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Abstract

The dressing method based on 4 × 4 matrix ∂̄-problem is extended to study the three-component coupled

nonlinear Schrödinger (3CNLS) equations. The spatial and time spectral problems related to the 3CNLS

equations are derived via two linear constraint equations. A 3CNLS hierarchy with source is proposed by

using recursive operator. The N-solitions of the 3CNLS equations are given based on the ∂̄-equation by

selecting a spectral transformation matrix.

Keywords: Three-component coupled nonlinear Schrödinger Equations, ∂̄-dressing method, Lax pair,

Soliton solution

1. Introduction

The study of multi-component nonlinear systems has attracted more and more attention, since they

can describe a variety of complex physical phenomena and have richer dynamical behaviors than low-

component systems. Among the various solutions of these models, the soliton plays a crucial role in il-

lustrating some related phenomena. In recent years, many methods for solving soliton solutions have been

proposed, including inverse scattering transformation (IST) [1], Darboux transformation (DT) [2], Hirota

bilinear method [3–6], ∂̄-dressing method, etc. The ∂̄-dressing method, as an extension of IST, is based

on the inverse scattering theory and Lax framework. It is a powerful tool for constructing and solving

integrable nonlinear equations and describing their transformations and reductions. It was first proposed

by Zakharov and Shabat [7], and further developed by Beals, Coifman, Ablowitz, ManBakov, Fokas et al.

[8–12]. So far, a large number of integrable equations have been successfully studied by the ∂̄-dressing

method [13–27].

The coupled nonlinear Schrödinger (NLS) equations have been widely used in nonlinear optics, deep

ocean, Bose-Einstein (BE) condensation and other fields[28–34]. Therefore, this paper mainly considers
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the three-component coupled nonlinear Schrödinger (3CNLS) equations[35]:

iu1t +
1
2

u1xx + σ(|u1|
2 + |u2|

2 + |u3|
2)u1 = 0,

iu2t +
1
2

u2xx + σ(|u1|
2 + |u2|

2 + |u3|
2)u2 = 0,

iu3t +
1
2

u3xx + σ(|u1|
2 + |u2|

2 + |u3|
2)u3 = 0.

(1.1)

Here, u j = u j(x, t) j = 1, 2, 3 are the complex functions with the temporal variable t and spatial variable x,

and σ > 0(< 0) stands for the attractive (repulsive) interactions. There has been increasing interest in the

study of the dynamic properties of system (1.1). For example, the vector soliton solution has been derived

through the Horita bilinear method [36, 37], the bright-bright solitons have been obtained by Darboux trans-

formation (DT) method from a trivial seed solution with u3 = 0 [38], the initial-boundary value problem

has been investigated by extending the Fokas unified approach [39]. However, to our knowledge, there is

still no research work on system (1.1) by using ∂̄-dressing method. For convenience, we take σ = 1 for the

following analysis.

The layout of this paper is organized as follows. In Section 2, starting from the ∂̄-equation, we propose

a new Lax pair with singular dispersion relation for system (1.1) using the ∂̄-dressing method. In Section

3, based on the relationship between ∂̄-dressing transformation matrix and potential matrix, we derive a

3CNLS hierarchy with source. In Section 4, the N-soliton solutions formula of system (1.1) are constructed.

Finally, the conclusions will be drawn based on the above sections.

2. Spectral problem and Lax pair

2.1. The spatial spectra problem

We consider the 4 × 4 matrix ∂̄-problem in the complex k-plane,

∂̄ψ = ψR, (2.1)

with a boundary condition ψ(x, t, k)→ I, k → ∞, then a solution of the equation (2.1) can be written as

ψ(k) = I +
1

2πi

∫ ∫
ψ(z)R(z)

z − k
dz ∧ dz̄ ≡ I + ψRCk, (2.2)

where Ck denotes the Cauchy-Green integral operator acting on the left. The formal solution of ∂̄-problem

