DYNAMICAL BEHAVIOR OF THE
GENERALIZED COMPLEX LORENZ
CHAOTIC SYSTEM*

Fuchen Zhang®™, Fei Xu?

1. Chongging Key Laboratory of Social Economy and Applied Statistics, School of
Mathematics and Statistics, Chongging Technology and Business University,
Chongging 400067, China;

2. Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada

Abstract

The purpose of this paper is to investigate the boundedness and global attractivity of
the complex Lorenz system:

X=a(y-X), y=yx—cy—dxz, 2 :—,Bz+%(iy+x7),

where «,f3,7,c,d are real parameters, x andy are complex variables, z is a real

variable, an overbar denotes complex conjugate variable and dots represent
derivatives with respect to time. This system arises in many important applications in
laser physics and rotating fluids dynamics. It is very interesting that we find that this
system exhibits chaos phenomenon for the given parameters. Using generalized
Lyapunov-like functions, we prove the existence of the ultimate bound set and the
globally exponentially attractive set in this generalized complex Lorenz system. The
rate of the trajectories is also obtained. Numerical simulations show the effectiveness
and correctness of the conclusions. Finally, we present an application of our results
that obtained in this paper.

Key wo rds Complex Lorenz chaotic system; chaotic attractor; Lyapunov exponent;
Lyapunov dimension; global attractivity
1. Introduction
In 1963, Edward Lorenz [1] introduced the real Lorenz chaotic system:
x=a(y-x),
y=rx-y-x, @)
1=—-L7+Xxy,
where «, 3,y are real parameters of the Lorenz system as stated in several papers

[1-3]. The Lorenz system can describe the thermal convection in fluids [1-3]. The
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Lorenz chaotic system has inspired many researchers to study new chaotic systems
and chaotic phenomena [4-12]. Since then, many methods have been proposed to
study chaotic behaviors of chaotic systems [13-32].

A chaotic system is a nonlinear deterministic system that displays complex and
unpredictable behaviors. Since the pioneering work by A.C. Fowler et al. [33],
complex chaotic systems have become an interesting field of research over the last
few decades [34-40]. The complex Lorenz system is as follows:

x=a(y-x), y=yx—y-—xz, z=—,6’z+%(iy+x7), 2)

where xandy are complex variables, z is a real variable and «,f,y are real

parameters, an overbar denotes complex conjugate variable and dots represent

derivatives with respect to time. Variables Xx,y,z in system (2) are related

respectively to electric field, the atomic polarization amplitudes and the population
inversion in a ring laser system of two-level atoms, for more details, see [11, 33]. It is
reported in the literature [34] that the complex Lorenz system (2) is often used to
describe and simulate the physics of detuned lasers. The complex Lorenz model
applies to the description of detuned single mode, homogeneously broadened lasers
when a certain constraint on the parameters is observed [34]. The complex Lorenz
system also has many important applications in physics, for example, in laser physics
and rotating fluids dynamics [35-38]. Nonlinear dynamical behaviors of the complex
Lorenz system, such as bifurcation, limit cycle, analytic solution, the stability of
equilibrium point, synchronous behavior, geometric structure, have been studied in
[33-40].

Boundedness is an important concept in the study of chaotic dynamical systems
which can be applied to analyze the Lyapunov dimension of chaotic attractors [10,14],
chaos control and chaos synchronization [25, 41]. The bounds of the Lorenz system
were studied by Leonov et al. in [18,19]. Inspired by Leonov’ idea, Liao et al. have
proposed the concept of the global exponential attractive set of a chaotic system and
have obtained the global exponential attractive sets of the Lorenz system [41]. It is
reported in the literatures [32, 42] that how to get the bounds of the Chen system and
the Lu system is considered as an open problem. Bounds of the Chen system and the
Lu system have been addressed in [29, 30].

The rest of this paper is organized as follows. The new generalized complex Lorenz
chaotic system is proposed in Section 2. In Section 3, we will study chaotic behaviour
of the five-dimensional Lorenz system (4). In Section 4, we will study the ultimate
boundedness of the five-dimensional Lorenz system (4). In Section 5, we will study
global attractivity of the five-dimensional Lorenz system (4). In Section 6, we will

give conclusion remarks.

