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Abstract

This paper is devoted to the study of the periodic initial boundary value problem and Cauchy
problem for the coupled KdV equations. By the Galerkin method and sequential approximation,
we get a series of a priori estimates and establish the existence of classical local solution to
the periodic problem for the system. Then we obtain the existence and uniqueness of global
smooth solution when the coefficients of the system satisfy certain conditions by energy method,
conserved quantities and nonconservative quantity I(u, v).
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1 Introduction

In this paper, we consider a class of coupled KdV (Korteweg-de Vries) equations as follows:{
ut + 2bux + auxxx = −2b(uv)x, x ∈ R, t > 0

vt + bvx + bvvx + cvxxx = −b(|u|2)x, x ∈ R, t > 0
(1.1)

where u(x, t) is a complex value function, and v(x, t) is real-valued, the coefficients a, b, c are real
constants which are not zero. Deconinck and Nguyen [4] derived the system (1.1) in the process
of deriving the NLS-KdV (nonlinear Schrödinger-Korteweg-de Vries) system with the traditional
ansatz used in [6] from a generic system which has nonlinearities that are quadratic, cubic, etc.
And in this paper, it has been proved that the system (1.1) has at least the following conserved
quantities.

H0(u) =

∫ ∞

−∞
udx, H1(v) =

∫ ∞

−∞
v dx,

H2(u, v) =

∫ ∞

−∞
(|u|2 + v2)dx,

H3(u, v) =

∫ ∞

−∞
(
a

2
|ux|2 +

c

2
v2x −

b

6
v3 − b|u|2v − b|u|2 − b

2
v2)dx.
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KdV equation

ut + 6uux + uxxx = 0,

is a unidirectional shallow water partial differential equation discovered by Dutch mathematicians
Korteweg and De-Vries when they studied the small amplitude long wave motion in shallow water,
and they gave the solitary wave solution. Then, Zabusky and Kruskal [27] considered the periodic
boundary conditions for the KdV equation, and simulated the initial and exact solutions, finally
obtained some special properties of the KdV isolated wave. The KdV equation is widely used in
solid state physics, plasma, quantum theory and so on [3, 7]. So far, various properties of individual
KdV equation, including infinite symmetry, infinite multiconserved quantities, inverse scattering
transformation, Painlevè property, Bäcklund property and Darboux transformation have been well
known [17, 25, 26]. In addition to the individual KdV equation, researchers have recently discovered
a series of different forms of coupled KdV systems in the practical physics and mathematics fields,
which are commonly used to describe the near-resonance interaction between hierarchical fluid
internal waves [8], interstellar near-resonance wave interaction [9], etc. And how to use the known
theories to explore the various properties of these nonlinear systems and their solutions has gradually
become one of the attention topics of researchers. Later, the first coupled KdV equation{

ut + 6αuux − 2bvvx + αuxxx = 0,

vt + 3βuvx + βvxxx = 0,
(1.2)

was proposed by Hirota, which were derived to model the interaction of water waves. Here α, β, b are
constants. And Hirota and Satsuma [14] obtained the isolated subsolutions and three fundamental
conserved quantities of the coupled system (1.2). In [15], using the iterative Darboux transformation,
the authors firstly obtained the analytical solution and non-singular complex solution of the following
coupled system {

ut + 6vvx − 6uux + uxxx = 0,

vt − 6uvx − 6vux + vxxx = 0.

In [1], Basakoǧlu and Gürel proved the existence and smoothness of a global attractor in the energy
space of the following coupled system{

ut + auxxx + 3a(u2)x + β(v2)x = 0, x ∈ T
vt + vxxx + 3uvx = 0,

by smoothing estimates, where a ∈ (14 , 1), β ∈ R. Similar works can also be referred to [2, 16, 19,
20, 23, 24].

The literature proving the existence of solutions for the KdV equation or its derived system by
the Galerkin finite element method can be referred to [13, 18, 21]. In particular, Guo [11] researched
the existence of periodic solution of the KdV system as follows{

ut + f (u)x + uxxx = 0, x ∈ R, t > 0

u(x, 0) = u(x, T ), u(x+ 2l, t) = u(x, t), l > 0
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and obtained the weak solution space as L∞(0, T ;H4(−l, l)) ∩ C1(0, T ;L2(−l, l)), where l > 0. By
using the Galerkin finite element method and a priori estimation, Yang [22] studied the initial
boundary value problem of a generalized KdV system

ut + f (u)x = αuxx + βuxxx, x ∈ R+, t > 0

u(x, t)|t=0 = u0(x),

u(x, t)|x=0 = 0, u(x, t) → 0 (x→ ∞)

and obtained the weak solution space as L∞(0, T ;H2
0 (R+)), where α ≥ 0, β < 0. Ding and Wei [5]

investigated the existence of the periodic solution for the coupled system as follows
ut + αvvx + ασvx + β1uux + β2u

2ux + βuxxx = k1uxx, x ∈ R, t > 0

vt + δ(uv)x + ϵvvx + ϵσvx + δσux = k2vxx, x ∈ R, t > 0

u|t=0 = u0(x), v|t=0 = v0(x), 0 ≤ x ≤ 1

u(x+ 1, t) = u(x, t), v(x+ 1, t) = v(x, t),

(1.3)

and obtained the weak solution space as L∞(0, T ;H3([0, 1])), where α, σ, β1, β2, β, δ, ϵ are real con-
stants. The unknown functions u, v are all real-valued functions. In addition, we can prove the
similar problems by other methods. By the conserved quantities and priori estimates, Guo and Tan
[10] researched the global existence and uniqueness of smooth solution to the initial value problem
of the following coupled system {

ut = uxxx + 6uux + 2vvx,

vt = 2(uv)x.