(2.1) will be given from (2.2) as

ψ(k) = I · (I − RCk)−1. (2.3)

For convenience, we define a pairing [14]

〈 f , g〉 =
1

2πi

∫ ∫
f (k)gT (k)dk ∧ dk̄, 〈 f 〉 = 〈 f , I〉 =

1
2πi

∫ ∫
f (k)dk ∧ dk̄,
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which can be shown to possess the following properties

〈 f , g〉T = 〈g, f 〉, 〈 f R, g〉 = 〈 f , gRT 〉, 〈 fCk, g〉 = −〈 f , gCk〉. (2.4)

It is easy to prove that for some matrix functions f (k) and g(k), the operator Ck satisfies

g(k)[ f (k)Ck]Ck + [g(k)Ck] f (k)Ck = [g(k)Ck][ f (k)Ck]. (2.5)

It is well known that the Lax pairs of nonlinear equations play an important role in the study of integrable

systems. Such as Darboux transformation, inverse scattering transformation, Riemann-Hilbert method,

algebro-geometric all depend on on their Lax pairs. Here we prove that if the transform matrix R(x, t, k)

satisfies a simple linear equation, the spatial-time spectral problems of system (1.1) can be established from

(2.1).

Proposition 1: Let the transform matrix R satisfies

Rx = ik[J,R], (2.6)

where J = diag(1,−1,−1,−1), then the solution ψ of the ∂̄-equation (2.1) satisfies the following spatial

spectral problem

ψx − ik[J, ψ] = Qψ, (2.7)

where

Q =



0 −u∗1 −u∗2 −u∗3
u1 0 0 0

u2 0 0 0

u3 0 0 0


= i[J, 〈ψR〉]. (2.8)

Proof. Using (2.3) and (2.6), we get

ψx = ikψRσ3Ck(I − RCk)−1 − ikψσ3RCk(I − RCk)−1. (2.9)

According to the definition of Ck, we can obtain

ikψRCk = i〈ψR〉 + ik(ψ − I). (2.10)

Since RCk = I − I · (I − RCK) , then we have

RCk(I − RCk)−1 = (I − RCk)−1 − I. (2.11)

Substituting (2.10) and (2.11) into (2.9), we obtain

ψx = −i〈ψR〉Jψ + iJk(I − RCk)−1 − ikψJ. (2.12)
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From (2.10), we can get

k(I − RCk)−1 = 〈ψR〉ψ + kψ, (2.13)

Substituting (2.13) into (2.12), we have Eq.(2.7).

2.2. The time spectral problem

Proposition 2: Suppose that R satisfies the linear equation

Rt = [R,Ω], (2.14)

where

Ω = Ωp + Ωs = −ik2J +
1

2πi

∫ ∫
ω(ξ)J
ξ − k

dξ ∧ dξ̄, (2.15)

which comprises both a polynomial part Ωp(k) and a singular part Ωs(k) and ω(ξ) is a scalar function.

Then the solution ψ of the ∂̄-equation (2.1) leads to time spectral problem

ψt − ik2[J, ψ] =
i
2

J(Q2 − Qx)ψ + kQ. (2.16)

Proof. We first use the polynomial dispersion relation onlyΩ = Ωp = −ik2J. From equations (2.2), (2.3)

and (2.15), we find that

ψt = −i[k2ψRCk J(I − RCk)−1 − k2ψJ(I − RCk)−1] − ik2ψJ. (2.17)

Through the following direct computation,

k2ψRCk = 〈ζψR〉 + k〈ψR〉 + k2(ψ − I),

k2(I − RCk)−1 = (〈ζψR〉 + 〈ψR〉2 + k〈ψR〉 + k2)ψ,

then (2.17) is changed to

ψt = −i[〈ζψR〉, J]ψ − i[〈ψR〉, J]〈ψR〉ψ − ik[〈ψR〉, J]ψ + ik2[J, ψ]

= 2iJ〈ζψR〉o f fψ + Q〈ψR〉ψ + kQψ + ik2[J, ψ].
(2.18)

