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Abstract

The main aim of this paper is to introduce new ideas, called large s-simulation functions and large
Zs-contractions, which are inspired by the broad utility of applications of fixed point results for
the enlarged class of nonlinear mappings. Illustrative examples supporting the new idea of large
s-simulation functions are presented. Moreover, fixed point results for large Zs-contractions are
investigated.
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1. Introduction and Preliminaries

From the past until now, one of the great power tools for solving many real-world problems and
mathematical problems is the theorem concerning fixed points, including the existence theorem for
fixed points of nonlinear mappings and the convergence theorem for fixed point algorithms. One
cornerstone in metric fixed point theory combining both mentioned parts is the Banach contraction
mapping principle in [1]. This principle originates from many more metric fixed point results in
this era. In addition to the theoretical aspects mentioned above, the Banach contraction mapping
principle has greatly benefited many other fields, such as science, engineering, economics, chaos
theory, artificial intelligence studies, big data studies, etc.

Nowadays, there are several ways to improve the Banach contraction mapping principle, such
as the investigations on spaces having more structure than metric spaces, the invention of new
nonlinear mappings, and proving fixed point results for these new mappings, etc. To lead to the
inspiration of this paper, needed details in interesting research articles concerning these mentioned
ways are given in the next paragraph.
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In 2015, Khojasteh et al. [9] introduced the concept of a simulation function significantly
impacting the fixed point theory because it can be used to invent a broad class of new nonlin-
ear mappings covering several nonlinear contraction mappings. They use simulation functions to
establish the incredible contraction mapping named Z-contraction mapping. In addition, the ex-
istence and uniqueness of fixed point for Z-contraction mappings in metric spaces are presented
in such an article. These results also show that any Z-contraction mapping is a Picard mapping.
Afterward, Roldán López de Hierro et al. [10] showed that simulation functions require symmetry
in their arguments, which is not necessary for the proofs. Then, they slightly modified the original
definition to highlight this difference and enlarged the family of all simulation functions.

Although the idea of simulation functions seems helpful, we still need to apply it in more
expansive spaces such as in b-metric spaces, formally introduced by Czerwik [6] in 1993. An
intelligent solution to the problem, as mentioned earlier, was suggested by Yamaod and Sintu-
navarat [14] in 2017. They introduced the fantastic class of s-simulation functions, where s ≥ 1.
They also showed that this class could be used to invent the new generalized contraction mappings
in b-metric spaces. This contraction is called a Zs-contraction mapping. Moreover, many results
in fixed point theory involving the ideas of s-simulation functions and Zs-contraction mappings
are proved.

On the other hand, it is well-known that many mathematical definitions and theorems origi-
nated from the goal that the users want to solve some problems, such as integral equations, differ-
ential equations, matrix equations, etc. For instance, the Banach contraction mapping and its fixed
point results are presented to solve some integral equations. In 1996, Burton [4] established the
concept of large contraction mappings, weaker than Banach contraction mappings, and applied its
fixed point results to solve the specific integral equation. Next, we give its definition, which is one
of the inspirations for inventing the main idea in this paper.

Definition 1.1 ([4]). Let (X ,d) be a metric space. A mapping T : X → X is called a large contrac-
tion mapping if the following conditions hold:

(B1) d(T x,Ty)< d(x,y) for all x,y ∈ X with x , y;
(B2) for all ε > 0, there is δ ∈ [0,1) such that

[∀x,y ∈ X with d(x,y)≥ ε]⇒ d(T x,Ty)≤ δd(x,y). (1.1)

We observe that every Banach contraction mapping is a large contraction, but the converse
does not true as in the following example:

Example 1.2. Let (X ,d) = (R, | · |) be a usual metric space and let T : X → X be defined by
T x = x−x3 for all x ∈ X . By applying the mean value theorem, we get that T is a large contraction
mapping, but is not a Banach contraction mapping (the reader can see more details in [4], and also
[8]).

Surprisingly, no researchers have combined two ideas of s-simulation functions and large con-
traction mappings. The main goal of this paper is to fill this gap in the research on this trend. First,
the new idea of a large s-simulation function with phenomenal examples is presented. Second, we
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use the concept of large s-simulation functions to construct the definition of new generalized con-
traction mappings named large Zs-contraction mappings and prove that any large Zs-contraction
mapping is a Picard mapping. The example to illustrate our main results and the numerical method
are given.