In [12], He established the existence of smooth solution to the system of coupled non-linear KdV
equations {

ut = a(uxxx + 6uux) + 2bvvx,

vt = −vxxx − 3uvx,

where a and b are constants. His proof depended on the presence of dispersive terms in both
components and did not extend to the system of non-linear KdV equations with a hyperbolic
partial differential equations.

In this paper, we concern with the coupled system (1.1):{
ut + 2bux + auxxx = −2b(uv)x, x ∈ [−l, l], t > 0

vt + bvx + bvvx + cvxxx = −b(|u|2)x, x ∈ [−l, l], t > 0
(1.4)

with the initial value conditions

u|t=0 = u0(x), v|t=0 = v0(x), x ∈ [−l, l] (1.5)

and the periodic conditions

u(x+ l, t) = u(x− l, t), v(x+ l, t) = v(x− l, t). l > 0 (1.6)
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It can be seen that the system (1.4) − (1.6) is a dispersion system when k1 = k2 = 0 in the
system (1.3) and the unknown functions include a complex value function, which leads that the
highest derivative in the calculation process cannot be controlled by the lower derivatives, thus
furtherly increasing the difficulty of proving the existence of the global smooth solution. Firstly,
we construct the existence of classical local solution of the system (1.4) − (1.6) by the Galerkin
finite element method and sequential approximation. Next, through the conserved quantities and
nonconservative quantity I(u, v) of the system, we obtain a series of priori estimates and then we
achieve the existence of global smooth solution. Finally, we prove the uniqueness of the smooth
solution.

Now, we state our main results as follows:

Theorem 1.1. If the following conditions are met,
(1)ac > 0, ca >

3
√
5−5
10 ;

(2)u0, v0 ∈ Hm([−l, l]),m ≥ 4, and they are periodic functions with period 2l;
then the periodic initial value problem (1.4) − (1.6) admits a unique global periodic smooth solution
with u0(x), v0(x) as initial values, and there holds

u(x, t), v(x, t) ∈ L∞(R+;Hm([−l, l])).

If only the condition (2) is met, then there exists a constant T0 > 0 such that the system (1.4)−(1.6)
admits a unique local periodic smooth solution with u0(x), v0(x) as initial values, and there holds

u(x, t), v(x, t) ∈ L∞(0, T0;H
m([−l, l])).

For the priori estimates of the solution to the system (1.4) are unconcerned with the period
parameter l, we can derive the global smooth solution as l → ∞, a.e. x ∈ R. Theorem 1.1 is the
global smooth solutions to the periodic initial boundary value problem for the system (1.4) and
Theorem 1.2 is the global smooth solition for the Cauchy problem.

Theorem 1.2. Assumed that u0(x), v0(x) ∈ Hm(R),m ≥ 4, then there exists a constant T0 > 0

such that the system (1.4) − (1.5) admits a unique local smooth solution with u0(x), v0(x) as initial
values, and there holds

u(x, t), v(x, t) ∈ L∞(0, T0;H
m(R)).

If ac > 0, ca >
3
√
5−5
10 are satisfied on this basis , then there is a unique global smooth solution of the

problem (1.4) − (1.5) satisfying

u(x, t), v(x, t) ∈ L∞(R+;Hm(R)).

Remark. We define the generalized solution of the coupled system (1.4)−(1.6) as follows. Here
we let Ω = [−l, l] or R.

Definition 1.1. The set of solution u(x, t), v(x, t) ∈ L∞(R+;Hm(Ω)),m ≥ 2 is called a generalized
periodic solution of the coupled KdV system (1.4) − (1.6) or (1.4) − (1.5) if for any test function
ψ(x, t) ∈ Φ := {ψ : ψ ∈ C∞([0, T ] × Ω), ψ(x, T ) ≡ 0, ∀T > 0}, there hold the following integral
identities: ∫ T

0

∫
Ω
(uψt + 2buψx + auxxψx + 2buvψx)dxdt+

∫
Ω
u0ψ(x, 0)dx = 0,
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∫ T

0

∫
Ω
(vψt + bvψx +

b

2
v2ψx + cvxxψx + |u|2ψx)dxdt+

∫
Ω
v0ψ(x, 0)dx = 0,

with the periodic and initial conditions (1.5) − (1.6).

Theorem 1.3. Assumed that ac > 0, ca >
3
√
5−5
10 and u0, v0 ∈ Hm(Ω),m ≥ 2, then there exists a

unique generalized solution of the system (1.4) − (1.6) or (1.4) − (1.5) satisfying

u(x, t), v(x, t) ∈ L∞(R+;Hm(Ω)).

Proof. Taking the sequences of the initial values {ui0}, {vi0} ∈ Hm(Ω),m ≥ 2, when i → ∞,
{ui0}, {vi0} are strongly converge in Hm(Ω) to u0 and v0. Then we can prove that {ui(x, t)}, {vi(x, t)}
are strongly converge to u(x, t) and v(x, t) respectively in L∞(R+;Hm(Ω)). Thus u(x, t), v(x, t) ∈
L∞(R+;Hm(Ω)). From the standard method, we can prove that u(x, t), v(x, t) is the unique gener-
alized solution of the system (1.4)− (1.6) or (1.4)− (1.5) satisfying the Definition 1.1, here we omit
the details.

