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Abstract

In this paper, we use, for the first time, the Natural residual power series method (NRPSM) as a new
iteration method to study the Caputo version of the Fitzhugh-Nagumo equation. The Fitzhugh-Nagumo
equation is an essential mathematical model that is widely used to characterize the behavior of excitable
systems, and is valuable for understanding significant physiological and biological processes. To start,
we translate the Fitzhugh-Nagumo equation system into its Natural domain representation, and then we
employ the NRPSM to obtain a series form result. After that, we present a new iteration methodology for
improving the convergence characteristics of the series solution as well as the accuracy of the computations.
In this paper, a comprehensive approach for investigating the Fitzhugh-Nagumo equation with Natural
transform is developed and validated, thus can help researchers to explore the various dynamics and
behaviors of the excitable systems more effectively. Based on the results obtained, we conclude that the
suggested approach to the solution of DEs with the Caputo operator has a great potential for different
applications in several fields of science and engineering.

Keywords: Natural iterative transform method; Natural residual power series method; Fitzhugh-
Nagumo equation; Fractional order differential equation; Caputo operator.

1 Introduction

Fractional differential equations extend the ordinary differential equation by simply replacing the conven-

tional derivative with the fractional derivative operator. Fractional derivatives, in contrast to integer-order

derivatives, are nonlocal operators that also include the function history. The family of fractional deriva-

tives, which includes the Caputo fractional derivatives and Riemann-Liouville, has a wide distribution.

Fractional equations can describe complex systems in physics and engineering, just as ordinary differential
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equations can. In addition, they have become the only methods for solving problems with long memory,

nonlocality, and anomalous diffusion, such as viscoelastic materials, porous media flow, control theory,

and more. One of the key obstacles to solving fractional differential equations analytically is that it is

quite difficult [1–5].

In most cases, numerical approaches are required to solve the problem. The scientific computing

and applied mathematics fields face significant challenges when it comes to the numerical integration of

fractional differential equations. Its development focuses on the rapidity and stability of the numerical

schemes. Fractional calculus allows us to use the power of differential equations to solve certain equations,

and as a result, it may model real-world systems more accurately. The concept of fractional differential

equations comprises an interdisciplinary field that ultimately gives rise to many exciting mathematical

discoveries and important applications [6–8].

Originally described to explain the behavior of spike potentials in a nerve axon, the FitzHugh-Nagumo

equation simplified the Hodgkin-Huxley model. It was a 1960s invention by mathematician Richard

FitzHugh and physiologist Jin-Ichi Nagumo. The FitzHugh-Nagumo model simplifies the Hodgkin-Huxley

model, keeping the key but qualitative properties. The FitzHugh-Nagumo model comprises two differential

equations, one for a voltage variable and another for a recovery variable. A voltage equation with cubic

nonlinear dynamics will exhibit period-spiking solutions with nonlinear qualities. The recovery variable

acts as a slower restorative feedback function for the oscillations. This simplification, in a sense, serves

the goal of understanding the basics of excitability and oscillatory properties in nerve cell dynamics.

Because of its relative simplicity compared to more complex biophysically detailed models, it is still a

good prototypical model for investigating the dynamics of spiking behavior. Science and engineering also

use it to study non-linear oscillatory systems and cross-field phenomena related to excitability [9–13]. In

this study, we will look into the generalised Fitzhugh-Nagumo equation, which is stated by

∂ϕ

∂γ
+ ν(γ)

∂ϕ

∂ζ
− µ(γ)

∂2ϕ

∂ζ2
− η(γ)ϕ(ϕ− α)(1− ϕ) = 0, (1)

with the initial condition

ϕ(ζ, 0) = ϕ0

where ν(γ),µ(γ) and η(γ) are real valued function. For ν(γ) = 0 and µ(γ) = η(γ) = 1 the Eq.1 become

Fitzhugh-Nagumo equation
∂ϕ

∂γ
− ∂2ϕ

∂ζ2
− ϕ(ϕ− α)(1− ϕ) = 0 (2)

The fractional FitzHugh-Nagumo equation is a generalization of the FitzHugh-Nagumo model, which is an

alternative model to the Hodgkin-Huxley model to describe spike generation in neurons. As in the case of

the Caputo derivative, the fractional FitzHugh-Nagumo equation replaces the ordinary time derivative by
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the fractional one. By having fractional derivatives as a dynamic feature, there is memory and hereditary

in the spiking process, which this model uses. Like the classical case, the fractional FitzHugh-Nagumo

model is made of two equations the temporal relationship between the voltage variable and the recovery

variable. Thanks to its non-linear nature, illustrated by the graph, it enables excitability and spiking

characteristics. The second order terms in the fractional derivatives lead to memory dependence and thus

complicate the controllability of the spiking dynamics. A number of papers have been developed in order

to understand why the fractional order terms and the model are more sensitive than the integer order

models. In conclusion, the diffusional approach to the FHN model is necessary for simulation of neuronal

firing and memory effects in comparison with the well established standard approach [14–17].