2. Preliminaries

Throughout this paper, we denote by N, R+ and R the set of positive integers, the set of non-
negative real numbers and the set of real numbers, respectively. In 1993, Czerwik [6] formally
introduced the idea of b-metric spaces, which is an extension of metric spaces, and presented
the Banach contraction mapping in the framework of b-metric spaces. After the appearance of
this research, there are a lot of mathematicians who investigated many results in b-metric spaces.
Here, we give some basic ideas related to b-metric spaces as follows:

Definition 2.1 ([6]). Let X be a nonempty set and s ≥ 1 be a fixed real number. Suppose that the
mapping d : X ×X → R+ satisfies the following conditions for all x,y,z ∈ X :

1. d(x,y) = 0 if and only if x = y;
2. d(x,y) = d(y,x);
3. d(x,y)≤ s[d(x,z)+d(z,y)].

Then d is called a b-metric, and (X ,d) is called a b-metric space with the coefficient s.

It is easy to see that each metric is a b-metric with s = 1, but the converse is not true. The
mapping R×R ∋ (x,y) 7→ |x− y|p, where p ≥ 1, is a known b-metric on R with the coefficient
s = 2p−1. The reader can see more examples of b-metrics from many research articles in fixed
point theory (see [3, 5, 7, 11, 12, 13] and references therein).

Definition 2.2 ([3]). Let (X ,d) be a b-metric space and {xn} be a sequence in X .

(i) {xn} is b-convergent if there exists x ∈ X such that lim
n→∞

d(xn,x) = 0. In this case, we write
lim
n→∞

xn = x or xn → x as n → ∞.

(ii) {xn} is called a b-Cauchy sequence if lim
n,m→∞

d(xn,xm) = 0.

(iii) (X ,d) is called b-complete if every b-Cauchy sequence in X b-converges.

From the above definition, it is well-known that for each b-metric space (X ,d), a b-convergent
sequence in X is a b-Cauchy sequence and it has a unique limit. In general, a b-metric is not
continuous (see more details in [3]). Recently, a good survey about a brief history and survey
of b-metric spaces with some important related aspects and the early developments in fixed point
theory on b-metric spaces is presented in [2].

Next, we review some basic knowledge about simulation functions and Z-contraction map-
pings which are needed for our investigation.
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Definition 2.3 ([9]). A function ζ : [0,∞)× [0,∞)→R is called a simulation function if it satisfies
the following conditions:

(S1) ζ(0,0) = 0;

(S2) ζ(t,s)< s− t for all t,s > 0;

(S3) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then

limsup
n→∞

ζ(tn,sn)< 0.

We denote by Z the class of all simulation functions.

Example 2.4 ([9]). Let ζ1,ζ2,ζ3 : [0,∞)× [0,∞)→ R be defined by

(a) ζ1(t,s) = ks− t for all t,s ∈ [0,∞), where k ∈ [0,1);

(b) ζ2(t,s) = ψ(s)− φ(t) for all t,s ∈ [0,∞), where ψ,φ : [0,∞) → [0,∞) are two continuous
functions such that ψ(t) = φ(t) = 0 if and only if t = 0 and ψ(t)< t ≤ φ(t) for all t > 0;

(c) ζ3(t,s) = s−ϕ(s)− t for all t,s ∈ [0,∞), where ϕ : [0,∞)→ [0,∞) is a continuous function
such that ϕ(t) = 0 if and only if t = 0;

(d) ζ4(t,s) = s− f (t,s)
g(t,s) t for all t,s ∈ [0,∞), where f ,g : [0,∞)→ [0,∞) are two continuous func-

tions with respect to each variable such that f (t,s)> g(t,s) for all t,s > 0.

Then ζ1,ζ2,ζ3,ζ4 ∈ Z.

Definition 2.5 ([9]). Let (X ,d) be a metric space. A mapping T : X → X is called a Z-contraction
mapping with respect to ζ ∈ Z if the following condition is satisfied:

ζ(d(T x,Ty),d(x,y))≥ 0

for all x,y ∈ X .