Notations. Throughout the paper, C stands for a generic positive constant, which may be
different from line to line. We will use the notation A ≲ B to denote the relation A ≤ CB for
conciseness.

This paper is organized as follows. In section 2, we present several function spaces and symbols,
which will be frequently used throughout the rest of the paper. In section 3, we construct the
approximate solutions by the Galerkin finite element method and prove the existence of classical
local solution by sequential approximation. In section 4, we give some priori estimates by the
conserved quantities and nonconservative quantity I(u, v), then we obtain the existence of global
smooth solution. The uniqueness of smooth solution will be proved in section 5.

2 Preliminaries

In this preliminaries section, we introduce some function spaces, symbols and a lemma which
play an important role in our proofs.

Ck([−l, l]) denotes a complex valued function space which is continuously differentiable k times
on the interval [−l, l].

Lp([−l, l]) denotes that the Lebesque measurable complex valued function f(x) on the interval
[−l, l] has a pth-integrable space, and its norm is expressed as

∥f∥p = (

∫ l

−l
|f |p dx)1/p.

Denote the inner product as follows:

(f, g) =

∫ l

−l
f(x, t)g(x, t)dx.

where g(x, t) represents the complex conjugate of g(x, t), then L2([−l, l]) is a complete complex
Hilbert space.
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L∞([−l, l]) denotes a space where Lebesgue measurable function f(x) is almost bounded on the
interval [−l, l], and its norm is expressed as

∥f∥∞ = esssup
x∈[−l,l]

|f(x)|.

Hs([−l, l]) denotes a complex valued function space with generalized derivatives Dku(|k| ≤ s) ∈
L2([−l, l]), and its norm is expressed as

∥u∥2Hs =
∑
|k|≤s

∥Dku∥22.

Hs
0([−l, l]) denotes the closure of an infinitely differentiable function with compact support

C∞
0 ([−l, l]) in the norm sense of Hs on the interval [−l, l].
Wm

p ([−l, l]) represents the function space composed of Dku(|k| ≤ m) ∈ Lp([−l, l]), where Dku

is the weak partial derivative of u, and its norm is expressed as

∥u∥pWm
p

=
∑
|k|≤m

∥Dku∥pp.

L∞(0, T ;Hs) indicates that the complex valued function u(x, t) belongs to the Hs space as a
function of x, and there holds

sup
0≤t≤T

∥u(·, t)∥Hs <∞.

Lemma 2.1. (Sobolev inequality) Given ϵ > 0, n, there exist a constant C which depends on ϵ and
n, such that

∥∂
ku

∂xk
∥∞ ≤ C∥u∥2 + ϵ∥∂

nu

∂xn
∥2, k < n

∥∂
ku

∂xk
∥2 ≤ C∥u∥2 + ϵ∥∂

nu

∂xn
∥2. k < n

3 Existence of local solutions

In this section, we prove that (1.4)−(1.6) admits at least one classical local solution by using the
Galerkin finite element method and sequential approximation. Firstly, we construct the Galerkin
finite element solution.

Choosing {wj(x)} is the basis function of N-dimensional space S4 ⊂ H4(R), where S4 =

{p(x), x ∈ [−l, l]; p(x) periodically expand to C3(R), p(x) is the quintic polynomial on the interval
[ih, (i+1)h], i = −m, 1−m, · · · , 0, 1, · · · ,m−1, mh = l,R is the real axis }, and the basis function
{wj(x)} is a characteristic function class of the ordinary differential equation y′′ = −λy with the
boundary conditions y(−l) = y(l). Let the approximate solutions be:

uh(x, t) =
m−1∑
j=−m

ηj(t)wj(x), vh(x, t) =
m−1∑
j=−m

ζj(t)wj(x),
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and the coefficient functions ηj(t), ζj(t) satisfy the periodic problems of nonlinear ordinary differ-
ential equations:

(uht , wj) + 2b(uhx, wj) + a(uhxxx, wj) + 2b((uhvh)x, wj) = 0, j = −m, 1−m, · · · ,m− 1

(3.1)
(vht , wj) + b(vhx , wj) + b(vhvhx , wj) + c(vhxxx, wj) + b((|uh|2)x, wj) = 0, j = −m, 1−m, · · · ,m− 1

(3.2)

uh(x, 0) =
m−1∑
j=−m

ηj(0)wj(x) = uh0(x), vh(x, 0) =
m−1∑
j=−m

ζj(0)wj(x) = vh0 (x). (3.3)

where {ηj(t)} are complex value functions,while {ζj(t)} are real-valued functions. Because of the
linear independency for {wj(x)} and the denseness of {wj(x)} ∈ H4(R) ⊂ H1(R), there exists a
complex constant cj and a real constant dj such that

uh0(x)
H1(R)−→ u0(x), vh0 (x)

H1(R)−→ v0(x), (3.4)
ηj(0) = cj , ζj(0) = dj . (3.5)

If uh(x, t) and vh(x, t) satisfy (3.1)− (3.5), then uh(x, t), vh(x, t) are a set of finite element solutions
of the problem (1.4).

The solutions of Cauchy problem of nonlinear ordinary differential equations (3.1)− (3.5) exist,
for

(
∂uh

∂t
, wj) = (

∂

∂t

m−1∑
k=−m

ηkwk, wj) =
m−1∑
k=−m

η′k(t)(wk, wj),

(
∂vh

∂t
, wj) = (

∂

∂t

m−1∑
k=−m

ζkwk, wj) =
m−1∑
k=−m

ζ ′k(t)(wk, wj).