The Residual Power Series Method (RPSM) is an analytic method for solving a peculiar class of

differential orders. The task is to develop a power series solution around an ordinary point that satisfies the

given differential equation. This method is the best-known example of the general process for solving them.

One puts the power series into the differential equation and sets the residuals (the left-out terms) equal

to zero. Formulating the recurrence relation for the coefficients implies they can be located individually.

Applying the RPSM simplifies the process of finding both specific and general solutions to differential

equations. It also develops a systematic method for deriving function series solutions and studying their

convergence characteristics. While this method may result in many complicated algebraic steps when

dealing with higher-order coefficients, it also ensures that the least squares perform very well. Science

and engineering widely apply RPSM, an effective method for obtaining series answers by using differential

equations, both ordinarily and partially [18–21].

2 Basic Definitions

Let us first provide some background on fractional calculus and other relevant facts from applied mathe-

matics. For further information in this area of research, the reader can see references Hilfer [22], Kilbas

et al. [23], Anastassiou [24], Khan and Khan [25], Silambarasn and Belgacem [26], Belgacem and Silam-

barasan [27].

2.1 Definition

The fractional Rieman-Liouville integral of order p ∈ R+of a function h(γ) ∈ L([0, 1],R) is expressed

by [28,29]

Ip0h(γ) =
1

Γ(p)

∫ t

0
(t− s)p−1h(s)ds,

on the assumption that the integral on the right side of the equation is convergent.
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2.2 Definition

For µ ∈ R, a function f : R→ R+is said to be in the space Cµ if it can be written as f(ζ) = ζqf1(ζ) with

q > µ, f1(ζ) ∈ C[0,∞) and it is in space f(ζ) ∈ Cnµ if f (n) ∈ Cµ for n ∈ N ∪ {0} [28, 29].

2.3 Definition

The fractional Caputo derivative of a function h ∈ Cn−1 with n ∈ N ∪ {0} is given as [28,29]

Dp
t h(t) =

{
In−pf (n), n− 1 < p ≤ n, n ∈ N,
dn

dtnh(t), p = n, n ∈ N.

2.4 Definition

The Mittag-Leffler function (MLF) of two-parameters is expressed by [28,29]:

Ep,β(t) =

∞∑
k=0

tk

Γ(kp+ β)
.

For p = β = 1, E1,1(t) = et and E1,1(−t) = e−t.

2.5 Definition

The NT of a function v(ζ, t) for t ≥ 0 is defined by [28,29]

N [v(ζ, t)] = R(ζ, s, u) =

∫ ∞
0

e−stv(ζ, ut)dt,

where s and u for the transform parameters are taken to be real and positive.

2.6 Definition

The MLF of Natural transform (NT) Ep,β is given as [28,29]

N [v(ζ, t)] =

∫ ∞
0

e−stv(ζ, ut)dt =

∞∑
k=0

uk+1Γ(k + 1)

sk+1Γ(kp+ β)
.

2.7 Definition

The Miller and Ross sense of the NT of Dpf(t) is expressed by the following [28,29]:

N (Dpf(t)) =
sp

up
R(s, u)−

n−1∑
k=0

sn−k−1

un−k
f (k)(0), n− 1 < p ≤ n.
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2.8 Lemma

The NT of ∂
pf(ζ,t)
∂tp with respect to t can be defined as [28,29]:

N
[
∂pf(ζ, t)

∂tp

]
=
sp

up
R(ζ, s, u)−

n−1∑
k=0

sn−k−1

un−k

[
lim
t→0

∂pf(ζ, t)

∂tp

]
.