It is easy to see that a Banach contraction mapping is a Z-contraction mapping concerning
ζ1 ∈ Z defined in Definition 2.4. Furthermore, by utilization of simulation functions, we can show
that many contraction mappings in the past are Z-contraction mappings.

In 2017, the concept of simulation functions was extended to the following idea:

Definition 2.6 ([14]). Let s ≥ 1 be a given real number. A function ζ : [0,∞)× [0,∞)→R is called
an s-simulation function if it satisfies (S2) and the following condition:

(S4) if {αn}, {βn} are sequences in (0,∞) such that

0 < liminf
n→∞

αn ≤ s
(

limsup
n→∞

βn

)
≤ s2

(
liminf

n→∞
αn

)
and

0 < liminf
n→∞

βn ≤ s
(

limsup
n→∞

αn

)
≤ s2

(
liminf

n→∞
βn

)
,

then
limsup

n→∞

ζ(αn,βn)< 0.
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3. Large s-simulation functions

The main aim of this section is to present a new type of simulation function, which is named a
large s-simulation function. Using this simulation function to define the new contractive condition
in fixed point theory has the advantage of being used more than other simulations in the past. First,
we start with defining the mentioned simulation function type.

Definition 3.1. Let s≥ 1 be a given real number. A function ζ : [0,∞)× [0,∞)→R is called a large
s-simulation function if it satisfies (S4). Throughout this paper, we denote by Cs the collection of
all large s-simulation functions.

Directly from Definition 3.1, each s-simulation function is a large s-simulation function and so
it is also a generalization of a simulation function. The reader can see the relation of various types
of simulations from Figure 1.

Figure 1: The relation of various types of simulations.

To claim the accurate proper generalization of a class of large s-simulation functions, we must
give the example of a large s-simulation function, which is not an s-simulation function.

Example 3.2. Let ζ : [0,∞)× [0,∞)→ R be defined by

ζ(α,β) =

{
1 if α = 0;
2β−4α−1 if α , 0.

First, we will claim that for any s ≥ 1, we obtain ζ is not an s-simulation function. To claim this,
we will show that (S2) does not hold. Choosing α,β ∈ (0,∞) with β ≥ 3α+1, we have

ζ(α,β)− (β−α) = (2β−4α−1)− (β−α)

= β−3α−1
≥ 0.
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It follows that ζ(α,β) ≥ β−α and then (S2) does not hold. Therefore, ζ is not an s-simulation
function for all s ≥ 1.

Next, we will show that ζ ∈ C2, that is, ζ satisfies (S4) with s = 2. To show this, we suppose
that {αn},{βn} ⊆ (0,∞) are two sequences such that

0 < liminf
n→∞

αn ≤ 2
(

limsup
n→∞

βn

)
≤ 4

(
liminf

n→∞
αn

)
and

0 < liminf
n→∞

βn ≤ 2
(

limsup
n→∞

αn

)
≤ 4

(
liminf

n→∞
βn

)
.

From all the above relations, we obtain

limsup
n→∞

ζ(αn,βn) = limsup
n→∞

(2βn −4αn −1)

≤ 2
(

limsup
n→∞

βn

)
−4
(

liminf
n→∞

αn

)
−1

≤ 4
(

liminf
n→∞

αn

)
−4
(

liminf
n→∞

αn

)
−1

< 0.

It yields that (S4) holds. Therefore, ζ ∈ C2, that is, ζ is a large 2-simulation function.

The above example can be extended to the following example:

Example 3.3. Let A ∈ R, B > 0, s ≥ 2 and ζ : [0,∞)× [0,∞)→ R be defined by

ζ(α,β) =

{
A if α = 0;
sβ− s2α−B if α , 0.

First, we will claim that ζ is not an s-simulation function by showing that (S2) does not hold.

Choosing α,β ∈ (0,∞) with β ≥ 1
s−1

[
(s2 −1)α+B

]
, we have

ζ(α,β)− (β−α) = (sβ− s2
α−β)− (β−α)

= (s−1)β− (s2 −1)α−B
≥ 0.

This implies that ζ(α,β)≥ β−α. Therefore, (S2) does not hold and then ζ is not an s-simulation
function.