Since the basis functions {wj(x)} are linearly independent, det(wk, wj) ̸= 0. And from the priori
estimation of uh and vh by the following lemmas, we can know that the solutions ηj(t), ζj(t) of the
problem (3.1) − (3.5) exist.

Lemma 3.1. Let uh0(x), vh0 (x) ∈ L2([−l, l]), then there exists a constant C > 0 such that

∥uh∥22 + ∥vh∥22 ≤ C,

where the constant C is only related to ∥uh0∥2, ∥vh0∥2.

Proof. Multipling ηj(t) by (3.1), and summing about j we get

(uht , u
h) + 2b(uhx, u

h) + a(uhxxx, u
h) + 2b((uhvh)x, u

h) = 0, (3.6)

where

Re(uht , u
h) =

1

2

d
dt∥u

h∥22, Re(2buhx, u
h) = Re(auhxxx, u

h) = 0, 2b((uhvh)x, u
h) = −2b(uhvh, uhx).
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Multipling ζj(t) by (3.2), and summing about j we arrive at

(vht , v
h) + b(vhx , v

h) + b(vhvhx , v
h) + c(vhxxx, v

h) + b((|uh|2)x, vh) = 0, (3.7)

where

(vht , v
h) =

1

2

d
dt∥v

h∥22, b(vhx , v
h) = b(vhvhx , v

h) = c(vhxxx, v
h) = 0,

b((|uh|2)x, vh) = b(uhxv
h, uh) + b(uhvh, uhx).

Combining (3.6) and (3.7) and taking the real part we have

d
dt(∥u

h∥22 + ∥vh∥22) = 0.

Integrating the above equality with respect to t ∈ [0, T ], one gets

∥uh(T )∥22 + ∥vh(T )∥22 = ∥uh(0)∥22 + ∥vh(0)∥22 ≤ C.

Lemma 3.2. Under the conditions in Lemma 3.1, and uh0(x), vh0 (x) ∈ H2([−l, l]), then there exists
a constant T0 > 0 such that for any t ∈ [0, T0], there holds

∥uhx∥22 + ∥vhx∥22 + ∥uhxx∥22 + ∥vhxx∥22 ≤ C.

Proof. Multiplying ηj(t) by (uht + 2buhx + auhxxx + 2b(uhvh)x,−λwj) = 0 and summing about j we
arrive at

(uht + 2buhx + auhxxx + 2b(uhvh)x, u
h
xx) = 0, (3.8)

where

Re(uht , u
h
xx) = −1

2

d
dt∥u

h
x∥22, Re(2buhx + auhxxx, u

h
xx) = 0,

and in the above relations we have used w′′
j (x) = −λwj .

Multiplying ζj(t) by (vht + bvhx + bvhvhx + cvhxxx + b(|uh|2)x,−λwj) = 0 and summing about j we
obtain

(vht + bvhx + bvhvhx + cvhxxx + b(|uh|2)x, vhxx) = 0, (3.9)

where

(vht , v
h
xx) = −1

2

d
dt∥v

h
x∥22, (bvhx + cvhxxx, v

h
xx) = 0, (bvhvhx , v

h
xx) = − b

2

∫ l

−l
(vhx)

3 dx.

Combining (3.8) and (3.9) and taking the real part we have

d
dt∥u

h
x∥22 +

d
dt∥v

h
x∥22 + b

∫ l

−l
(vhx)

3 dx+ 6b

∫ l

−l
|uhx|2vhx dx = 0.

Thus, we can get the following estimate:

d
dt(∥u

h
x∥22 + ∥vhx∥22) ≲ ∥vhx∥22∥vhx∥∞ + ∥uhx∥22∥vhx∥∞. (3.10)
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Similarly, multiplying ηj(t), ζj(t) by (uht +2buhx + auhxxx +2b(uhvh)x, λ
2wj) = 0 and (vht + bvhx +

bvhvhx + cvhxxx + b(|uh|2)x, λ2wj) = 0 respectively, and summing about j we arrive at

(uht + 2buhx + auhxxx + 2b(uhvh)x, u
h
xxxx) = 0, (3.11)

(vht + bvhx + bvhvhx + cvhxxx + b(|uh|2)x, vhxxxx) = 0. (3.12)

By calculation, combining (3.11) and (3.12) and taking the real part we have

d
dt∥u

h
xx∥22 +

d
dt∥v

h
xx∥22 + 5b

∫ l

−l
vhx(v

h
xx)

2 dx+ 5b

∫ l

−l
|uhxx|2vhx dx

+Re2b

∫ l

−l
(4uhxu

h
xxv

h
xx + uhxu

h
xxv

h
xx)dx = 0.

Thus, we can get estimate as follows:

d
dt(∥u

h
xx∥22 + ∥vhxx∥22) ≲ ∥vhxx∥22∥vhx∥∞ + ∥uhxx∥22∥vhx∥∞ + ∥uhxx∥2∥vhxx∥2∥uhx∥∞. (3.13)

Finally combining (3.10) and (3.13) we get

d
dt(∥u

h
x∥22 + ∥vhx∥22 + ∥uhxx∥22 + ∥vhxx∥22) ≲ ∥uhx∥32 + ∥vhx∥32 + ∥uhxx∥32 + ∥uhxx∥32.

Thus by the above inequality we get, if uh0 , vh0 ∈ H2([−l, l]), there exist constants T0, C > 0,
such that for any t ∈ [0, T0], there holds

∥uhx∥22 + ∥vhx∥22 + ∥uhxx∥22 + ∥vhxx∥22 ≤ C.