2.9 Lemma

The Natural transform of p order partial derivative of f(ζ, t) with respect to ζ is denoted by [28,29]

N
[
∂pf(ζ, t)

∂ζp

]
=

dp

dζp
R(ζ, s, u)

2.10 Lemma

The dual relationship between Laplace and Natural transforms is expressed by [28,29]

N [f(ζ, t)] = R(ζ, s, u) =
1

u

∫ ∞
0

e
−u
ζ f(ζ, t)dt =

1

u
L{f(ζ, t)},

where L is the laplace transform. As a conclusion from the above Lemma, it can be noted that the Natural

transform can be seen as an extension of both the Sumudu and Laplace transforms. In particular, when

u = 1 then the Natural transform reduces to the Laplace transform and in same way for s = 1 the

generalization lead us to Sumudu transform.

3 Outline of the suggested methodologies

3.1 First we introduce general implementation of NRPSM

Consider of fractional order’s partial differential equation:

Dp
tϕ(ζ, t) = Nζ [ϕ(ζ, t)]

ϕ(ζ, 0) = f(ζ)
(3)

where Nζ is a nonlinear function related to ζ of degree r, ζ ∈ I, t ≥ 0, Dp
t refers to p-th fractional Caputo

operator for p ∈ (0, 1], and ϕ(ζ, t) is an unknown term.

The following steps may be taken in order to use the Natural RPSM to create the approximate solution

of (3):

Step 1: Utilising the starting data of (3), use the Natural transform on each side of (3),

ϕ(ζ, s) =
f(ζ)

s
− up

sp
N {Nζ [ϕ(ζ, t)]} ,

where ϕ(ζ, s) = N [ϕ(ζ, t)](s), s > t.
(4)
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Step 2: Consider the following fractional expansion is the estimated solution of the equation (4):

ϕ(ζ, s) =
f(ζ)

s
+

∞∑
n=1

uphn(ζ)

snp+1
, x ∈ I, s > t ≥ 0, (5)

and the following is the form of the k-th Natural series solution:

ϕk(ζ, s) =
f(ζ)

s
+

k∑
n=1

uphn(ζ)

snp+1
, ζ ∈ I, s > t ≥ 0. (6)

Step 3: The k-th Natural residual fractional function of (4) is defined as:

N
(
Resϕk(ζ, s)

)
= ϕk(ζ, s)−

f(ζ)

s
+
up

sp
N {Nζ [ϕ(ζ, t)]} , (7)

and (4)’s Natural residual function are defined as:

lim
k→∞

N
(
Resϕk(ζ, s)

)
= N (Resϕ(ζ, s)) = ϕ(ζ, s)− f(ζ)

s
+
up

sp
N {Nζ [ϕ(ζ, t)]} . (8)

Here are a few helpful Natural residual function facts that are necessary to determine the estimated

solution: - limk→∞N
(
Resϕk(ζ, s)

)
= N (Resϕ(ζ, s)), for ζ ∈ I, s > t ≥ 0. - N (Resϕ(ζ, s)) = 0, for

ζ ∈ I, s > t ≥ 0. - lims→∞ s
kp+1N

(
Resϕk(ζ, s)

)
= 0, for ζ ∈ I, s > t ≥ 0, and k = 1, 2, 3, . . .

Step 4: Now put the k-th Natural series solution (6) into the k-th Natural fractional residual function

of (7).

Step 5: The unknown coefficients hk(ζ), for k = 1, 2, 3, . . ., might be obtained by solving the system

lims→∞ s
ka+1N

(
Resϕk(ζ, s)

)
= 0. Subsequently, we gather the obtained coefficients using fractional ex-

pansion series(6) ϕk(ζ, s).

Step 6: Applying the inverse Natural transform operator to both sides of the Natural series solution

to obtain an estimated solution ϕk(ζ, t), of the main Equation (3).

3.2 Problem 1

3.2.1 Applying NRPSM

Consider fractional nonlinear Fitzhugh-Nagumo equation

Dp
tϕ(ζ, t)− ∂2ϕ(ζ, t)

∂ζ2
− (1 + α)ϕ2(ζ, t) + αϕ(ζ, t) + ϕ3(ζ, t) = 0 where 0 < p ≤ 1 (9)
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Subjected to the following IC’s:

ϕ(ζ, 0) =
1

2
tanh

(√
2ζ

4

)
+

1

2
. (10)

Using NT to Eq. (9) and Eq. (10), we get

ϕ(ζ, s)−
1
2 tanh

(√
2ζ
4

)
+ 1

2

s
− up

sp
∂2ϕ(ζ, s)

