A)"“ (log % )“*2]
2+ 1) I(p+2) I(p+3)
NP S S i 5l
log xﬁ >log ;1 log JMMl log xf}g 2w+ 1)
Goggpn et 1
X
2T (pu + 2) log i% ~log ;M log xf}iz
Orn—3(z) — Onr—o(x)
Ta—1 TM—1
210g log m
(log *) log 7 (log A) (log %)+
Bu(z) =
20(p+1)  20(p+1)log ;724 2T'(p +2) log ;7
(log 72-)*(log %)* log f(log ar
x
20 (p + 1) log ;22— log 22 I'(p 4 2) log 721 log S0
(log % )“+2 O 2(56)
X X
I(n+3) log log xM 2log - ;‘/’1 log IMJ‘{Q
log “4" (log § ) (log Ol
2T (p+ 1) log M- 20(p + 2) log S
and 0y (7),1 <k < M — 2, is defined as
_ HED) (z) — JHED

log g1 — log my,

In order to avoid the singularity of the integrand function, one can calculate s4HY ®y(),2 <
k< M — 2, as follows

A (z) = 3F1( )/ [(log—k) + (log(1 + 6))%)2 (log g)u—ldﬂ

Ty Lallos )7 + (log(1 +6)]3 (log )" (3.23)

logx
+/ (t —log z1)\/(t — log )2 + (log(1 + 0))2(log z — t)dt}.
log A

In order to analysis some properties and error estimates of (3.20), one can also rewrite

16



1

it as follows

+5{ullog o) aH (1] + ullog a1, log ol aH [log ]
0
x
+ullog xo, log 1, log xo] AHY [(log ;0)2]}
1
+§{u(log zar) AHE[1] 4 ullog x s, log 2 pr—1] aHE [log i] (3.24)

Tm

z
+ullog zpr, log xpr—1,log zar—o] AHE [(log @)2]}

1
——ullog 3, log 1, log o] log — AH [log —]
2 To o

LM AH![log

M
—1,
TM—1

—§u[log:cM,logva_l,log:L‘M_g] log a:
T
where u[log zj1,log xk, log x;_1] is defined in (2.5).

Similar to Lemma 2.1, we will study the properties and approximation degree of p-

order Hadamard fractional integral of quasi-interpolator ﬁlog(u(:z:)) in the following.

Theorem 3.3 The quasi-interpolation operator AHﬁﬁlog(u(z)) satisfies the Hadamard
fractional integral regeneration property of quadratic polynomial, i.e. Yag, a1, a2 € Ru(z) =

aox® + a1x + as, such that

M

S lao(log 2)? + ax log 2y + az] () = aH¥lao(log 2)? + an logx + a,
k=0

where B (x) is defined by (3.21).

PROOF. Set G(x) = agz? + a1x + as, based on (3.24) one have

AH; Liog (u())
| M2
=3 Z {G]log x42,log T 11,log x| — Glog 11, log zk, log xx—1] }0k(x)
k=1
1
+§{[a0(log 20)? + ar log xo + az] aHY (1] + [ao(log xo + log 1) + a1] aHY [log wﬁ]
0

+agaH"[(log “—)?] — ag log ~* sH [log —]}
i) i) i)

1
+§{[ao(log:1:M)2 + a1 log zpr + ag] AHH[1] + [ap(log 2 pr—1 + log xar) + a4

T

X i i
x AH!![log @] + ao4H[[(log E)Q] — aplog M AH! [log %]}

Tp—1

17



10

11

12

[ao(log A)? + aqlog A + az](log Z)*  [2aplog A + aq](log %)# 1 2a4(log &)+ +2
F(p+1) I'(p+2) L(p+3)

because

AHPJag(log ©)* 4 a1 log = + as)
[ao(log A)? + a1 log A + az](log Z)*  [2aplog A + aq](log %)* T 2ag(log %)+ +2
L(p+1) L(p+2) I'(p+3)

Therefore, based on G[logzs,logx1,logzg] = Gllog xpr,logzpr—1,logxp—o] = ag, we

have
AHP Liog (u(x)) = aHPJag(log 2)? + a; log = + as).

Hence, we have proved 4HL fjlog(u(x)) satisfies the Hadamard fractional integral re-

generation property of quadric polynomial. So the Theorem 3.3 is proved. O

In the following, we will study the approximation order of the quasi-interpolation
operator AHA Liog(u(x)) based on the idea of Theorem 3.2.