Lemma 3.3. Under the conditions in Lemma 3.2, and uh0(x), vh0 (x) ∈ H3([−l, l]), then there exists
a constant T0 > 0, such that for any t ∈ [0, T0], there holds

∥uht ∥22 + ∥vht ∥22 ≤ C.

Proof. Differentiating (3.1) and (3.2) with respect to t, then multiplying by η′j(t) and ζ ′j(t) respec-
tively and summing about j we can get

(Et + 2bEx + aExxx + 2b(Exv
h + uhxF + Evhx + uhFx), E) = 0, (3.14)

(Ft + bFx + b(Fvhx + vhFx) + cFxxx + b(Exuh + uhxE + Exu
h + uhxE), F ) = 0, (3.15)

where E := uht , F := vht .
Applying integration by parts and taking the real part, we obtain

d
dt(∥E∥22 + ∥F∥22) =− b

2

∫ l

−l
vhx(2|E|2 + |F |2)dx− 2bRe

∫ l

−l
uhxEF dx+ 2bRe

∫ l

−l
uhxFE dx

− b

∫ l

−l
(uhxEF + uhxEF )dx

≤ b(∥uhx∥∞ + ∥vhx∥∞)(∥E∥22 + ∥F∥22).

Combining Lemma 3.2, we get

d
dt(∥E∥22 + ∥F∥22) ≲ ∥E∥22 + ∥F∥22.
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Thus, if uh0(x), vh0 (x) ∈ H3([−l, l]), there exist constants T0, C > 0, such that for any t ∈ [0, T0],
there holds

∥E∥22 + ∥F∥22 ≤ C.

Lemma 3.4. Under the conditions in Lemma 3.3, and uh0(x), vh0 (x) ∈ H3([−l, l]), then there exists
a constant T0 > 0, such that for any t ∈ [0, T0], there holds

∥uhxxx∥22 + ∥vhxxx∥22 ≤ C.

Lemma 3.5. Under the conditions in Lemma 3.4, and uh0(x), vh0 (x) ∈ H4([−l, l]), then there exists
a constant T0 > 0, such that for any t ∈ [0, T0], there holds

∥uhxt∥22 + ∥vhxt∥22 ≤ C.

Proof. Differentiating (3.1) and (3.2) with respect to t, then multiplying them by η′j(t) and ζ ′j(t)

respectively and summing about j we can get

(Et + 2bEx + aExxx + 2b(Exv
h + uhxF + Evhx + uhFx), Exx) = 0, (3.16)

(Ft + bFx + b(Fvhx + vhFx) + cFxxx + b(Exuh + uhxE + Exu
h + uhxE), Fxx) = 0. (3.17)

Similarly to the estimations of Lemma 3.1 − 3.3, combining the above two and taking the real
part we get

d
dt(∥Ex∥22 + ∥Fx∥22) ≲ ∥Ex∥22 + ∥Fx∥22 + 1.

Thus, by the Gronwall inequality we obtain that, if uh0(x), vh0 (x) ∈ H4([−l, l]), there exist constants
T0, C > 0, such that ∀t ∈ [0, T0], there holds

∥Ex∥22 + ∥Fx∥22 ≤ C.

Lemma 3.6. Under the conditions in Lemma 3.5, and uh0(x), vh0 (x) ∈ H4([−l, l]), then there exists
a constant T0 > 0, such that for any t ∈ [0, T0], there holds

∥uhxxxx∥22 + ∥vhxxxx∥22 ≤ C.

Thanks to the Lemma 3.1−3.6, we obtain the result about the existence of classical local solution
as follows.
Theorem 3.1. If u0(x), v0(x) ∈ H4([−l, l])) and they are periodic functions with period 2l, then
there exists a constant T0 > 0 such that the periodic initial value problem (1.4) − (1.6) admits at
least one classical local solution with u0(x), v0(x) as initial values satisfying

u(x, t), v(x, t) ∈ L∞(0, T0;C
3([−l, l])).

Proof. Thanks to Lemmas 3.1 − 3.6, we obtain that there exist a constant T0 such that for any
0 ≤ t ≤ T0, {uh} and {vh} are uniformly bounded in H4([−l, l]), and the upper bound continuously
depends on the initial values, therefore we can select subsequences (still recorded as) {uh}, {vh} such
that when h → 0, {uh}, {vh} are weakly star converge in L∞(0, T0;H

4([−l, l])) to u and v respec-
tively; and {uht }, {vht } are weakly star converge in L∞(0, T0;H

1([−l, l])) to ut and vt respectively.
Especially, in L∞(0, T0;L

2([−l, l])), {(uhvh)x}, {vhvhx} and {(|uh|2)x} are weakly star converge to
(uv)x, vvx and (|u|2)x respectively.

Therefore let h → 0, we can obtain that the classical local solutions of the coupled problem
(1.4) − (1.6) exist and satisfy u(x, t), v(x, t) ∈ L∞(0, T0;C

3([−l, l])).
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4 Existence of global solution

In this section, we prove the existence of global smooth solution.
The set of solution u = u(x, t), v = v(x, t) for the periodic initial value problem (1.4) − (1.6)

satisfy (1.4)1, (1.4)2,u(·, t), v(·, t) ∈ C3([−l, l]), uxxx(·, t), vxxx(·, t) ∈ H1([−l, l]) satisfy the initial
value condition (1.5) and periodic condition (1.6) and we know that, ∀x, t, the initial functions
u0(x), v0(x) should be the periodic functions with period 2l. In the following lemmas, it is assumed
that u(x, t), v(x, t) are periodic solutions with u0(x), v0(x) as initial values respectively.