By virtue of (2.6), (2.7) and (2.8), we have

〈ψR〉x = Q〈ψR〉 + i[J, 〈kψR〉],

〈ψR〉o f f
x = Q〈ψR〉diag + 2iJ〈kψR〉o f f ,

〈kψR〉o f f =
i
2

JQ〈ψR〉diag −
1
4

Qx,

〈ψR〉 − 〈ψR〉diag = J(J〈ψR〉 − J〈ψR〉diag) =
J
2

[J, 〈ψR〉] = −
i
2

JQ.

(2.19)
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Substituting (2.19) into (2.18) leads to the time-dependent linear equation

ψt = 2iJ(
i
2

JQ〈ψR〉diag −
1
4

Qx)ψ + Q〈ψR〉ψ + kQψ + ik2[J, ψ]

= Q[〈ψR〉 − 〈ψR〉diag]ψ + (kQ −
i
2

JQx)ψ + ik2[J, ψ]

=
i
2

J(Q2 − Qx)ψ + kQ + ik2[J, ψ].

(2.20)

3. Recursive operators and equation hierarchy

In this section, we derive 3CNLS equations with a source. First, we define the 4× 4 matrix M = ψJψ−1.

By using the Eq.(2.8) and definition of M, we can prove the following proposition.

Proposition 4: Q defined by (2.8) satisfies a coupled hierarchy with a source M

Qt + 2αnJΛnQ = i[J, 〈ω(k)M(k)〉], n = 1, 2, . . .

Mx − ik[J,M] = [Q,M].
(3.1)

Proof. Differentiating Q with respect to t gives

Qt = i[J, 〈ψR〉t]. (3.2)

Because of ∂̄ f (k)Ck = f (k), then we have

(ψR)t = ∂̄ψt(k) = ∂̄[I · (I − RCk)−1
t ]

= ∂̄[ψRt(I − RCk)−1]Ck

= ψRt(I − RCk)−1.

(3.3)

By using the properties (3.3), we can obtain

Qt = i[J, 〈ψRt(I − RCk)−1, I〉] = i[J, 〈ψRt, I · (I + RT Ck)−1〉]. (3.4)

From the ∂̄-equation (2.1), we have

∂̄ψ−1 = −Rψ−1,

which leads to

(ψ−1)T = I · (I + RT Ck)−1.

Therefore, using (2.4) and (2.14), Eq. (3.4) can be simplified to

Qt = i[J, 〈(∂̄ψ)Ωψ−1 + ψΩ∂̄ψ−1〉]. (3.5)

Here we shall consider Ωp = αnknJ, αn = const and the fact that Ωs → 0 as k → ∞ , then the above equation
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can be further simplified like

Qt = i[J, 〈ψΩ∂̄ψ−1〉] + i[J, 〈(∂̄ψ)Ωψ−1〉]

= iαn[J, 〈∂̄(knM(k))〉] + i[J, 〈ω(k)M(k)〉]

= 2iαnJ〈∂̄(knM(k)o f f )〉 + i[J, 〈ω(k)M(k)〉].

(3.6)

By using (2.7), it can be checked that M(k) satisfies the equation

Mx − ik[J,M] − [Q,M] = 0. (3.7)

From Eq.(3.7), they satisfy the following equations

Mdiag
x = [Q,Mo f f ],

Mo f f
x = 2ikJMo f f + [Q,Mdiag],

(3.8)

which lead to

Mdiag = J + ∂−1
x [Q,Mo f f ],

Mo f f = i(Λ − k)−1Q,
(3.9)

where

Λ· = −
i
2

J(∂x · −[Q, ∂−1
x [Q, ·]]).

The operator Λ usually be called as recursion operator. We expand (Λ − k)−1 in the series

(Λ − k)−1 = −

∞∑
j=1

k− jΛ j−1.