2. Mathematical model



According to the complex Lorenz system (2), we propose a generalized complex
Lorenz system as follows

x=a(y-x),
y = yX—cy —dxz, 3)

, 1.
2=-p1 +E(xy+xy),
where x =u, +iu,, y =u, +iu, are complex variables, z=u, is a real state variable,

a, fB,7,c,d are real parameters, an overbar denotes complex conjugate variable,

i?=—1 and dots represent derivatives with respect to time. Variables x,y,z of

system (3) are related respectively to electric field, the atomic polarization amplitudes
and the population inversion in a ring laser system of two-level atoms, for more
details, see [11, 33]. System (3) has many important applications in laser physics and
rotating fluids dynamics [33-40]. The real version of (3) is described by

U =a(u;—-u,),

U, =a(u,—u,),

Uy = yu, —Cu; —du,ug, (4)
u, = yu, —cu, —du,uy,

Ug = U,u, +Uu,u, — Au,,

wherea >0, >0,c>0,d >0,y € Rare real parameters of system (4).

3. Chaos Phenomenon

When the parameters «=0.0046,=0.0008,»=0.03, ¢ =0.001,d =0.009, we have
calculated the Lyapunov exponents of system (4) as 4 =0.0314, 4, =0.0075,

A, =—0.0058, 4, =—0.0136, 4, =—0.0136 by using the algorithm [13]. The Lyapunov

exponents of system (4) is shown in Fig. 1.
The Lyapunov dimension of system (4) is given by [12, 13]

>4

Du=j+ ‘H ) ()

A

j+1

j
such that j is the largest integer that guarantees the inequality Zﬂ,, >0. According

i=1



to the above formula (5), the Lyapunov dimension of system (4) is calculated as
Atbthth 46171,

4]

The Lyapunov dimension of system (4) is a fractional number which ensures the
presence of a strange attractor.

D =4+

Since the largest the Lyapunov exponents of system (4) is 4, =0.0314>0 and the

Lyapunov dimension of system (4) is a fractional number, so the system (4) shows

chaotic behaviour for parameters «=0.0046,=0.0008, »=0.03,c =0.001,d = 0.009.
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Fig. 1 Lyapunov exponents of system (4).
Remark 1:

The Lyapunov exponents of the system (4) are A =-6.1757,1, =—6.2097,

A, =—6.3292, 1, =—7.5025, A, =—7.4897 when «=14,5=3.7,y=35,c=1,d =1. Since
all Lyapunov exponents of system (4) are negative, the system (4) is not chaotic when

the parameters «=14,3=3.7,y=35,c=1,d =1.

In the following part, we will study the boundedness and global attractivity of the

five-dimensional Lorenz system (4).

4. Boundedness

In this section, we will study the boundedness of the five-dimensional Lorenz
system (4). Firstly, let us introduce the following Lemma 1 and Lemma 2 that will be
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used in the following section.
Lemma 1. Define

2 2 (7-cF 2 2
Fl_{(X“XZ'yl’yz’z)%%_?*%”—%y—i‘ }

and
Hy (%0 X, Vs ¥o02) = X2 +XE + Y2+ Y2 +(2-20), (X, X0 ¥i, ¥z 2) €T

Then, we get

, azb,azd,aZe,azﬁc,

" b>ab>d,b>eb>+2c

max  H,(X,%,,Y,,Y,2)= d>a,d>b,d>ed>+2c,

(%% ¥1,Y2,2)ely

e>ae>he>d,e>+/2c,

2 2!

e —-C

4c®, a<+/2c,b<+2c,d <+/2c,e < /2c.

Proof: It can be easily proved by the Lagrange multiplier method.
Lemma 2. Define

G yz Z—C2
rz_{(x’y’z)‘?ﬁ( cz) ‘1}' ©)
and
HZ(X’y’z)zX2+y2+(z_2C)21(X,y,Z)eF2.
Then, we get
a4
2 2! aZb,aZ\/EC,
a —c
b4
(xmza))e(rsz(X,y,Z)= m, b>a,b2\/§C,

4c?, a<+/2¢c,b <+/2c.

Proof: It can be easily proved by the Lagrange multiplier method.
By Lemma 1 and Lemma 2, we can get the ultimate bound and positively invariant set
of the five-dimensional Lorenz system (4).