Lemma 4.1. Assume that ac > 0 and u0(x), v0(x) ∈ H1([−l, l]), then for any T > 0, t ∈ [0, T ] there
holds

∥u∥2H1 + ∥v∥2H1 ≤ C,

where the constant C depends on a, b, c, ∥u0∥H1 , ∥v0∥H1.

Proof. Taking the inner product of (1.4)1, (1.4)2 with u and v on the interval [−l, l] respectively,
we have

(ut + 2bux + auxxx + 2b(uv)x, u) = 0, (4.1)
(vt + bvx + bvvx + cvxxx + b(|u|2)x, v) = 0, (4.2)

Then summing (4.1) and (4.2), taking the real part and using integration by parts we get

1

2

d
dt(∥u∥

2
2 + ∥v∥22) =2bRe

∫ l

−l
uvux dx− b

∫ l

−l
(|u|2)xv dx.

Finally, we obtain

d
dt(∥u∥

2
2 + ∥v∥22) = 0,

and integrating it in t ∈ [0, T ], ∀T > 0, we have

∥u(·, T )∥22 + ∥v(·, T )∥22 = ∥u0∥22 + ∥v0∥22.

Through the conserved quantity H3(u, v), we get

H3(u, v)|[−l,l] = H3(u0, v0)|[−l,l],

where
H3(u, v)|[−l,l] =

∫ l

−l
(
a

2
|ux|2 +

c

2
v2x −

b

6
v3 − b|u|2v − b|u|2 − b

2
v2)dx.

Thus by Lemma 2.1, if ac > 0, we have

|a|
2
∥ux∥22 +

|c|
2
∥vx∥22 ≤|H3(u0, v0)|[−l,l]|+ |

∫ l

−l
(
b

6
v3 + b|u|2v + b|u|2 + b

2
v2)dx|

≤C +
|b|
6
∥v∥22∥v∥∞ + |b|∥u∥22∥v∥∞ + |b|∥u∥22 +

|b|
2
∥v∥22

11
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≤C +
|b|
6
∥v∥

5
2
2 ∥vx∥

1
2
2 + |b|∥u∥22∥v∥

1
2
2 ∥vx∥

1
2
2 + |b|∥u∥22 +

|b|
2
∥v∥22

≤C +
|c|
8
∥vx∥22 + C(b, c)∥v∥

10
3
2 +

|c|
8
∥vx∥22 + C(b, c)∥u∥

8
3
2 ∥v∥

2
3
2

+ |b|∥u∥22 +
|b|
2
∥v∥22

≤C(b, c, ∥u∥2, ∥v∥2) +
|c|
4
∥vx∥22.

where C(b, c, ∥u∥2, ∥v∥2) represents a constant related to b, c, ∥u∥2, ∥v∥2, and C(b, c) also has a
similar definition. Thus,

|a|
2
∥ux∥22 +

|c|
4
∥vx∥22 ≤ C(b, c, ∥u∥2, ∥v∥2).

And we complete the proof of Lemma 4.1.

Lemma 4.2. If the following conditions are met,
(1)ac > 0, ca >

3
√
5−5
10 ;

(2)u0, v0 ∈ H2([−l, l]);
then for any T > 0, t ∈ [0, T ] there holds

∥uxx∥22 + ∥vxx∥22 ≤ C,

where the constant C is related to a, b, c, ∥u0∥H2 , ∥v0∥H2.

Proof. Before proving this lemma, we give a claim, that is I(u, v) is bounded, and

I(u, v) =

∫ l

−l
(27a2c|uxx|2 + (15c3 + 15ac2 − 3a2c)v2xx − 90abc|ux|2v + (25bc2 + 25abc− 5a2b)v2xv

−(60abc+ 30bc2)(|u|2)xvx)dx.

Let

I1(u, v) =

∫ l

−l
(γ1|uxx|2 + γ2v

2
xx + γ3|ux|2v + γ4v

2
xv + γ5(|u|2)xvx)dx,

where γi(i = 1, 2, 3, 4) are undetermined coefficients and γ1, γ2 are the same sign and not zero, that
is, the same positive or negative numbers, thus there holds

∥uxx∥22 + ∥vxx∥22 ≤C + |γ3|∥ux∥22∥v∥∞ + |γ4|∥vx∥22∥v∥∞ + |γ5|∥ux∥2∥vx∥2∥u∥∞
≤C. (4.3)

where the constant C is related to γi(i = 1, 2, 3, 4, 5), ∥u∥H1 , ∥v∥H1 .
Next, we prove the claim. Firstly, differenting I1(u, v) with respect to t we have

d
dtI1(u, v) =

∫ l

−l
γ1(uxxuxxt + uxxuxxt) + 2γ2vxxvxxt + γ3(|ux|2vt + uxuxtv + uxuxtv)

+γ4(v
2
xvt + 2vvxvxt) + γ5((|u|2)xtvx + (|u|2)xvxt)dx. (4.4)