∂ζ2
− up(1 + α)

sp
N
[
N−1t [ϕ2(ζ, s)]

]
+
upα

sp
ϕ(ζ, s)

+
up

sp
N
[
N−1t [ϕ3(ζ, s)]

]
= 0,

(11)

and so the kth-truncated term series are

ϕ(ζ, s) =

1
2 tanh

(√
2ζ
4

)
+ 1

2

s
+

k∑
r=1

fr(u
pζ, s)

srp+1
, r = 1, 2, 3, 4 · · · (12)

Natural residual function (LRF) are

NtRes(ζ, s) = ϕ(ζ, s)−
1
2 tanh

(√
2ζ
4

)
+ 1

2

s
− up

sp
∂2ϕ(ζ, s)

∂ζ2
− up(1 + α)

sp
N
[
N−1t [ϕ2(ζ, s)]

]
+
upα

sp
ϕ(ζ, s) +

up

sp
N
[
N−1t [ϕ3(ζ, s)]

]
= 0,

(13)

and the kth-NRFs as:

NtResk(ζ, s) = ϕk(ζ, s)−
1
2 tanh

(√
2ζ
4

)
+ 1

2

s
− up

sp
∂2ϕk(ζ, s)

∂ζ2
− up(1 + α)

sp
N
[
N−1t [ϕ2

k(ζ, s)]
]

+
upα

sp
ϕk(ζ, s) +

up

sp
N
[
N−1t [ϕ3

k(ζ, s)]
]

= 0,

(14)

Now, to calculate fr(ζ, s), r = 1, 2, 3, · · · , we put the rth-truncated series Eq. (12) into the rth-

NRF Eq. (14), multiply the solution of equation by srp+1, and then analysis recursively the relation

lims→∞(srp+1NtResϕ,r(ζ, s)) = 0, r = 1, 2, 3, · · · . Following are the first few functions:

f1(ζ, s) =
1− 2α

4 cosh
(

ζ√
2

)
+ 4

, (15)

f2(ζ, s) = −
(1− 2α)2

(
sinh

(√
2ζ
)

+ 2 sinh
(

ζ√
2

))
8

(
32
(

cosh
(

ζ√
2

)
+ 1
)3

cosh6
(

ζ

2
√
2

)) . (16)

and so on.
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Substituting the value of fr(ζ, s), r = 1, 2, 3, · · · , in Eq. (12), we get

ϕ(ζ, s) =
1

s

(1

2
tanh

(√
2ζ

4

)
+

1

2

)
+

1

sp+1

 1− 2α

4 cosh
(

ζ√
2

)
+ 4


up

s2p+1

− (1− 2α)2
(

sinh
(√

2ζ
)

+ 2 sinh
(

ζ√
2

))
8

(
32
(

cosh
(

ζ√
2

)
+ 1
)3

cosh6
(

ζ

2
√
2

))
+ · · ·

(17)

Using inverse Natural Transform,we get

ϕ(ζ, t) =
1

2
tanh

(√
2ζ

4

)
+

1

2
+

tp

Γ(p+ 1)

 1− 2α

4 cosh
(

ζ√
2

)
+ 4



+
t2p

Γ(2p+ 1)

− (1− 2α)2
(

sinh
(√

2ζ
)

+ 2 sinh
(

ζ√
2

))
8

(
32
(

cosh
(

ζ√
2

)
+ 1
)3

cosh6
(

ζ

2
√
2

))
+ · · ·

(18)

Table 1: The various fractional of NRPSM of example 1 for α = 1.

t ζ NRPSMP=0.5 NRPSMp=0.7 NRPSMP=1 Exact Errorp=0.5 Errorp=0.7 Errorp=1

0.1

0.1 0.473109 0.490252 0.505185 0.505177 0.0320683 0.0149258 7.748233×10−6

0.2 0.490889 0.507976 0.522857 0.522839 0.0319508 0.0148633 0.000018038
0.3 0.508691 0.52568 0.540473 0.540444 0.0317539 0.0147641 0.0000281783
0.4 0.52647 0.54332 0.557987 0.557949 0.0314796 0.0146291 0.0000380834
0.5 0.544181 0.560851 0.575359 0.575311 0.0311301 0.0144596 0.00004767
0.6 0.56178 0.578232 0.592546 0.592489 0.0307087 0.0142571 0.0000568591
0.7 0.579224 0.59542 0.609509 0.609444 0.0302194 0.0140236 0.0000655768
0.8 0.596472 0.612377 0.626212 0.626138 0.0296667 0.0137611 0.0000737558
0.9 0.613482 0.629066 0.642619 0.642538 0.0290555 0.0134721 0.0000813364
1. 0.630219 0.645451 0.658698 0.65861 0.0283913 0.013159 0.0000882678