By using ∂̄kn− j = πδ(k)δ j,n+1, j = 1, 2, . . ., we can derive that

∞∑
j=1

〈∂̄kn− j〉Λ j−1Q = −ΛnQ.

Substituting it into (3.6) leads to the Eq.(3.1).

4. N-Soliton solutions of cmKdV equation

In this section, we will construct the N-soliton solutions of the syetem (1.1) still based on the ∂̄-equation

(2.1),we first introduce a spectral matrix R as

R = π

N∑
j=1



0 −a je2iθ(k)δ(k − k̄ j) −b je2iθ(k)δ(k − ¯̃k j) −c je2iθ(k)δ(k − ¯̂k j)

a je2iθ(k)δ(k − k j) 0 0 0

b je2iθ(k)δ(k − k̃ j) 0 0 0

c je2iθ(k)δ(k − k̂ j) 0 0 0


(4.1)
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where k j, k̃ j, k̂ j, j = 1, 2, . . . are constants distinct from each other, θ(k) = −kx − k2t. Substituting (4.1) into

(2.8) leads to

u1 = −2i〈ψR〉21

= −
1
π

∫ ∫
(ψ22(ζ)R21(ζ) + ψ23(ζ)R31(ζ) + ψ24(ζ)R41(ζ))dζ ∧ dζ̄

= −

N∑
j=1

(a je2iθ(k j)ψ22(k j) + b je2iθ(k̃ j)ψ23(k̃ j) + c je2iθ(k̂ j)ψ24(k̂ j)).

(4.2)

Substituting (4.1) into ∂̄-equation (2.1) and resorting the properties of function, we can obtain

ψ22(k) = 1 +
1

2πi

∫ ∫
ψ21(ζ)R12(ζ)

ζ − k
dζ ∧ dζ̄ = 1 −

N∑
p=1

āpe−2iθ(k̄p)

k − k̄p
ψ21(k̄p),

ψ23(k) =
1

2πi

∫ ∫
ψ21(ζ)R13(ζ)

ζ − k
dζ ∧ dζ̄ = −

N∑
l=1

b̄ je−2iθ(¯̃kl)

k − ¯̃kl

ψ21(¯̃kl),

ψ24(k) =
1

2πi

∫ ∫
ψ21(ζ)R14(ζ)

ζ − k
dζ ∧ dζ̄ = −

N∑
m=1

c̄me−2iθ(¯̂km)

k − ¯̂km

ψ21(¯̂km).

(4.3)

then introducing notation Ap, Bl,Cm written as

Ap(k) =
ap

k − kp
e−2iθ(kp), Bl(k) =

bl

k − k̃l
e−2iθ(k̃l), Cm(k) =

cm

k − k̂m
e−2iθ(k̂m). (4.4)

From(4.3), we have

ψ22(k) = 1 −
N∑

p, j=1

Ap(k̄)[A j(k̄p)ψ22(k j) + B j(k̄p)ψ23(k̃ j) + C j(k̄p)ψ22(k̂ j)],

ψ23(k) = −

N∑
j,l=1

Bl(k̄)[A j(¯̃kl)ψ22(k j) + B j(¯̃kl)ψ23(k̃ j) + C j(¯̃kl)ψ24(k̂ j)],

ψ24(k) = −

N∑
j,m=1

Cm(k̄)[A j(¯̂km)ψ22(k j) + B j(¯̂km)ψ23(k̃ j) + C j(¯̂km)ψ24(k̂ j)],

(4.5)

taking z = z j , z = z̃ j and z = ẑ j respectively, we have

(I + M)ψ22(k) + Nψ23(k̃) + Pψ24(k̂) = E,

M̃ψ22(k) + (I + Ñ)ψ23(k̃) + P̃ψ24(k̂) = 0,

M̂ψ22(k) + N̂ψ23(k̃) + (I + P̂)ψ24(k̂) = 0,

(4.6)