Here, we will show that ζ ∈ Cs, that is, ζ satisfies (S4) with arbitrary s ≥ 2. Assume that
{αn},{βn} ⊆ (0,∞) are two sequences such that

0 < liminf
n→∞

αn ≤ s
(

limsup
n→∞

βn

)
≤ s2

(
liminf

n→∞
αn

)
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and

0 < liminf
n→∞

βn ≤ s
(

limsup
n→∞

αn

)
≤ s2

(
liminf

n→∞
βn

)
.

Then we obtain

limsup
n→∞

ζ(αn,βn) = limsup
n→∞

(
sβn − s2

αn −B
)

≤ s
(

limsup
n→∞

βn

)
− s2

(
liminf

n→∞
αn

)
−B

≤ s2
(

liminf
n→∞

αn

)
− s2

(
liminf

n→∞
αn

)
−B

< 0.

It follows that (S4) holds. Therefore, ζ ∈ Cs, that is, ζ is a large s-simulation function.

4. The connection between large Zs-contraction mappings and Picard mappings

Based on the help of large s-simulation functions in the previous section, the new idea of a
Zs-contraction mapping is defined. The class of new contractions covers classes of generalized
contraction mappings related to simulation functions and classes of some famous generalized con-
traction mappings in fixed point theory from the past until the present (see Figure 2). Moreover,
the connection between large Zs-contraction mappings and Picard mappings is investigated in this
section.

Figure 2: The relation of classes of important generalized contraction mappings.
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Definition 4.1. Let (X ,d) be a b-metric space with the coefficient s ≥ 1. A mapping T : X → X is
called a large Zs-contraction mapping if the following conditions hold:

(L1) d(T x,Ty)< d(x,y) for all x,y ∈ X with x , y;
(L2) for all ε > 0, there is ζ ∈ Cs such that

[∀x,y ∈ X with d(x,y)≥ ε] =⇒ ζ(d(T x,Ty),d(x,y))≥ 0. (4.1)

Remark 4.2. For each b-metric space (X ,d), we observe that if T : X → X is a Zs-contraction
mapping with respect to an s-simulation function ζs, then T is also a large Zs-contraction mapping
because (S2) implies (L1), and the Zs-contractive condition implies (4.1). But, the converse is not
true in general.

Theorem 4.3. Let (X ,d) be a b-complete metric space with the coefficient s ≥ 1 and T : X → X
be a large s-simulation contraction mapping. Then T is a Picard mapping, that is, T has a unique
fixed point x⋆ ∈ X, and the Picard sequence {xn} defined by xn = T xn−1 for all n ∈ N, where
x0 ∈ X, converges to the fixed point x⋆.

Proof. It is easy to see that if T has a fixed point, then the uniqueness of its fixed point follows
from (L1). Hence, in the remaining proof of this theorem, we will show only the existence of fixed
points of T . By fixing x0 ∈ X , the proof is finish if T n0x0 = T n0−1x0 for some n0 ∈N. This implies
that T nx0 , T n−1x0 for all n ∈ N, where T 0 is an identity mapping. It follows from (L1) that for
each n ∈ N, we obtain

d(T n+1x0,T nx0)< d(T nx0,T n−1x0)< · · ·< d(T x0,x0).

Thus, the sequence {γn := d(T nx0,T n−1x0)} is strictly decreasing. It is easy to see that {γn} is also
bounded below. Then there exists inf

n∈N
γn =: γ ≥ 0 such that lim

n→∞
γn = γ. We will show that γ = 0.