0.01

0.1 0.503582 0.5122 0.516422 0.516422 0.01284 0.00422149 1.008418×10−7

0.2 0.521259 0.529847 0.534053 0.534053 0.0127932 0.00420576 2.034356×10−7

0.3 0.538884 0.547419 0.551599 0.551599 0.0127148 0.00417968 3.043092×10−7

0.4 0.556412 0.564874 0.569018 0.569017 0.0126057 0.0041435 4.026150×10−7

0.5 0.5738 0.582169 0.586267 0.586267 0.0124668 0.00409756 4.975373×10−7

0.6 0.591008 0.599265 0.603308 0.603307 0.0122994 0.00404231 5.883039×10−7

0.7 0.607995 0.616122 0.620101 0.6201 0.0121052 0.00397827 6.741983×10−7

0.8 0.624725 0.632705 0.636612 0.636611 0.0118859 0.00390602 7.545714×10−7

0.9 0.641162 0.64898 0.652807 0.652806 0.0116435 0.00382622 8.288529×10−7

1. 0.657275 0.664915 0.668656 0.668655 0.0113801 0.00373956 8.965618×10−7
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Table 2: The various fractional of NRPSM of NRPSM of example 1 for α = 0.2.

t ζ NRPSMP=0.5 NRPSMp=0.7 NRPSMP=1 Exact Errorp=0.5 Errorp=0.7 Errorp=1

0.1

0.1 0.544394 0.534117 0.525161 0.525156 0.0192374 0.00896085 4.282651×10−6

0.2 0.561915 0.55168 0.542759 0.542751 0.0191646 0.00892974 7.965710×10−6

0.3 0.579284 0.569116 0.560251 0.560239 0.0190449 0.00887669 0.0000115806
0.4 0.596458 0.586381 0.577594 0.577579 0.0188795 0.00880225 0.0000150971
0.5 0.6134 0.603437 0.594748 0.59473 0.0186701 0.00870717 0.0000184864
0.6 0.630071 0.620245 0.611674 0.611653 0.0184188 0.00859237 0.0000217212
0.7 0.646438 0.636769 0.628335 0.62831 0.018128 0.00845896 0.0000247763
0.8 0.662469 0.652977 0.644696 0.644669 0.0178003 0.00830817 0.0000276292
0.9 0.678134 0.668837 0.660726 0.660696 0.0174387 0.00814134 0.0000302599
1. 0.693409 0.684323 0.676396 0.676363 0.0170463 0.00795992 0.000032652

0.01

0.1 0.526122 0.520952 0.518419 0.518419 0.00770276 0.00253283 3.779567×10−8

0.2 0.543716 0.538566 0.536043 0.536043 0.00767351 0.00252334 7.470726×10−8

0.3 0.561202 0.556084 0.553577 0.553577 0.00762542 0.00250764 1.109852×10−7

0.4 0.578537 0.573464 0.570978 0.570978 0.00755895 0.00248589 1.463251×10−7

0.5 0.595681 0.590664 0.588206 0.588206 0.00747477 0.0024583 1.804344×10−7

0.6 0.612594 0.607645 0.60522 0.60522 0.00737369 0.00242515 2.130364×10−7

0.7 0.62924 0.62437 0.621984 0.621983 0.00725665 0.00238673 2.438746×10−7

0.8 0.645585 0.640803 0.63846 0.63846 0.00712475 0.00234341 2.727168×10−7

0.9 0.661596 0.656913 0.654617 0.654617 0.00697917 0.00229558 2.993594×10−7

1. 0.677246 0.672668 0.670425 0.670425 0.00682115 0.00224364 3.236311×10−7
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Table 3: The various fractional of NRPSM of NRPSM of example 1 for α = −0.2.