Theorem 3.4 Assumed that the second derivative of u(logx) is Lipschitz continuous, the

approzimation capacity of AHgﬁlog(u(x)) satisfies

| AHY Liog (u(x)) — aHEu(log 7)]|o
< O(7® +log(1 + 6)72 + (log(1 + 6))?7 + (log(1 + §))?).

PrOOF. According to Theorem 3.3, one can obtain immediately that

M M .
Z(log*) Br(x) = [Z(log ;)Tdk(ﬂﬁ)] =0,r=1,2,
k=0 k=0 k

M M

Zﬁk(iﬂ) = AHﬁ[Z ay(z)] = AHE[1],

k=0 k=0

where S(x) = AHY ép(z),k =0,---, M.

After direct calculation, it can be immediately obtained that

M
> y(logzy) Bk (x)

k=0

M u” (log x) T\ o
= Z: u(log ) + v/ (log ) log =k T(log . )?)é ()]

M M
= aH[u(l HE /(1 log .4
AH ! [u(log z kz )]+ aHE[u (ng)kzo og ()]

18



M
2'AH“ u” (log ) Z log x)]
k=0
= sH![u(logx)].

Therefore, one can rewrite |AHA Liog(u(z)) — aHhu(log )| in the form

M
|aHY Liog (u(x)) — aH}u(log )| = | [u(log zx) — y(log 1)) Bu(x)]
; k=0
=YY [u(logzy) — y(log zy)]ay(w)]
k=0

p—1dw

A Z (105 25) — y(log 1)) () log 2|

p—1dw

IN

o ) |Z (1o 21) — y(log a5}y ()] o = (3.25)

Based on the Lemma 2.3, one has

Ju0g2) ~ Liog ()l -
< O(T3) + O(log(1 + 6)72) + O((log(1 + 6))27) + O((log(1 + §))?). '

Bringing (3.26) into (3.25), one can obtain that
|aH Liog (u(x)) — aHEu(log z)|

M
Y [u(log wy) — y(log zy) ]k (w))]

B = A S tog ay) — y(log )] dn(w)]
k=0
< O(®) + O0(log(1 4 6)7%) + O((log(1 + 6))*7) + O((log(1 + 6))?).

Based on the above analysis, one can get

| HE Liog (u(x)) — aHEu(log )|
< O(7 4+ log(1 + 6)72 + (log(1 + 6))?7 + (log(1 + §))?).

To sum up, the approximation order of AHY f/log(u(m)) has been proven. O
Remark 3.2 When § = O(7%), one obtain

|AHE Liog (u(x)) — aHEu(log z)||c < O(7%).
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. 4 Numerical results

> In this section, we will provide five numerical examples to demonstrate the effectiveness of
3 using log-type MQ quasi-interpolation operators for solving the Hadamard fractional in-
4 tegral equations and Hadamard fractional differential equations. For simplicity, we choose

s equidistant partial sample points {log $kz}£/[:o and take A =1,B = 2.

s Example 4.1 In order to test the approximation of the quasi interpolator AH;‘;IA/lOg(u(x))
7 to the function sHyu(logx), we choose u(logz) = (logz)3.

8 In Table 1, we set 7 = %,5 = 0.017,0.17,0.27,0.57, 7,27 to observe the accura-

9 cy of AH:QLI:IOg(u(:U)) approaching sHYu(logx). From the Table 1, one can see that the
10 Aﬂgﬁlog(u(m)) has good accuracy to approxvimate sHu(logx).

Table 1: The approximation capacity of 4HJ ﬁlog(u(m)) as T = % for Example 4.1.

5 1 1 1 1 1 1
1000 100 50 20 10 5

- 1 1 1 1 1 1
10 10 10 10 10 10

uw=03 64194E-4 6.5821E-4 7.0656E-4 1.0757E-3 2.4676E-3 6.9136E-3
uw=0.5 4.1699E-4 4.2435E-4 4.4619E-4 7.3284E-4 1.8066E-3 5.2401E-3
w=0."7 24640E-4 2.4740E-4 2.7506E-4 5.3772E-4 1.3806E-3 4.1174E-3

1—(1)0,5 = 0.017,0.17,0.27,0.57, 7,27 to observe the accura-

2 cy of AH;fﬁlOg(u(x)) approaching sHYu(logx). From the Table 2, one can see that the

1 In Table 2, we set T =

13 Aﬂﬁﬁlog(u(x)) has high accuracy to approzimate sHEu(logz) than Table 1 when T = 3.

Table 2: The approximation capacity of AHg‘jﬁlog(u(x)) as 7 = ﬁ for Example 4.1.