Assume that γ > 0. By using (L2), there is ζ ∈ Cs such that

ζ(d(T n+1x0,T nx0),d(T nx0,T n−1x0))≥ 0 (4.2)

for all n ∈ N because d(T nx0,T n−1x0) ≥ γ for all n ∈ N. Since ζ ∈ Cs, we obtain ζ satisfies (S4)
and then

limsup
n→∞

ζ(d(T n+1x0,T nx0),d(T nx0,T n−1x0))< 0. (4.3)

Two inequlities (4.2) and (4.3) imply

0 ≤ limsup
n→∞

ζ(d(T n+1x0,T nx0),d(T nx0,T n−1x0))< 0,

which is a contradiction. Hence, γ = 0 and so

lim
n→∞

d(T nx0,T n−1x0) = 0. (4.4)

Consider the Picard sequence {xn} defined by

xn = T xn−1
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for all n ∈ N. Let us prove that xn , xm for all n,m ∈ N. Indeed, assume that there are n0,m0 ∈ N
such that n0 < m0 and xn0 = xm0 . Let p0 = m0 − n0. Clearly, p0 ∈ N and p0 ≥ 2. In this case,
xn0+p0 = xm0 = xn0 . Furthermore,

xn0+2p0 = xn0+p0+p0 = xm0+p0 = T p0xm0 = T p0xn0 = xn0+p0 = xm0 = xn0.

By induction, it can be proved that xn0+k·p0 = xn0 for all k ∈ N. Therefore,

{d
(
xn0+k·p0,xn0+k·p0+1

)
}k∈N = {d (xn0 ,xn0+1)}k∈N,

which is a posive constant sequence. However, this is a contradiction because lim
n→∞

d (xn,xn+1) = 0.
As a consequence, we have proved that

xn , xm for all n,m ∈ N. (4.5)

Next, we will show that the Picard sequence {xn} is a b-Cauchy sequence in X . Assume that
{xn} is not a b-Cauchy sequence in (X ,d). Then there exists ε > 0 and two subsequence {xnk} and
{xmk} of {xn} such that for each k ∈ N, nk is the smallest number such that

d(xnk ,xmk−1)≤ ε < d(xnk ,xmk)

and k ≤ nk < mk. By the triangular inequality, we have

ε < d(xnk ,xmk)≤ s[d(xnk ,xmk−1)+d(xmk−1,xmk)]≤ sε+ sd(xmk−1,xmk).

Taking the limit superior as k → ∞ in the above inequality and using (4.4), we get

ε ≤ limsup
k→∞

d(xnk ,xmk)≤ sε. (4.6)

In the same way, we have
ε ≤ liminf

k→∞
d(xnk ,xmk)≤ sε. (4.7)

From the triangular inequality, we obtain

ε < d(xnk ,xmk)

< d(xnk−1,xmk−1) (4.8)
≤ s[d(xnk−1,xnk)+d(xnk ,xmk−1)]

≤ sd(xnk−1,xnk)+ sε.

Taking the limit superior as k → ∞ in the above inequality and using (4.4), we have

ε ≤ limsup
k→∞

d(xnk−1,xmk−1)≤ sε. (4.9)

Similarly, we obtain
ε ≤ liminf

k→∞
d(xnk−1,xmk−1)≤ sε. (4.10)
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From (4.6), (4.7), (4.9) and (4.10), we have

ε < liminf
k→∞

d(xnk ,xmk)

≤ s
(

limsup
k→∞

d(xnk−1,xmk−1)

)
≤ s2

(
liminf

k→∞
d(xnk ,xmk)

)
≤ s3

ε (4.11)

and

ε < liminf
n→∞

d(xnk−1,xmk−1)

≤ s
(

limsup
n→∞

d(xnk ,xmk)

)
≤ s2

(
liminf

n→∞
d(xnk−1,xmk−1)

)
≤ s3

ε. (4.12)

Since ε > 0, from (4.8) and (L2), there is ζ′ ∈ Cs such that

ζ
′(d(T xnk−1,T xmk−1),d(xnk−1,xmk−1))≥ 0 (4.13)

for all k ∈ N. Since ζ′ satisfies (S4), from (4.11) and (4.12), we get

limsup
k→∞

ζ
′(d(xnk ,xmk),d(xnk−1,xmk−1))< 0. (4.14)

It follows from (4.13) and (4.14) that

0 ≤ limsup
k→∞

ζ
′(d(T xnk−1,T xmk−1),d(xnk−1,xmk−1))

= limsup
k→∞

ζ
′(d(xnk ,xmk),d(xnk−1,xmk−1))

< 0,

which is a contradiction. Therefore, {xn} is a b-Cauchy sequence in X . Since (X ,d) is a complete
b-metric space, there exists x⋆ ∈ X such that lim

n→∞
xn = x⋆, that is,

lim
n→∞

d(xn,x⋆) = 0. (4.15)