t ζ NRPSMP=0.5 NRPSMp=0.7 NRPSMP=1 Exact Errorp=0.5 Errorp=0.7 Errorp=1

0.1

0.1 0.58001 0.556042 0.535147 0.53512 0.04489 0.0209219 0.000027362
0.2 0.597377 0.573516 0.552707 0.552659 0.0447174 0.0208566 0.0000473396
0.3 0.614505 0.590809 0.570136 0.570069 0.0444359 0.0207402 0.0000669075
0.4 0.631356 0.607881 0.587393 0.587307 0.0440489 0.0205739 0.0000859039
0.5 0.647894 0.624693 0.604437 0.604333 0.0435604 0.0203595 0.000104175
0.6 0.664086 0.64121 0.621232 0.62111 0.0429754 0.0200991 0.000121575
0.7 0.679902 0.657398 0.637741 0.637603 0.0422997 0.0197952 0.000137971
0.8 0.695317 0.673228 0.653931 0.653777 0.0415393 0.0194507 0.000153246
0.9 0.710305 0.688673 0.669772 0.669604 0.0407011 0.0190687 0.000167295
1. 0.724848 0.703709 0.685236 0.685056 0.0397921 0.0186524 0.000180033

0.01

0.1 0.53739 0.525328 0.519418 0.519418 0.0179717 0.00590987 2.098379×10−7

0.2 0.554939 0.542925 0.537038 0.537037 0.0179021 0.00588765 4.107389×10−7

0.3 0.572353 0.560416 0.554565 0.554565 0.0177886 0.00585096 6.081510×10−7

0.4 0.58959 0.577758 0.571958 0.571958 0.0176324 0.00580017 8.004194×10−7

0.5 0.606609 0.59491 0.589175 0.589174 0.017435 0.00573578 9.859536×10−7

0.6 0.623374 0.611834 0.606177 0.606175 0.0171983 0.00565841 1.163250×10−6

0.7 0.639848 0.628492 0.622925 0.622923 0.0169247 0.00556878 1.330918×10−6

0.8 0.655999 0.64485 0.639384 0.639383 0.0166165 0.00546774 1.487696×10−6

0.9 0.671797 0.660877 0.655522 0.655521 0.0162767 0.00535617 1.632481×10−6

1. 0.687216 0.676543 0.67131 0.671308 0.015908 0.00523506 1.764345×10−6

Figure 1: The fractional order p = 1.0 with NRPSM of Example 1.
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Figure 2: The fractional order p = 0.8 with NRPSM of Example 1.

Figure 3: The fractional order p = 0.6 with NRPSM of Example 1.
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Figure 4: The fractional order p = 0.4 with NRPSM of Example 1.

3.2.2 Implementation of NITM

Using RL integral to Eq.9, we get the equivalent form

ϕ(ζ, t) =
1

2
tanh

(√
2ζ

4

)
+

1

2
−Rpt

[
∂2ϕ(ζ, t)

∂ζ2
+ (1 + α)ϕ2(ζ, t)− αϕ(ζ, t)−ϕ3(ζ, t)

]
(19)

According to NIM procedure, we obtain the following several terms

ϕ0(ζ, t) =
1

2
tanh

(√
2ζ

4

)
+

1

2
,

ϕ1(ζ, t) =
(1− 2α)tp

4Γ(p+ 1)
(

cosh
(

ζ√
2

)
+ 1
) ,

ϕ2(ζ, t) =
1

512
(1− 2α)2t2psech2

( ζ

2
√

2

)((2ζ − 1)t2pΓ(3p+ 1)sech4
(

ζ

2
√
2

)
Γ(p+ 1)3Γ(4p+ 1)

+
4tpΓ(2p+ 1)sech2

(
ζ

2
√
2

)(
2α− 3 tanh

(
ζ

2
√
2

)
− 1
)

Γ(p+ 1)2Γ(3p+ 1)
−

32 tanh
(

ζ

2
√
2

)
Γ(2p+ 1)

)
(20)
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The final result by the NITM is achieved as

ϕ(ζ, t) =
1

2
tanh

(√
2ζ

4

)
+

1

2
+

(1− 2α)tp

4Γ(p+ 1)
(

cosh
(

ζ√
2

)
+ 1
)

+
1

512
(1− 2α)2t2psech2

( ζ

2
√

2

)((2ζ − 1)t2pΓ(3p+ 1)sech4
(

ζ

2
√
2

)
Γ(p+ 1)3Γ(4p+ 1)

+
4tpΓ(2p+ 1)sech2

(
ζ

2
√
2

)(
2α− 3 tanh

(
ζ

2
√
2

)
− 1
)