Theorem 1. For any parametersa >0, #>0,c>0,d >0,y € R, the following set with

two parameters A and m



2
Q,,.= {U |mu? +mu; +Au; +Au; + Ad (us —~ iy;rdam) < ij} 7

is the ultimate bound set and positively invariant set of the five-dimensional Lorenz
system (4), where

U = (u;,U,, Uz, Uy, Us ),

,32 (/1}/ + ocm)2
dad(f-a)i

2 2
ij: M1ﬂ220’a>(;,
' 4ed (f—c)A

,C>a,pf>2a,

(i}/+am)2

o fe <

Proof: Construct the Lyapunov-like function

2
V, . (U)=mu? +mu; + Au + Au; + Ad (US — /Iy;dam] , (8

where VA >0,¥m>0,U =(u,,u,,u,,u,,us). The derivative of V, (U) along the

trajectory of (4) is

dav, . (U
v.n (V) =2mu1%+2mu2%+2/1u3%+2/1u4%+21d KUS_MJ%,
dt @ dt dt dt dt Ad dt
= 2amu, (u; —u, )+ 2amu, (u, —u, )+ 2Au; (yu, —cu, —du,u )
+24u, (yu, —cu, —du,u, )+ 21d (us —~ ﬂy+amj(u1u3 +U,U, — Uy,
=—2amu; —2amu; —2Acu; — 24cu; —24d Bug + 28 (Ay +am)us,
2 2
Ay +am
=—2amu/ - 2amu’ - 2Acu’ — 2Acu; — Z/Idﬂ(us —~ MJFamj + P4y +am) .
22d 2Ad

Let

ﬂy+amj2_ﬁ(17+“m)z (9)
22d ) 4ad ’

T ={U|amu? +amu; + Acu; + Acu; + /ldﬁ(us -

then T is an ellipsoid in R® for «>0,5>0,c>0,d>0,7<R. Outside T,

V,.(U)<0, while inside T,V,, (U)>0.Since V, (U )is a generalized positively

definite and radially unbounded continuous function and I" is a bounded close set,



then the maximum value rUaxVAm(U)z R7, ofthe function V, (U) exists.
el ’ ! '

Obviously, {U V,m(U)<maxV, (U)= Rj’m} contains the solutions of system (4).

Uel

In order to get the maximum value nJalem(U):ij, we have to solve the
el ! ’

following optimization problem:

2
maxV, , (U)= max{mul2 +mu’ +AuZ + Au? + Ad (us - M;damj }
(10)

B /1;/+ozmj2 _ B(Ar+amy’

st.amu? +amu? + Acu? + Acu’ + Ad Bl u
G T AT, AR T A ﬂ[f’ 27d 47d

In order to use Lemma 1 to solve problem (10), let us take \/ﬁul = xl,\/ﬁu2 =X,,

\/Ius =Y, \/Iu4 =Y,,vAdu, = z as new variables, then optimization problem (10)

transforms into:

2
maxvlym(u):max{xf+x§+yf+y§+(z—’17/+—amj }

Jda

(Z _Ay+ O(m)2

X % o oow oy, Uo2dda )

ﬂ(ﬂL;/Jrocm)2 ,8(/17+am)2 ,B(i;/+am)2 ﬂ(i;uram)z (2,7/+am)2 '
41ad 42ad 4.cd 4.cd 4.2d

St.

We can easily get the optimal solution of the above optimization problem by Lemma
1,

ik (/17/ + Ozm)2
dad(f-a)l
B2 (Ay +am)’

—_R2 _
ng(v’l'm (U)— Rﬂ,m = m, ﬂZZC,O{>C,

,C>a,p>2a,

(/1;/+am)2

o P <

It is easy to show that (7) is the ultimate bound set and positively invariant set of

system (4).
This completes the proof.
Remark 2:

i) Let us takem=1 in Theorem 1, then we can get that



2
Q/M:{(ul,uz,u3,u4,u5)‘ul2 +U2 + AuZ + Au? + Ad (us —)“Z;aj slj},

is the ultimate bound set and positively invariant set of the complex Lorenz system (4),

where
4ad(?7+Z;}L op=2a
2 %,ﬂ_zc,mc,
%, p<2a,p<2c.

il) Let us take A =1 in Theorem 1, then we can get that

2
+am
Q :{(ul,uz,u3,u4,u5)‘muf+mu§+u§+uf+d(u5—7/ 5 ]sLi}

1m

is the ultimate bound set and positively invariant set of the complex Lorenz system (4),

where

B (y+ ozm)2
4ad (S -a)

ﬁz (7 + am)2
4ed (B-c)

(r+ ocm)2

d

,C>a,f>2a,

SN
I

f=2C,a>c,

, P<2a,p<2C.

iii) Let us take A =1, m=1in Theorem 1, then we can get that

2
+o
Qlyl:{(ul,uz,u:;,u“u5)\uf+u§+u§+uj+d£u5——7d ] Srz},

is the ultimate bound set and positively invariant set of the complex Lorenz system (4),

where



B (r+a)
2 (ﬁ_a),CZa,ﬂZZm
2 ﬂ2(7’+a)2

rP=d2 7 g>0ca>c,

4cd (B-c)

@, B<2a, B <2

Let us take «=14,5=3.7,y=35,c=1d =1, then we can obtain that
Qlllz{(ul,uz,uyuz,,u5 )‘ U7 +U; +U; +U; +(Us —49)2 < 55.22}
is the ultimate bound set and positively invariant set of the complex Lorenz system

(4).