Next, we are going to claim that x⋆ is a fixed point of T reasoning by contradiction. Assume to
contrary that x⋆ is not a fixed point of T , that is, T x⋆ , x⋆ and hence

d(x⋆,T x⋆)> 0.
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From (4.15), there is n1 ∈ N such that d(xn,x⋆)< d(x⋆,T x⋆) for all n ≥ n1. In particular, xn , T x⋆
for all n ≥ n1, that is,

d(T xn,T x⋆) = d(xn+1,T x⋆)> 0 (4.16)

for all n ≥ n1.
On the other hand, it is impossible that there exists n2 ∈ N such that xn = x⋆ for all n ≥ n2.

Hence, there exists a subsequence {xσ(n)} of {xn} such that

xσ(n) , x⋆ (4.17)

for all n∈N. Let n3 ∈N be such that σ(n3)≥ n1. Then, by (4.16) and (4.17), we have d(xσ(n),x⋆)>
0 and d(T xσ(n),T x⋆)> 0 for all n ≥ n3. By using the contractive of mapping T with xσ(n) , x⋆, we
have

0 ≤ d(T xσ(n),T x⋆)< d(xσ(n),x⋆)

for all n ≥ n3. In particular, by (4.15), we obtain

xσ(n)+1 = T xσ(n) → T x⋆.

By the unicity of the limit, we get x⋆ = T x⋆, which is a contradiction with the fact that we have
supposed that T x⋆ , x⋆. Therefore, x⋆ is a fixed point of T . This completes the proof.

Now, we give an illustrative example supporting Theorem 4.3.

Example 4.4. Let X = [0,∞) and d : X ×X → [0,∞) be defined by

d(x,y) =
{

0 if x = y;
(x+ y)2 if x , y,

for all x,y ∈ X . Therefore, (X ,d) is a complete b-metric space with s = 2. Define T : X → X by

T x =


x2

2
if x ∈ [0,1);

x
2

if x ∈ [1,∞).

Here, we will show that T is a large Zs-contraction mapping with s = 2. From the definition of
T , it is easy to see that (L1) holds, and then we will only show (L2). Suppose that ε > 0. We will
show that (4.1) holds with ζ ∈ C2 defined by

ζ(α,β) =

{
1 if α = 0;
2β−4α− ε if α , 0

(see the claim for ζ ∈ C2 in Example 3.2). Assume that x,y ∈ X with d(x,y) ≥ ε. It implies that
x , y. Next, we will divide into 4 cases.
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Case I: For each x,y ∈ [0,1), we obtain

ζ(d(T x,Ty),d(x,y)) = ζ

((
x2

2
+

y2

2

)2

,(x+ y)2

)

= 2(x+ y)2 −4
(

x2

2
+

y2

2

)2

− ε

≥ 2(x+ y)2 − (x+ y)2 − ε

= (x+ y)2 − ε

= d(x,y)− ε

≥ 0.

Case II: For each (x,y) ∈ [0,1)× [1,∞), we obtain

ζ(d(T x,Ty),d(x,y)) = ζ

((
x2

2
+

y
2

)2

,(x+ y)2

)

= 2(x+ y)2 −4
(

x2

2
+

y
2

)2

− ε

≥ 2(x+ y)2 −
(
x2 + y

)2 − ε

≥ 2(x+ y)2 − (x+ y)2 − ε

= (x+ y)2 − ε

= d(x,y)− ε

≥ 0.

Case III: For each (x,y) ∈ [1,∞)× [0,1), we obtain

ζ(d(T x,Ty),d(x,y)) = ζ

((
x
2
+

y2

2

)2

,(x+ y)2

)

= 2(x+ y)2 −4
(

x
2
+

y2

2

)2

− ε

≥ 2(x+ y)2 −
(
x+ y2)2 − ε

≥ 2(x+ y)2 − (x+ y)2 − ε

= (x+ y)2 − ε

= d(x,y)− ε

≥ 0.
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Case IV: For each x,y ∈ [1,∞), we obtain

ζs(d(T x,Ty),d(x,y)) = ζs

((x
2
+

y
2

)2
,(x+ y)2

)
= 2(x+ y)2 −4

(x
2
+

y
2

)2
− ε

= 2(x+ y)2 − (x+ y)2 − ε

= (x+ y)2 − ε

= d(x,y)− ε

≥ 0.