Γ(p+ 1)2Γ(3p+ 1)
−

32 tanh
(

ζ

2
√
2

)
Γ(2p+ 1)

)
+ · · ·

(21)

Table 4: The various fractional order NITM of example 1 for α = 1.

t ζ NRPSMP=0.5 NRPSMp=0.7 NRPSMP=1 Exact Errorp=0.5 Errorp=0.7 Errorp=1

0.1

0.1 0.473132 0.490225 0.505177 0.505177 0.0320456 0.0149523 2.242087×10−7

0.2 0.49068 0.507879 0.522839 0.522839 0.0321597 0.0149603 4.805486×10−7

0.3 0.508253 0.525514 0.540444 0.540444 0.0321915 0.0149305 7.152781×10−7

0.4 0.525809 0.543086 0.557948 0.557949 0.0321405 0.0148633 9.247423×10−7

0.5 0.543304 0.560552 0.57531 0.575311 0.0320071 0.0147592 1.106003×10−6

0.6 0.560696 0.57787 0.592488 0.592489 0.0317926 0.0146194 1.256919×10−6

0.7 0.577945 0.594999 0.609442 0.609444 0.0314992 0.0144452 1.376182×10−6

0.8 0.595009 0.6119 0.626137 0.626138 0.0311298 0.0142382 1.463330×10−6

0.9 0.61185 0.628537 0.642536 0.642538 0.0306879 0.0140004 1.518712×10−6

1. 0.628432 0.644876 0.658609 0.65861 0.030178 0.013734 1.543435×10−6

0.01

0.1 0.503568 0.512198 0.516422 0.516422 0.0128538 0.00422382 2.645001×10−10

0.2 0.521224 0.529842 0.534053 0.534053 0.0128283 0.00421075 5.162907×10−10

0.3 0.538828 0.547411 0.551599 0.551599 0.012771 0.00418728 7.463168×10−10

0.4 0.556335 0.564864 0.569017 0.569017 0.0126823 0.00415364 9.510221×10−10

0.5 0.573704 0.582157 0.586267 0.586267 0.0125632 0.00411016 1.127565×10−9

0.6 0.590892 0.59925 0.603307 0.603307 0.0124148 0.00405726 1.273896×10−9

0.7 0.607862 0.616105 0.6201 0.6201 0.0122385 0.00399544 1.388790×10−9

0.8 0.624575 0.632686 0.636611 0.636611 0.0120359 0.00392527 1.471858×10−9

0.9 0.640997 0.648959 0.652806 0.652806 0.011809 0.00384739 1.523509×10−9

1. 0.657095 0.664892 0.668655 0.668655 0.0115597 0.00376248 1.544895×10−9
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Table 5: The various fractional NITM of example 1 for α = 0.2.

