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Abstract 

The purpose of this paper is to investigate the boundedness and global attractivity of  

the complex Lorenz system: 

  ,x y x   ,y x cy dxz      
1

,
2

z z xy xy                   

where , , , ,c d    are real parameters, x  and y are complex variables, z  is a real 

variable, an overbar denotes complex conjugate variable and dots represent 

derivatives with respect to time. This system arises in many important applications in 

laser physics and rotating fluids dynamics. It is very interesting that we find that this 

system exhibits chaos phenomenon for the given parameters. Using generalized 

Lyapunov-like functions, we prove the existence of the ultimate bound set and the 

globally exponentially attractive set in this generalized complex Lorenz system. The 

rate of the trajectories is also obtained. Numerical simulations show the effectiveness 

and correctness of the conclusions. Finally, we present an application of our results 

that obtained in this paper. 

Key words Complex Lorenz chaotic system; chaotic attractor; Lyapunov exponent; 

Lyapunov dimension; global attractivity 

1. Introduction 

In 1963, Edward Lorenz [1] introduced the real Lorenz chaotic system: 
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                                     (1) 

where , ,    are real parameters of the Lorenz system as stated in several papers 

[1-3]. The Lorenz system can describe the thermal convection in fluids [1-3]. The 

                                                        

*#Corresponding author: Fuchen Zhang. E-mail:zhangfuchen1983@163.com. Fei Xu: fxu.feixu@gmail.com 



 2 

Lorenz chaotic system has inspired many researchers to study new chaotic systems 

and chaotic phenomena [4-12]. Since then, many methods have been proposed to 

study chaotic behaviors of chaotic systems [13-32]. 

A chaotic system is a nonlinear deterministic system that displays complex and 

unpredictable behaviors. Since the pioneering work by A.C. Fowler et al. [33], 

complex chaotic systems have become an interesting field of research over the last 

few decades [34-40]. The complex Lorenz system is as follows: 

  ,x y x   ,y x y xz      
1

,
2

z z xy xy               (2) 

where x and y are complex variables, z  is a real variable and , ,    are real 

parameters, an overbar denotes complex conjugate variable and dots represent 

derivatives with respect to time. Variables , ,x y z  in system (2) are related 

respectively to electric field, the atomic polarization amplitudes and the population 

inversion in a ring laser system of two-level atoms, for more details, see [11, 33]. It is 

reported in the literature [34] that the complex Lorenz system (2) is often used to 

describe and simulate the physics of detuned lasers. The complex Lorenz model 

applies to the description of detuned single mode, homogeneously broadened lasers 

when a certain constraint on the parameters is observed [34]. The complex Lorenz 

system also has many important applications in physics, for example, in laser physics 

and rotating fluids dynamics [35-38]. Nonlinear dynamical behaviors of the complex 

Lorenz system, such as bifurcation, limit cycle, analytic solution, the stability of 

equilibrium point, synchronous behavior, geometric structure, have been studied in 

[33-40]. 

  Boundedness is an important concept in the study of chaotic dynamical systems 

which can be applied to analyze the Lyapunov dimension of chaotic attractors [10,14], 

chaos control and chaos synchronization [25, 41]. The bounds of the Lorenz system 

were studied by Leonov et al. in [18,19]. Inspired by Leonov’ idea, Liao et al. have 

proposed the concept of the global exponential attractive set of a chaotic system and 

have obtained the global exponential attractive sets of the Lorenz system [41]. It is 

reported in the literatures [32, 42] that how to get the bounds of the Chen system and 

the Lu system is considered as an open problem. Bounds of the Chen system and the 

Lu system have been addressed in [29, 30]. 

  The rest of this paper is organized as follows. The new generalized complex Lorenz 

chaotic system is proposed in Section 2. In Section 3, we will study chaotic behaviour 

of the five-dimensional Lorenz system (4). In Section 4, we will study the ultimate 

boundedness of the five-dimensional Lorenz system (4). In Section 5, we will study 

global attractivity of the five-dimensional Lorenz system (4). In Section 6, we will 

give conclusion remarks.  

2. Mathematical model 
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According to the complex Lorenz system (2), we propose a generalized complex 

Lorenz system as follows 
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                             (3) 

where
1 2 3 4,x u iu y u iu    are complex variables, 

5z u  is a real state variable, 

, , , ,c d   are real parameters, an overbar denotes complex conjugate variable, 

2 1i    and dots represent derivatives with respect to time. Variables , ,x y z of 

system (3) are related respectively to electric field, the atomic polarization amplitudes 

and the population inversion in a ring laser system of two-level atoms, for more 

details, see [11, 33]. System (3) has many important applications in laser physics and 

rotating fluids dynamics [33-40]. The real version of (3) is described by 
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                                 (4) 

where 0, 0, 0, 0,c d R       are real parameters of system (4).  