From all cases, we get (4.1) is satisfied. Hence, all conditions of Theorem 4.3 hold and so T is
a Picard mapping. In this case, 0 is a fixed point of T . Figure 3 presents comparative results of
Picard iterations with initial points x0 = 0.5,5,15,25. Figure 4 shows convergence behaviors of
Picard iterations with initial points x0 = 0.5,5,15,25.

Step x0 = 0.5 x0 = 5 x0 = 15 x0 = 25
1 0.1250000000 2.5000000000 7.5000000000 12.5000000000
2 0.0078125000 1.2500000000 3.7500000000 6.2500000000
3 0.0000305176 0.6250000000 1.8750000000 3.1250000000
4 0.0000000005 0.1953125000 0.9375000000 1.5625000000
5 0.0000000000 0.0190734863 0.4394531250 0.7812500000
6 0.0000000000 0.0001818989 0.0965595245 0.3051757813
7 0.0000000000 0.0000000165 0.0046618709 0.0465661287
8 0.0000000000 0.0000000000 0.0000108665 0.0010842022
9 0.0000000000 0.0000000000 0.0000000001 0.0000005877

10 0.0000000000 0.0000000000 0.0000000000 0.0000000000
11 0.0000000000 0.0000000000 0.0000000000 0.0000000000
12 0.0000000000 0.0000000000 0.0000000000 0.0000000000
...

...
...

...
...

Figure 3: Comparative results of Picard iterations with initial points x0 = 0.5,5,15,25 in Example 4.4

From the fact in Figure 2, we obtain the the following result covering many fixed point results
in the literature.

Corollary 4.5 ([14]). Let (X ,d) be a b-complete metric space with the coefficient s ≥ 1 and T :
X → X be a Zs-simulation contraction mapping. Then T is a Picard mapping.

Based on the variety of mappings in class Cs, where s ≥ 1, we get the following results.

Corollary 4.6. Let (X ,d) be a b-complete metric space with the coefficient s ≥ 1 and T : X → X
be a mapping satisfying the following conditions:

(BS1) d(T x,Ty)< d(x,y) for all x,y ∈ X with x , y;
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Figure 4: Behavior of the Picard iteration with initial points x0 = 0.5,5,15,25 in Example 4.4.

(BS2) for all ε > 0, there is k ∈ [0,1) such that

[∀x,y ∈ X , with d(x,y)≥ ε] =⇒ sd(T x,Ty)≤ kd(x,y). (4.18)

Then T is a Picard mapping.

Corollary 4.7. Let (X ,d) be a complete metric space and T : X →X be a large Banach contraction
mapping. Then T is a Picard mapping.

5. Conclusions

This paper represents a significant advancement in the field of metric fixed point theory, par-
ticularly in the context of an evolution of the Banach contraction mapping principle. The introduc-
tion of simulation functions by Khojasteh et al. and the subsequent development of Z-contraction
mappings have marked a pivotal shift in the study of nonlinear mappings in metric spaces. Fur-
thermore, adapting these concepts to b-metric spaces through the innovative work of Yamaod and
Sintunavarat [14] has expanded the applicability of fixed point theory. This paper delves into the
intricacies of large contraction mappings, initially presented by Burton [4]. This exploration un-
derscores the versatility and practical relevance of fixed point theory. A novel contribution of this
paper is the amalgamation of the concepts of s-simulation functions and large contraction map-
pings, a fusion that has yet to be explored. The introduction of large s-simulation functions and
the establishment of large Zs-contraction mappings as Picard mappings open new avenues for re-
search and application. The presented examples and numerical methods serve not only to validate
our findings but also to offer a practical perspective on their implementation. As we conclude, it’s
evident that while this paper fills a crucial gap in the existing literature, it also sets the stage for
further exploration. The potential for discoveries and applications in the realm of fixed point the-
ory remains vast, and continued research in this field promises to yield even more groundbreaking
results and solutions to complex problems.
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