t ζ NRPSMP=0.5 NRPSMp=0.7 NRPSMP=1 Exact Errorp=0.5 Errorp=0.7 Errorp=1

0.1

0.1 0.544255 0.534082 0.525156 0.525156 0.0190989 0.00892579 1.117026×10−7

0.2 0.561695 0.55162 0.54275 0.542751 0.0189438 0.00886951 2.137622×10−7

0.3 0.578983 0.569031 0.560239 0.560239 0.0187437 0.00879178 3.149955×10−7

0.4 0.596079 0.586272 0.577579 0.577579 0.0185004 0.00869339 4.136716×10−7

0.5 0.612946 0.603305 0.594729 0.59473 0.0182165 0.00857528 5.081642×10−7

0.6 0.629547 0.620091 0.611652 0.611653 0.0178945 0.00843859 5.970011×10−7

0.7 0.645848 0.636595 0.62831 0.62831 0.0175376 0.00828459 6.789035×10−7

0.8 0.661817 0.652783 0.644668 0.644669 0.0171487 0.00811465 7.528170×10−7

0.9 0.677427 0.668626 0.660695 0.660696 0.0167314 0.00793028 8.179304×10−7

1. 0.692652 0.684096 0.676362 0.676363 0.016289 0.00773302 8.736842×10−7

0.01

0.1 0.526113 0.520951 0.518419 0.518419 0.00769337 0.00253179 1.016613×10−10

0.2 0.543699 0.538564 0.536043 0.536043 0.00765648 0.00252135 2.033045×10−10

0.3 0.561177 0.556081 0.553577 0.553577 0.00760087 0.00250471 3.042122×10−10

0.4 0.578505 0.57346 0.570978 0.570978 0.00752711 0.00248205 4.026591×10−10

0.5 0.595642 0.590659 0.588206 0.588206 0.0074359 0.00245358 4.970224×10−10

0.6 0.612548 0.60764 0.60522 0.60522 0.00732811 0.00241959 5.858301×10−10

0.7 0.629188 0.624364 0.621983 0.621983 0.00720476 0.00238038 6.678017×10−10

0.8 0.645527 0.640796 0.63846 0.63846 0.00706698 0.00233632 7.418786×10−10

0.9 0.661533 0.656905 0.654617 0.654617 0.00691597 0.0022878 8.072431×10−10

1. 0.677178 0.67266 0.670425 0.670425 0.00675305 0.00223524 8.633276×10−10
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Table 6: The various fractional NITM of example 1 for α = −0.2.

t ζ NRPSMP=0.5 NRPSMp=0.7 NRPSMP=1 Exact Errorp=0.5 Errorp=0.7 Errorp=1

0.1

0.1 0.578857 0.555781 0.535119 0.53512 0.0437368 0.0206615 7.121856×10−7

0.2 0.595779 0.573119 0.552658 0.552659 0.0431194 0.0204597 1.311268×10−6

0.3 0.612474 0.590279 0.570067 0.570069 0.0424051 0.0202098 1.924016×10−6

0.4 0.628908 0.607221 0.587304 0.587307 0.0416012 0.0199143 2.539556×10−6

0.5 0.645049 0.623909 0.60433 0.604333 0.0407155 0.0195761 3.147202×10−6

0.6 0.660867 0.640309 0.621107 0.62111 0.0397563 0.0191982 3.736794×10−6

0.7 0.676335 0.656387 0.637599 0.637603 0.0387321 0.0187843 4.298987×10−6

0.8 0.691429 0.672115 0.653773 0.653777 0.0376519 0.0183379 4.825497×10−6

0.9 0.706129 0.687467 0.669599 0.669604 0.0365244 0.0178628 5.309289×10−6

1. 0.720414 0.702419 0.68505 0.685056 0.0353582 0.0173628 5.744698×10−6

0.01

0.1 0.537326 0.525322 0.519418 0.519418 0.0179086 0.00590369 5.727748×10−10

0.2 0.554835 0.542914 0.537037 0.537037 0.0177974 0.00587628 1.157795×10−10

0.3 0.572208 0.560399 0.554565 0.554565 0.0176432 0.0058345 1.758065×10−9

0.4 0.589405 0.577736 0.571958 0.571958 0.0174474 0.00577875 2.362949×10−9

0.5 0.606386 0.594884 0.589174 0.589174 0.017212 0.00570958 2.961948×10−9

0.6 0.623115 0.611803 0.606175 0.606175 0.0169392 0.00562764 3.545028×10−9

0.7 0.639555 0.628457 0.622923 0.622923 0.0166315 0.00553371 4.102911×10−9

0.8 0.655674 0.644811 0.639383 0.639383 0.0162917 0.00542864 4.627320×10−9

0.9 0.671444 0.660834 0.655521 0.655521 0.0159228 0.00531337 5.111168×10−9

1. 0.686836 0.676497 0.671308 0.671308 0.0155278 0.00518888 5.548689×10−9

Figure 5: NITM result of example 1 for fractional-order p = 1.
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4 Conclusion

In conclusion, this paper has presented a comprehensive investigation into the Fitzhugh-Nagumo equation

using the Natural residual power series method (NRPSM) in tandem with a new iteration transform

method. We have successfully transformed the equation into its Natural domain representations and

applied the NRPSM to obtain a series form result, while the introduction of the novel iteration method

has significantly improved the convergence properties of the solution. Through numerical examples and

comparative analyses, we have demonstrated the efficacy and accuracy of our approach, showcasing its

potential as a robust tool for investigating differential equations within natural transform. This research

not only advances our understanding of the dynamics of excitable systems, but it also contributes to the

broader field of mathematical analysis and modeling in science and engineering. The combined use of

NRPSM and the new iteration technique offers a promising avenue for tackling a wide array of complex

differential equations, paving the way for further advancements in the study and application of non-local

and non-integer-order derivatives in various domains of research and practical problem-solving.
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