3. Chaos Phenomenon 

When the parameters =0.0046, =0.0008, =0.03,   0.001, 0.009,c d   we have 

calculated the Lyapunov exponents of system (4) as
1 20.0314, 0.0075,    

3 0.0058,   4 50.0136, 0.0136      by using the algorithm [13]. The Lyapunov 

exponents of system (4) is shown in Fig. 1.  

The Lyapunov dimension of system (4) is given by [12, 13] 
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such that j  is the largest integer that guarantees the inequality 
1

0.
j

i

i
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to the above formula (5), the Lyapunov dimension of system (4) is calculated as 

1 2 3 4

5

4 4.6171.LD
   



  
    

The Lyapunov dimension of system (4) is a fractional number which ensures the 

presence of a strange attractor. 

Since the largest the Lyapunov exponents of system (4) is 
1 0.0314 0    and the 

Lyapunov dimension of system (4) is a fractional number, so the system (4) shows 

chaotic behaviour for parameters =0.0046, =0.0008, =0.03, 0.001, 0.009.c d      

 

Fig. 1 Lyapunov exponents of system (4).  

Remark 1: 

The Lyapunov exponents of the system (4) are 
1 26.1757, 6.2097,      

3 6.3292,   4 57.5025, 7.4897     when =14, =3.7, =35, 1, 1.c d      Since 

all Lyapunov exponents of system (4) are negative, the system (4) is not chaotic when 

the parameters =14, =3.7, =35, 1, 1.c d      

In the following part, we will study the boundedness and global attractivity of the 

five-dimensional Lorenz system (4).  

4. Boundedness  

In this section, we will study the boundedness of the five-dimensional Lorenz 

system (4). Firstly, let us introduce the following Lemma 1 and Lemma 2 that will be 
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used in the following section. 

Lemma 1. Define  
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Proof: It can be easily proved by the Lagrange multiplier method. 

Lemma 2. Define  
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Proof: It can be easily proved by the Lagrange multiplier method. 

By Lemma 1 and Lemma 2, we can get the ultimate bound and positively invariant set 

of the five-dimensional Lorenz system (4).  

Theorem 1. For any parameters 0, 0, 0, 0, ,c d R        the following set with 

two parameters   and m  
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is the ultimate bound set and positively invariant set of the five-dimensional Lorenz 

system (4), where 
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Proof: Construct the Lyapunov-like function 
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where  1 2 3 4 50, 0, , , , , .m U u u u u u     The derivative of  ,mV U along the 

trajectory of (4) is 
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 (9) 

then  is an ellipsoid in
5R  for 0, 0, 0, 0, .c d R        Outside ,  

 , 0,mV U   while inside ,  , 0.mV U  Since  ,mV U is a generalized positively 

definite and radially unbounded continuous function and   is a bounded close set, 
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then the maximum value   2

, ,max m m
U

V U R 


  of the function  ,mV U  exists.  

Obviously,      2

, , ,maxm m m
U

U V U V U R  


   contains the solutions of system (4). 

In order to get the maximum value   2

, ,max m m
U

V U R 


 , we have to solve the 

following optimization problem: 
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In order to use Lemma 1 to solve problem (10), let us take 1 1 2 2, ,mu x mu x   

3 1 4 2 5, ,u y u y du z     as new variables, then optimization problem (10) 

transforms into: 
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We can easily get the optimal solution of the above optimization problem by Lemma 

1, 
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It is easy to show that (7) is the ultimate bound set and positively invariant set of 

system (4). 

This completes the proof. 

Remark 2: 

i) Let us take 1m   in Theorem 1, then we can get that 
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is the ultimate bound set and positively invariant set of the complex Lorenz system (4), 
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ii) Let us take 1   in Theorem 1, then we can get that 
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iii) Let us take 1, 1m   in Theorem 1, then we can get that 
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where 
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Let us take =14, =3.7, =35, 1, 1,c d      then we can obtain that 

    22 2 2 2 2

1,1 1 2 3 4 5 1 2 3 4 5= , , , , 49 55.2u u u u u u u u u u        

is the ultimate bound set and positively invariant set of the complex Lorenz system 

(4). 

Fig. 2. shows the projection of 1,1  into the  2 3 4, ,u u u  space. Fig. 3. shows the 

projection of 1,1  into the  3 4 5, ,u u u  space. Projection of 1,1  onto the  3 5,u u  

plane is shown in Figure 4. Projection of 1,1  onto the  4 5,u u  plane is shown in 

Figure 5. 