where E = (1, · · · , 1)T , and M,N, P are N × N matrix

Mn,p =

N∑
j=1

A j(k̄n)Ap(k̄ j), Nn,p =

N∑
j=1

A j(k̄n)Bp(k̄ j), Pn,p =

N∑
j=1

A j(k̄n)Cp(k̄ j),
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M̃n,p =

N∑
j=1

B j(k̄n)Ap(¯̃k j), Ñn,p =

N∑
j=1

B j(k̄n)Bp(¯̃k j), P̃n,p =

N∑
j=1

B j(k̄n)Cp(¯̂k j),

M̂n,p =

N∑
j=1

C j(k̄n)Ap(¯̂k j), N̂n,p =

N∑
j=1

C j(k̄n)Bp(¯̂k j), P̂n,p =

N∑
j=1

C j(k̄n)Cp(¯̂k j),

then we can solve ψ24(k̂), ψ22(k) and ψ23(k̃)

ψ24(k̂) = (I + X1)−1Y1,

ψ22(k) = (I + X2)−1Y2,

ψ23(k̃) = (I + X3)−1Y3,

(4.7)

where

X1 = [(I + M)−1P − M̃−1P]−1[(I + M)−1N − M̃−1(I + Ñ)][M̃−1(I + Ñ) − M̂−1N̂]−1[M̃−1P̃ − M̂−1(I + P̂)],

X2 = [N−1(I + M) − (I + Ñ)−1M̃]−1[N−1P − (I + Ñ)−1P̃][(I + Ñ)−1P̃ − N̂−1(I + P̂)]−1[(I + Ñ)−1M̃ − N̂−1M̂],

X3 = [P−1N − P̃−1(I + Ñ)]−1[P−1(I + M) − P̃−1M̃][(I + P̂)−1M̂ − P̃−1M̃]−1[(I + P̂)−1N̂ − P̃−1(I + Ñ)],

Y1 = [(I + M)−1P − M̃−1P]−1(I + M−1)E,

Y2 = [N−1(I + M) − (I + Ñ)−1M̃]−1N−1E,

Y3 = [P−1N − P̃−1(I + Ñ)]P−1E.

Hence, the N-soliton solutions of the system (1.1) take the form

u1 = 2i(h1ψ22(k) + h2ψ23(k̃) + h3ψ24(k̂))

= 2i[h1(I + X1)−1Y1 + h2(I + X2)−1Y2 + h3(I + X3)−1Y3]

= 2itr[(I + X1)−1Y1h1 + (I + X2)−1Y2h2 + (I + X3)−1Y3h3]

= 2i
[
det(I + X1 + Y1h1)

det(I + X1)
+

det(I + X2 + Y2h2)
det(I + X2)

+
det(I + X3 + Y3h3)

det(I + X3)
− 3
]
,

(4.8)

u2 = 2i
[
det(I + X1 + Z1h1)

det(I + X1)
+

det(I + X2 + Z2h2)
det(I + X2)

+
det(I + X3 + Z3h3)

det(I + X3)
− 3
]
, (4.9)

u3 = 2i
[
det(I + X1 + L1h1)

det(I + X1)
+

det(I + X2 + L2h2)
det(I + X2)

+
det(I + X3 + L3h3)

det(I + X3)
− 3
]
, (4.10)

where

h1 = (h1,1, h1,2, · · · , h1,N), h1, j = a je2iθ(k j),

h2 = (h2,1, h2,2, · · · , h2,N), h2, j = b je2iθ(k̃ j),

h3 = (h3,1, h3,2, · · · , h3,N), h3, j = c je2iθ(k̂ j).
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5. Conclusion

In this paper, we have presented the dressing method based on the ∂̄-problem to study the three-

component coupled nonlinear Schrödinger (3CNLS) equations (1.1). By means of the ∂̄-dressing method,

we have obtained the spatial and time spectral problems associated with the 3CNLS equations. Then we

proposed a 3CNLS hierarchy with source by using recursive operator. Finally, the N-soliton solutions of

the 3CNLS equations have been constructed based on the ∂̄-equation by selecting a special spectral trans-

formation matrix. It is hoped that our results can help enrich the nonlinear dynamics of the NLS-type

equations.