5 1 1 1 1 1 1
10000 1000 500 200 100 50

- 1 1 1 1 1 1
100 100 100 100 100 100

pu=03 1.1582E-5 1.1846E-5 1.2645E-5 1.8216E-5 3.7928E-5 1.1527E-4
©w=0.5 8.0998E-6 8.2503E-6 8.7056E-6 1.1879E-5 2.3117E-5 6.9919E-5
©w=0.7 52910E-6 5.3590E-6 5.5649E-6 7.0005E-6 1.5900E-5 5.3500E-5

14 It can be seen from Table 3 that when § = O(7'), the convergence order of the
15 quasi interpolator approaches 3. This numerical results are consistent with the theoretical

16 analysis results of Lemma 2.3.
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Table 3: Maximum errors and decay rate as functions of 7 and § with = 0.3,0.5,0.7 for

Example 4.1.

T ) uw=20.3 Rate w=20.5 Rate w=20.7 Rate
L 60 1 7718E-2 — 1.3137E-2 - 1.0258E-2 -
L 60 34903E-3 2.3437 2.3585E-3 24776 1.8217E-3 2.4934

%0 12%% 0.2904E-4 2.7219 3.3106E-4 2.8327 2.5452E-4 2.8394

315 sits 7-1851E-5  2.8802 4.2902E-5 2.9479 3.2903E-5 2.9515

W0 g 9ATT6E-6 2.9224 5.5694E-6 29454 4.1940E-6 2.9718

Example 4.2 We consider the Hadamard fractional integral equation as follows

AHRu(logz) = T (log z,u(logz)),1 <z < 2,0 < pu < 1,
u(l) =0,

(4.27)

with the following right hand side function

F (logz, u(logz)) = (log )" 4 (log x)® — u(log ),

L(p+4)

and the corresponding exact solution u(logx) = (log x)3.

Table 4 shows the maximum error and corresponding convergence order when p =
0.3,0.5,0.7, the step size T = ﬁ,i =1,2,---,8, the shape parameter § = 8075, It can
be seen from Table 4 that for all 0 < p < 1, the convergence rate is close to 3. This is in

a good agreement with the theoretical prediction of Theorem 3.4.

Table 4: Maximum errors and decay rate as functions of 7 and § with p = 0.3,0.5,0.7 for

Example 4.2.

T 0 uw=20.3 Rate uw=20.5 Rate uw=0.7 Rate
Lo B0 ] 69TTE-2 — 1.2653E-2 — 6.7125E-3 —

+ 80 2.3996E-3 2.8227 1.7521E-3 2.8523 1.0458E-3 2.6822
A 80 792154E-4 29636 5.2714E-4 2.9622 3.2798E-4 2.8598
4 80 30529E-4 29897 2.2370E-4 2.9795 1.4259E-4 2.8954
A B 1 5646E-4 29957 1.1497E-4 2.9827 7.4231E-5 2.9255
= 80 9.0611E-5 2.9959 6.6754E-5 2.9822 4.3402E-5 2.9435
A B 57112E-5 29942 4.2165E-5 2.9804 2.7523E-5 2.9547
- 80 38302E-5 29917 2.8330E-5 2.9780 1.8534E-5 2.9611

21



10

11

12

13

Example 4.3 We consider the fractional differential problem as follows

ADEu(logz) = F (logz,u(logz)),1 < < 2,0 < pu <1,
u(1l) =0,

(4.28)

and the right hand side function is

6(log )3+
I'(4—p)

it can be verified that the exact solution also is u(logz) = (logx)3.

I (logz,u(logz)) = + (log z)® — u(log x),

Table 5 show the mazximum errors and corresponding convergence orders as T, § and
take a series of different values. It can be seen from Table 5 that for all 0 < u < 1, when
§ = 715, the convergence rate is close to 3 — . The numerical results can well verify the
validity the theory of Theorem 3.2.

Table 5: Maximum errors and decay rate as functions of 7 and § with 4 = 0.3,0.5,0.7 for

Example 4.3.