 

Fig. 2 Projection of 1,1 into the  2 3 4, ,u u u space. 
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Fig. 3 Projection of 1,1 into the  3 4 5, ,u u u space. 

 

Fig. 4 Projection of 1,1  onto the  3 5,u u  plane. 
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Fig. 5 Projection of 1,1  onto the  4 5,u u plane. 

Theorem 2. For any parameters 0, 0, 0, 0, ,c d R        the following set  
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is the bounds for the five-dimensional Lorenz system (4), where 
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Proof: Construct the Lyapunov-like function 
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The derivative of  1V U along the trajectory of (4) is 
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Let  

 
2 2

2 2

3 3 4 5 3 4 5, , ,
2 4

u u u cu cu d u
d d

 


 
       

  

 

then
3 is an ellipsoid in 3R  for 0, 0, 0, 0, .c d R        Outside

3,  

 1 0,V U   while inside 
3,   1 0.V U   Since  1V U  is a generalized positively 

definite and radially unbounded continuous function and 
3  is a bounded close set, 

then the maximum value  
3

2

1 0max
U

V U r


  of the function  1V U  exists.  

In order to get the maximum value  
3

2

1 0max
U

V U r


 , we have to solve the following 

optimization problem: 

                

 
2

2 2

1 3 4 5

2 2
2 2

3 4 5

max max ,

. . .
2 4

V U u u d u
d

s t cu cu d u
d d



 


    
      

    

  

     
 

                (12) 

The following optimization problem is equivalent to 
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In order to use Lemma 2 to solve problem (13), let us take 3 1 4 2 5 3, ,u z u z du z    

as new variables, then optimization problem (13) transforms into: 
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We can easily get the optimal solution of the above optimization problem by Lemma 

2, 
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Construct the Lyapunov-like function 
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This completes the proof. 

5. Global exponential attractive domain 

Though Theorem 1 and Theorem 2 point out that the solution of the system (4) is 

ultimately bounded, they do not give the rate of the trajectories going from the 

exterior of the trapping region into the interior trapping region. The rate of the 

trajectories going from the exterior of the trapping region into the interior trapping 

region of system (4) is given in the following Theorem 3.  

Theorem 3. For any 0, 0, 0, 0, ,c d R        with 
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is the global exponential attractive set of the five-dimensional Lorenz system (4). 

Proof: Define the Lyapunov-like function 
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That is equivalent to say, 
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From (15), we can get  
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We have the following exponential inequality 
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Taking limit on both sides of the above inequality as t  results in 
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Namely, the set ,m  is the global exponential attractive set of system (4). 

This completes the proof. 

Remark 3: 

i) Let us take 1, 0,m    then we can get that the following set 
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is the global exponential attractive set of system (4), where 
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The proved method is similar to Theorem 3. 

In the following part, we will present an application of the results that obtained in this 

paper. We will apply above results to show that the equilibrium point  0,0,0,0,0O  

of the system (4) is the globally exponentially stable when 0, 0, 0, 0,c d      

0.   

Theorem 4. If real parameters 0, 0, 0, 0, 0,c d        then the equilibrium 

point  0,0,0,0,0O of system (4) is the globally exponentially stable. 

Proof. When 0, 0, 0, 0, 0,c d        let us choose ,m       in Theorem 



 16 

3. Then, we can get , , 0mL L     according to Theorem 3. And the exponential 

inequality in Theorem 3 becomes  

         

           0

2 2 2 2 2

1 2 3 4 5
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1 0 2 0 3 0 4 0 5 0

t t

u t u t u t u t du t
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   (17) 

where  min , , 0.c     The above inequality (17) shows that the equilibrium 

point  0,0,0,0O of system (4) is globally exponentially stable. 

Thus, the proof is complete. 

Remark 4: 

The results of this paper can also be used for chaos synchronization, chaos control and 

the estimation of the Hausdorff dimension of attractors. The applications of the 

boundedness of chaotic systems in chaos control and chaos synchronization can be 

referred to the papers [12, 25]. The applications of the boundedness of chaotic 

systems in the estimation of the Hausdorff dimension of attractors can be referred to 

the papers [9,14, 21]. 

6. Conclusions 

In this paper, a new generalized complex Lorenz system was proposed and studied 

by using the theory of chaotic systems. Boundedness and the global exponential 

attractive set of the complex Lorenz system are obtained. The corresponding 

boundedness is numerically verified by the computer. Numerical simulations are 

presented to show the effectiveness of the theoretical research results. Finally, the 

theoretical results obtained in this paper are used to study the globally exponential 

stability of the equilibrium point of system (4). 
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