Acknowledgment

This work is supported by National Natural Science Foundation of China under Grant Nos. 12175111

and 11975131, and K.C.Wong Magna Fund in Ningbo University.

Reference

[1] M.J. Ablowitz, P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cam-

bridge University Press, Cambridge, 1991.

[2] V.B. Matveev, M.A. Salle, Darboux Transformation and Solitons, Springer, Berlin, 1991.

[3] R. Hirota, Direct Methods in Soliton Theory, Springer, Berlin, 2004.

[4] W.X. Ma, Soliton solutions by means of Hirota bilinear forms, Partial Diff. Equ. Appl. Math., 2022,

5, 100220.

[5] D.S. Wang, X.D. Zhu, Direct and inverse scattering problems of the modified Sawada-Kotera equation:

Riemann-Hilbert approach, Proc. R. Soc. A, 2022, 478, 20220541.

[6] D.S. Wang, The “good” Boussinesq equation: long-time asymptotics, Analysis and PDE, 2023, 16

(6), 1351-1388.

[7] V.E. Zakharov, S. V. Manakov, Construction of multidimensional nonlinear integrable systems and

their solutions, Funkc. Anal. Prilozh, 1985, 19 (2), 11-25.

[8] M.J. Ablowitz, D. Bar Yaacov, A.S. Fokas, On the inverse scattering transform for the Kadomtsev-

Petviashvili equation, Stud. Appl. Math, 1983, 69, 135-142.

[9] R. Beals , R.R. Coifman, The D-bar approach to inverse scattering and nonlinear evolutions, Physica

D, 1986, 18, 242-249.

[10] R. Beals , R.R. Coifman, Scattering, spectral transformations and nonlinear evolution equations,

Goulaouic-Meyer-Schwartz, 1981, 22.

9



[11] A.S. Fokas , P.M. Santini, Dromions and a boundary value problem for the Davey-Stewartson I equa-

tion, Physica D, 1990, 44, 99-130.

[12] S.V. Manakov, The inverse scattering transform for the time-dependent Schrödinger equation and

Kadomtsev-Petviashvili equation, Physica D, 1981, 3 (1-2), 420-427.

[13] L.V. Bogdanov, S.V. Manakov, The nonlocal ∂̄-problem and (2+1)-dimensional soliton equations, J.

Phys. A, 1988, 21, 537.

[14] E.V. Doktorov, S.B. Leble, A Dressing Method in Mathematical Physics, Springer, 2007.

[15] A.S. Fokas , V.E. Zakharov, The dressing method and nonlocal Riemann-Hilbert problem, J. Nonlinear

Sci.,1992, 2, 109-134.

[16] B.G. Konopelchenko, B.T. Matkarimov, Inverse spectral transform for the nonlinear evolution equa-

tion generating the Davey-Stewartson and Ishimori equations, Stud. Appl. Math., 1990, 82, 319-359.

[17] Y.K. Kuang , J.Y.Zhu, A three-wave interaction model with self-consistent sources: the ∂̄-dressing

method and solutions, J. Math. Anal. Appl., 2015, 426, 783-793.

[18] J.Y. Zhu, X.G. Geng, The AB equations and the ∂̄-dressing method in semi-characteristic coordinates,

Math. Phys. Anal. Geom., 2014, 17, 49-65.

[19] J.H. Luo, E.G. Fan, ∂̄-dressing method for the coupled Gerdjikov-Ivanov equation, Appl. Math. Lett.,

2020, 110, 106589.

[20] J.H. Luo, E.G. Fan, Dbar-dressing method for the Gerdjikov-Ivanov equation with nonzero boundary

conditions, Appl. Math. Lett., 2021, 120, 107297.