12
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where ∫ l

−l
(uxxuxxt + uxxuxxt)dx =

∫ l

−l
− 10b|uxx|2vx + 6b|ux|2vx3 − 2b(uuxxvx3 + uuxxvx3)dx,

(4.5)∫ l

−l
2vxxvxxt dx =

∫ l

−l
− 5bvxv

2
xx + 4b|ux|2vx3 + 2b(uuxxvx3 + uuxxvx3)dx, (4.6)∫ l

−l
(|ux|2vt + uxuxtv + uxuxtv)dx =

∫ l

−l
b|ux|2vx − 3a|uxx|2vx + (a− c)|ux|2vx3 − 5b|ux|2vvx

+ 2b|u|2vxvxx + 2b|u|2vvx3 − b|ux|2(|u|2)x dx, (4.7)∫ l

−l
(v2xvt + 2vvxvxt)dx =

∫ l

−l
− 3cvxv

2
xx − 4b|u|2vxvxx − 2b|u|2vvx3 − bvv3x dx, (4.8)∫ l

−l
((|u|2)xtvx + (|u|2)xvxt)dx =

∫ l

−l
(2c+ a)|ux|2vx3 + (c− a)(uuxxvx3 + uuxxvx3)− b|u|2vx3

− 2b|ux|2vvx + 8b|u|2vxvxx − b(uuxxvvx + uuxxvvx)dx.
(4.9)

Combining the above equalities (4.4) − (4.9), we get
d
dtI1(u, v) ≤ (−10γ1b− 3γ3a)|uxx|2vx − (5γ2b+ 3γ4c)vxv

2
xx

+ (6γ1b+ 4γ2b+ γ3(a− c) + γ5(2c+ a))|ux|2vx3

+ (−2bγ1 + 2bγ2 + γ5(c− a))(uuxxvx3 + uuxxvx3) + C(∥uxx∥22 + ∥vxx∥22) + C, (4.10)

where the constant C is related to γi(i = 1, · · · , 5), a, b, ∥u∥H1 , ∥v∥H1 . Therefore in order to enable
the right side of the (4.10) to be controlled by ∥uxx∥22 + ∥vxx∥22 +C, the coefficients of the top four
items on the right end of the (4.10) should be 0, that is

−10γ1b− 3γ3a = 0, 5γ2b+ 3γ4c = 0,

6γ1b+ 4γ2b+ γ3(a− c) + γ5(2c+ a) = 0, − 2bγ1 + 2bγ2 + γ5(c− a) = 0.

From these we can obtain the relationship between γ1, γ2, γ3, γ4 and γ5 as

γ2 =
5c2 + 5ac− a2

9a2
γ1, γ3 = −10b

3a
γ1, γ4 =

25bc2 + 25abc− 5a2b

27a2c
γ1, γ5 = −20ab+ 10bc

9a2
γ1.

(4.11)

At the same time, in order to guarantee the coefficients γ1, γ2 are the same sign and not zero, there
must hold 5c2 + 5ac − a2 > 0, thus the relationship between the parameters a, c is obtained as
follows:

ac > 0,
c

a
>

3
√
5− 5

10
.

Combining (4.10) and (4.11), we have
d
dtI1(u, v) ≲ I1(u, v) + C.

Applying the Gronwall inequality, we know that I1(u, v) is bounded. And combining (4.3), we
finally obtain that desired reslut.

13
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Lemma 4.3. Under the conditions in Lemma 4.2, and u0, v0 ∈ H3([−l, l]), then for any T > 0, t ∈
[0, T ] there holds

∥ut∥22 + ∥vt∥22 ≤ C,

where the constant C is related to a, b, c, ∥u0∥H3 , ∥v0∥H3.

Proof. Differenting the equations (1.4)1, (1.4)2 with respect to t and taking the inner product with
ut, vt respectively on the interval x ∈ [−l, l] we have

(utt + 2buxt + aux3t + 2b(uxtv + uxvt + utvx + uvxt), ut) = 0, (4.12)
(vtt + bvxt + b(vtvx + vvxt) + cvx3t + b(uxtu+ uxut + uxut + uxtu), vt) = 0, (4.13)

Summing (4.12) and (4.13), taking the real part and using integration by parts, we obtain

d
dt(∥ut∥

2
2 + ∥vt∥22) =− b

2

∫ l

−l
vx(2|ut|2 + v2t )dx− 2bRe

∫ l

−l
uxvtut dx+ 2bRe

∫ l

−l
uxvtut dx

− b

∫ l

−l
(uxutvt + uxutvt)dx

≤ b(∥ux∥∞ + ∥vx∥∞)(∥ut∥22 + ∥vt∥22).

Finally, we have

d
dt(∥ut∥

2
2 + ∥vt∥22) ≲ ∥ut∥22 + ∥vt∥22.

Combining the Gronwall inequality, we derive that for any T > 0, t ∈ [0, T ], there holds

∥ut∥22 + ∥vt∥22 ≤ C.

Lemma 4.4. Under the conditions in Lemma 4.3, then for any T > 0, t ∈ [0, T ] there holds

∥uxxx∥22 + ∥vxxx∥22 ≤ C.

where the constant C is depends on a, b, c, ∥u0∥H3 , ∥v0∥H3.

Proof. Taking the inner product of (1.4)1, (1.4)2 with uxxx and vxxx respectively we have

(ut + 2bux + auxxx + 2b(uv)x, uxxx) = 0, (4.14)
(vt + bvx + bvvx + cvxxx + b(|u|2)x, vxxx) = 0. (4.15)

Thus, taking the real part of (4.14) we obtain

a∥uxxx∥22 =−Re

∫ l

−l
(ut + 2bux + 2buxv + 2buvx)uxxx dx

≤ (∥ut∥2 + 2b∥ux∥2 + 2b∥v∥∞∥ux∥2 + 2b∥u∥∞∥vx∥2)∥uxxx∥2,

and applying the lemmas 4.1− 4.3, we have

∥uxxx∥2 ≤ C. ∀T > 0, t ∈ [0, T ]
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In the same way, we can get the following estimate

∥vxxx∥2 ≤ C. ∀T > 0, t ∈ [0, T ]

And we complete the proof of Lemma 4.4.
Similar to the proof of the Lemmas 4.1− 4.4, if u0(x), v0(x) ∈ Hm([−l, l]),m ≥ 0, we obtain the

following lemma by the induction argument.