Fig. 2. shows the projection of €, into the (u,,u;u,) space. Fig. 3. shows the
projection of €, into the (u,,u,,us) space. Projection of €, onto the (us,uy)
plane is shown in Figure 4. Projection of €, onto the (u,,u;) plane is shown in

Figure 5.

50

Fig. 2 Projection of €, intothe (u,,u;,u,)space.
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Fig. 5 Projection of €, onto the(u,,us)plane.

Theorem 2. For any parameters « >0, >0,c>0,d >0,y €R, the following set

2
A:{(ul’ubua!umufx)‘u; +u§+d(u5_§J S r02’u12+u§ S roz} (11)

is the bounds for the five-dimensional Lorenz system (4), where

By’

, | 4cd (ﬂ—c)’ﬂzzc’

o

Proof: Construct the Lyapunov-like function
2
V,(U)=uj+u; +d (us —%j :
The derivative of V, (U )along the trajectory of (4) is

—:2u3—+2u4%+2d (us—gJ%

= 2u, (yu, —cu, —du,u, )+ 2u, (yu, —cu, —du,u;)

+2d (us —%)(—ﬁ’us +U,Uy +U,U, )

= —2¢uZ — 2cu; —2d BuZ + 2ypus.

11



Let

2 2
r, ={(u3,u4,u5)‘cu§+cuj+dﬂ(u5_%j =%},

then T, is an ellipsoid in R® for «>0,8>0,c>0,d>0,yeR. Outside I},
V,(U)<0, while inside T,, V,(U)>0. Since V,(U) is a generalized positively
definite and radially unbounded continuous function and I', is a bounded close set,
then the maximum value maxV, (U)=r; of the function V,(U) exists.

Uel';

In order to get the maximum value r&weﬁxvl (U)=r7, we have to solve the following

optimization problem:

2
max V, (U ) = max{u§+u§ +d(u5—§j }

(12)

AN
steu’+cul+dp|u. —=— | =&,
s (5 Zd) 4d

The following optimization problem is equivalent to
2
max V, (U) = max{us2 +UuZ +d (us —%J }

) w
1

u u
st.——+——4
Byt Byt 7?
4dc  4dc 4d

In order to use Lemma 2 to solve problem (13), let us take U, = z,,u, = z,,"/du, = 7,

as new variables, then optimization problem (13) transforms into:

max V, (U ) = max{zl2 +7; +(Z3 —%T},

2
4]
2 2
st. 212 + 222 - 22\/6 =1.

By-  Br Jal

4dc  4dc 4d
We can easily get the optimal solution of the above optimization problem by Lemma

2,

12



Construct the Lyapunov-like function
V,(U)=u’+u;.
The derivative of V, (U )along the trajectory of (4) is
dv, , du LU du,

dt Ctdt o dt
= 2au, (u; —Uu, )+ 2au, (U, —Uu,),

2u,

=—2qUu’ —2au; + 2au,u, + 2au,u,,
=—2au; - 2au; + o (2uu, + 2u,U, ),
<2au} -2au; +0:(u12 +UZ +U2 +uj),
=—au] —au§+a(u§+uj),

<-aUul —aul +ar?,
=—a[V2(U)—r02].

Thus, we have

So,

This completes the proof.

5. Global exponential attractive domain

Though Theorem 1 and Theorem 2 point out that the solution of the system (4) is
ultimately bounded, they do not give the rate of the trajectories going from the
exterior of the trapping region into the interior trapping region. The rate of the
trajectories going from the exterior of the trapping region into the interior trapping

region of system (4) is given in the following Theorem 3.