[21] J.H. Luo, E.G. Fan, A ∂̄-dressing approach to the Kundu-Eckhaus equation, J. Geom. Phys., 2021,

167, 104291.

[22] Y.Q. Yao, Y.H. Huang, E.G. Fan, The ∂̄-dressing method and Cauchy matrix for the defocusing matrix

NLS system, Appl. Math. Lett., 2021, 117, 107143.

[23] S.X. Yang, B. Li, ∂̄-dressing method for the (2+1)-dimensional Korteweg-de Vries equation, Appl.

Math. Lett., 2023, 140, 108589.

[24] P.V. Nabelek, V.E. Zakharov, Solutions to the Kaup-Broer system and its (2+1) dimensional integrable

generalization via the dressing method, Physica D, 2020, 409, 132478.

[25] V.G. Dubrovsky, A.V. Topovsky, Multi-lump solutions of KP equation with integrable boundary via

∂̄-dressing method, Physica D, 2020, 414, 132740.

[26] V.G. Dubrovsky, A.V. Topovsky, Multi-soliton solutions of KP equation with integrable boundary via

∂̄-dressing method, Physica D, 2021, 428, 133025.

10



[27] X.D. Chai, Y.F. Zhang, The ∂̄-dressing method for the (2+1)-dimensional Konopelchenko-Dubrovsky

equation, Appl. Math. Lett., 2022, 134, 108378.

[28] B.L. Guo, L.M. Ling, Rogue wave, breathers and bright-dark-rogue solutions for the coupled

Schrödinger equations, Chin. Phys. Lett., 2011, 28 (11), 110202.

[29] F. Baronio, et al., Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic

rogue waves, Phys. Rev. Lett., 2012, 109 (4).

[30] X. Wang, B. Yang, Y. Chen, et al., Higher-order localized waves in coupled nonlinear Schrödinger

equations, Chin. Phys. Lett., 2014, 31 (09), 090201.

[31] X. Wang, Y. Chen, Rogue-wave pair and dark-bright rogue wave solutions of the coupled Hirota

equations, Chin. Phys. B., 2014, 23, 070203.

[32] X. Wang, Y. Li, Y. Chen,Generalized Darboux transformation and localized waves in coupled Hirota

equations, Wave Motion, 2014, 51, 1149-1160.

[33] S.H. Chen, L.Y. Song, Rogue waves in coupled Hirota systems, Phys. Rev. E., 2013, 87, 032910.

[34] L.C. Zhao, L. Jie, Rogue-wave solutions of a three-component coupled nonlinear Schrödinger equa-

tion, Phys. Rev. E., 2013, 87, 013201.

[35] G.Q. Zhang, Z.Y. Yan, Three-component nonlinear Schrödinger equations: modulational instabili-

ty, Nth-order vector rational and semi-rational rogue waves, and dynamics, Commun. Nonlinear S-

ci.,2018, 62, 117-133.

[36] M. Vijayajayanthi, T. Kanna, M. Lakshmanan, Bright-dark solitons and their collisions in mixed N-

coupled nonlinear Schrödinger equations, Phys. Rev. A., 2008, 77, 013820.

[37] M. Vijayajayanthi, T. Kanna, M. Lakshmanan, Multisoliton solutions and energy sharing collisions

in coupled nonlinear Schrödinger equations with focusing, defocusing and mixed type nonlinearities,

Eur. Phys. J-Spec. Top., 2009, 173, 57-80.

[38] L. Zhao, S. He, Matter wave solitons in coupled system with external potentials, Phys. Lett. A., 2011,

375, 3017-3020.

[39] Z.Y. Yan, An initial-boundary value problem of the general three-component nonlinear Schrödinger

equation with a 4 × 4 lax pair on a finite interval, Chaos, 2017, 27, 053117.

11


	Introduction
	Spectral problem and Lax pair
	The spatial spectra problem
	 The time spectral problem

	Recursive operators and equation hierarchy
	N-Soliton solutions of cmKdV equation
	Conclusion