Lemma 4.5. Assumed that u0(x), v0(x) ∈ Hs([−l, l]), s ≥ 0, then for any T > 0, t ∈ [0, T ] there
holds

∥uxs∥22 + ∥vxs∥22 ≤ C. (4.16)

where the constant C is depends on a, b, c, ∥u0∥Hs , ∥v0∥Hs.

Proof. This lemma will be proved by the induction for s. According to the Lemmas 4.1− 4.4, we
can know that the estimate holds for 0 ≤ s ≤ 3.

Now we assume that the estimate holds for s =M − 1 ≥ 3, and we will prove that (4.16) holds
for s =M .

Using the integration by parts we get

1

2

d
dt∥uxM ∥22 =− 2bRe

∫ l

−l
(uv)xM+1uxM dx

≤∥uxM ∥22 + ∥vxM ∥22 + C + b

∫ l

−l
|uxM |2vxdx− b

∫ l

−l
(uvxM+1uxM + uuxM vxM+1)dx,

(4.17)
1

2

d
dt∥vxM ∥22 =− b

∫ l

−l
(vvx)xM vxM dx− b

∫ l

−l
(|u|2)xM+1vxM dx

≤∥uxM ∥22 + ∥vxM ∥22 + C +
b

2

∫ l

−l
(vxM )2vx dx− b

∫ l

−l
(uuxM+1vxM + uuxM+1vxM )dx.

(4.18)

Combining (4.17) and (4.18) we have

d
dt(∥uxM ∥22 + ∥vxM ∥22) ≲ ∥uxM ∥22 + ∥vxM ∥22 + 1,

then combining the Gronwall inequality, we derive that

∥uxM ∥22 + ∥vxM ∥22 ≤ C.

Thus by the induct method, we can obtain the estimate (4.16).

5 Uniqueness of smooth solution

In this section, we prove the uniqueness of global smooth solution in Theorem 1.1.
The proof of Theorem 1.1 Supposed that u1, v1 and u2, v2 are two sets of solutions to the system
(1.4) − (1.6). Let φ = u1 − u2, ϕ = v1 − v2, we have

φt + 2bφx + aφxxx = −2b(φxv2 + φv2x + ϕxu1 + ϕu1x) (5.1)
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= −2b(u2xϕ+ u2ϕx + φxv1 + φv1x), (5.2)
ϕt + bϕx + cϕxxx = −b(v2ϕx + v1xϕ)− b(u2xφ+ u2φx + u1φx + u1xφ) (5.3)

= −b(v2ϕx + v1xϕ)− b(φu2x + φxu2 + u1φx + u1xφ), (5.4)

and φ(x, 0) = ϕ(x, 0) = 0, φ(x+ l, t) = φ(x− l, t), ϕ(x+ l, t) = ϕ(x− l, t).
Firstly, taking the inner product of (5.1) and (5.2) with φ respectively, and taking the real part

after the summation we get

d
dt∥φ∥

2
2 =− b

∫ l

−l
|φ|2v2x dx− b

∫ l

−l
|φ|2v1x dx− b

∫ l

−l
(u1ϕxφ+ u1ϕxφ+ u2ϕxφ+ u2ϕxφ)dx

− b

∫ l

−l
(u1xϕφ+ u1xϕφ+ u2xϕφ+ u2xϕφ)dx

≤ b
2∑

k=1

(∥ukx∥∞ + ∥vkx∥∞)(∥φ∥22 + ∥ϕ∥22)− b

∫ l

−l
(u1ϕxφ+ u1ϕxφ+ u2ϕxφ+ u2ϕxφ)dx.

(5.5)

Secondly, taking the inner product of (5.3) and (5.4) with ϕ respectively and summing them we
have

d
dt∥ϕ∥

2
2 =b

∫ l

−l
v2xϕ

2 dx− 2b

∫ l

−l
v1xϕ

2 dx− b

∫ l

−l
(u2xϕφ+ u1xϕφ+ u2xϕφ+ u1xϕφ)dx

− b

∫ l

−l
(u2ϕφx + u1ϕφx + u2ϕφx + u1ϕφx)dx

≤ b

2∑
k=1

(∥ukx∥∞ + ∥vkx∥∞)(∥φ∥22 + ∥ϕ∥22)− b

∫ l

−l
(u2ϕφx + u1ϕφx + u2ϕφx + u1ϕφx)dx.

(5.6)

Combining (5.5) − (5.6) and applying integration by parts we get

d
dt(∥φ∥

2
2 + ∥ϕ∥22) ≤ b

2∑
k=1

(∥ukx∥∞ + ∥vkx∥∞)(∥φ∥22 + ∥ϕ∥22) + b

∫ l

−l

2∑
k=1

(ukxϕφ+ ukxϕφ)dx

≤ b
2∑

k=1

(∥ukx∥∞ + ∥vkx∥∞)(∥φ∥22 + ∥ϕ∥22). (5.7)

Thus, by the Gronwall inequality we obtain φ = ϕ = 0 when u1, u2, v1, v2 ∈ L∞(0, T ;H3[−l, l]).
This completes the proof of Theorem 1.1.
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