Theorem 3. Forany «>0,4>0,c>0,d >0,y R, with

13



Vv

A,m

~ /17+amj2

(U)=mu +muj +Au; + Au; + Ad [us =

. ﬂ(ly+am)2
= ,C, oL =—-"7".
n=min(a,c,f)>0,L, g
When V, (U (t))>L, .V, (U(t))>L,,,, wecan get an exponential inequality of

system (4), given by
ViU () =L 2V, (U (1)) L Je
Hence, the set

Apm = {U |Vz,m (U ) < Lz,m} (14)

ﬂy+amj2 - ,B(Ay+am)2}

:{(Uyuz’uslumus)l MU+ MU, + AU -+ A, + Ad (us - ad Adn

is the global exponential attractive set of the five-dimensional Lorenz system (4).

Proof: Define the Lyapunov-like function

vV

A,m

~ /17+amj2
Ad ’

(U)=mu +muj +Au; + Au; + Ad [us
where >0, m>0,U = (u,,U,,Uy,U,,Ug).
When V, . (U (t))>L, .V, (U(t))>L,,. the derivative of V, (U)along the
trajectory of (4) is

du, du, du d

av, , (U
Win O _ oy B oy, Bz 5 s 97 By 55 [us
at |, dt dt dt dt

= 2amu, (u; —u, )+ 2amu, (u, —u, )+ 24u; (yu, —cu, —du,uy)

_ly+amj%
ad ) dt’

+24u, (yu, —cu, —du,u, )+ 21d (U5 —M/;—damj(ul% +U,U, — Uy,

=—2amu; —2amu; —2Acu; —24cu; —24d Bu¢ + 28 (Ay +am)us,

<—amu! —amu; — Acu; — Acu; — Ad Bu¢ + 28 (Ay +am)us,

2 2
Ay +am
:-amuf—amuzz—/1cu§—ﬂcuj—idﬁ(us—lyzdamj +ﬂ( 71da ) :
A m)?
S_nvl’m(u)+%<o.

That is equivalent to say,

14



dv, . (U)
dt

<-n {v V) —W} (15)

From (15), we can get

e B2y +am)’
o Adn

=V, . (Uy)e ™™ L, (1—e"’(t’t°) )

Vo (U (1) SV, (Ug)e ™) + dr,

We have the following exponential inequality
V/i,m (U (t)) A,m — [Vﬂ m - Lﬂ,m :I eiq(titO)'
Taking limit on both sides of the above inequality as t — +oo results in

limv, (U(t))<L,,

t—>+o0

Namely, the set A, is the global exponential attractive set of system (4).

This completes the proof.
Remark 3:

i) Letus take A =1, m=0, then we can get that the following set

2
‘Pl,oz{(uyumus)'u??"'uf (U _EJ <52} (16)
is the global exponential attractive set of system (4), where

2 ,B7
n=min(c, B)>0,6" = an

The proved method is similar to Theorem 3.
In the following part, we will present an application of the results that obtained in this

paper. We will apply above results to show that the equilibrium point 0(0,0,0,0,0)
of the system (4) is the globally exponentially stable when « >0, 5>0,c>0,d >0,

y <0.

Theorem 4. If real parameterse >0, >0,c>0,d >0,y <0, then the equilibrium
pointO(O, 0,0,0, O)of system (4) is the globally exponentially stable.

Proof. Whena >0, >0,c>0,d >0,y <0, letuschoose m=—y,A=« in Theorem

15



3. Then, we can get L, =L, =0 according to Theorem 3. And the exponential

inequality in Theorem 3 becomes
[ =707 (£) = yu3 (t) +aus (t)+au} (t)+adul (t)] an
17
<[ =7uf (ty) = 703 () +au3 (t,) + au; (t) + adu? (t,) | ()

where 7 =min(a,c,8)>0. The above inequality (17) shows that the equilibrium

point O(0,0,0,0)of system (4) is globally exponentially stable.

Thus, the proof is complete.
Remark 4:

The results of this paper can also be used for chaos synchronization, chaos control and
the estimation of the Hausdorff dimension of attractors. The applications of the
boundedness of chaotic systems in chaos control and chaos synchronization can be
referred to the papers [12, 25]. The applications of the boundedness of chaotic
systems in the estimation of the Hausdorff dimension of attractors can be referred to

the papers [9,14, 21].
6. Conclusions

In this paper, a new generalized complex Lorenz system was proposed and studied
by using the theory of chaotic systems. Boundedness and the global exponential
attractive set of the complex Lorenz system are obtained. The corresponding
boundedness is numerically verified by the computer. Numerical simulations are
presented to show the effectiveness of the theoretical research results. Finally, the
theoretical results obtained in this paper are used to study the globally exponential
stability of the equilibrium point of system (4).
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