T 0 uw=03 Rate uw=0.5 Rate w=0.7 Rate
- 2.2058E-3 — 6.5182E-3 — 2.4414E-2 —
A Lo 36978E-4 2.5765 1.2939E-3 2.3327 5.7088E-3 2.0964
A 1 192790E-4 26182 4.9228E-4 2.3833 2.3725E-3  2.1655
L Lo 59922E-5 2.6357 2.4635E-4 24063 1.2611E-3 2.1967
A L 33204E-5 2.6456 1.4356E-4 2.4200 7.6929E-4 2.2150
4 L 20474E-5 2.6520 9.2191E-5 2.4292 5.1255E-4 2.2271

Example 4.4 We consider the fractional differential problem.:

ADHu(logz) = F (log z, u(logz)),1 <z <2,0 < p < 1,

(4.29)
u(l) =0,
where
I (logz,u(logz)) = I‘(I(;(E),u)(bg z)PTH — F(I;(E)’u)(log z)tr
+1“(2éf(—4)u)(10g )37 + (logz)® — (log z)* + 2(log 2)® — u(log z),

and the ezact solution is u(logx) = (logz)®> — (logz)* + 2(log z)3.
Table 6 is similar to Table 5, it shows the maximum errors and corresponding conver-

gence orders as T,  and j take a series of different values. We also take § = 7V, from

Table 6, we find the convergence rate is close to 3 — p for 0 < p < 1.
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Table 6: Maximum errors and decay rate as functions of 7 and § with = 0.3,0.5,0.7 for

Example 4.4.

T ) uw=20.3 Rate w=20.5 Rate w=20.7 Rate
% gos 3.9250E-3  —  LISTSE-2 - 43227E2 -

i 40%,5 6.9360E-4 2.5005 2.4247E-3 2.2551 1.0681E-2 2.0167
& 6011@ 2.4480E-4 2.5684 9.4162E-4 2.3327 4.5333E-3 2.1138
% 8011-5 1.1590E-4 2.5990 4.7630E-4 2.3690 2.4362E-3 2.1586
Wlo 100115 6.4645E-5 2.6165 2.7939E-4 2.3905 1.4961E-3 2.1848
%0 120%,5 4.0036E-5 2.6279 1.8021E-4 2.4049 1.0014E-3 2.2022
%0 14011_5 2.6666E-5 2.6361 1.2419E-4 2.4153 7.1177E-4 2.2147

Example 4.5 We consider the Hadamard fractional integration problem as follows

AHEu(log x) + aDbu(logz) = F (logz,u(logz)),1 <2 < 2,0 < p < 1, (4.30)
u(l) =0,
and the right hand side function is
6(log )3+
I'(4—p)

It can be verified that the exact solution is u(logz) = (log x)3.

6(log z)*+3

I (log z, u(log z)) SR

Figure 1 shows the log-log sketches of the theoretical convergence order with p = 0.3,
11 1 1 1

and shape parameter § = O(7%5). Figure 2 shows the log-log s-

1011 1 1

ketches of the theoretical convergence order with u = 0.6,7 = and shape
parameter § = O(1'%). As estimated by theory, the error convergence order of the scheme
is close to 3 — p, that is, we can find that the red line is approximately parallel to the blue

line, so the error slope of the curve is 2.7 and 2.4, when u = 0.3,0.6 in log-log coordinates.

102 . . . . . . gy,

— —k— - Posteriori approximation order -
2.7 -
7

10

0.01 0.02 0.025 0.03 0.035 0.040.0450.05

T

0.015

Figure 1: Log-log sketches of approximation orders with p = 0.3 for Example 4.5.
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22

23

24

— —k— - Posteriori approximation order
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Figure 2: Log-log sketches of approximation orders with p = 0.6 for Example 4.5.

5 Conclusion

In this paper, the log-type MQ quasi-interpolation operators are constructed. And the
quadric polynomial reproduction and convexity-preserving properties of log-type MQ quasi-
interpolation operators are studied. Considering that the log-type M(Q quasi-interpolation
operator has the aforementioned good properties, we use it to solve the Hadamard frac-
tional integral equation and Hadamard fractional differential equation. The approximation
order of the numerical scheme based on the log-type M(Q quasi-interpolation operators is
established. Theoretical analysis indicates that the approximation order of the integral
scheme is 3, and the approximation order of the differential scheme is 3—pu. The correctness
of the theoretical prediction is verified by the linear numerical experiments of Hadamard
fractional integral equation and Hadamard fractional differential equation. The numerical
results show that it is feasible to construct the numerical scheme with MQ fitting inter-

polation algorithm.
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