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ABSTRACT
A new deformation of the Laplace-Sumudu transform that called general fractional
conformable double Laplace-Sumudu transform (FCDLST) has been introduced.
Its excellent properties are proved, then, fractional partial differential equations is
solved by using the proposed transform. Besides, illustrative examples are provided
to demonstrate the validity and applicability of the presented method.
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1. Introduction

In the last few decades, fractional partial differential equations (FPDEs) have been
modeled many applications in sciences and engineering, such as mechanics, applied
mathematical, physics, etc. [1–6], in the meantime, all sorts of definitions of fractional
derivatives have been reported, such as Riemann-Liouville, Caputo, Hadamard and
so on. These types of fractional derivatives do not obey chain rule, product, and
quotient rule of two functions, these disadvantages complicate scientific applications
or calculations. In 2014, Khalil et. al [1] proposed a new type of derivative called the
conformable fractional derivative (CFD) which has all properties of excellent classical
derivatives.

Recently, various analytic methods are proposed to solve fractional partial differ-
ential equations(FPDEs), such as conformable fractional Sumudu transform method
[4], double integral transform (Laplace-Sumudu transform) method [5–7], homotopy
perturbation sumudu transform method [8], fractional natural adomian decomposition
method [9], Exponential rational function method [10], conformable Laplace transform
method (CLT) [11], conformable double Laplace transform methods(CDLTM) [3, 12],
etc. These integrals transform dealt with some components of them, definitions, and
theorem, besides, some researchers addressed these transforms combining them with
other method such as variational iteration method, differential transform approach,
Adomian decomposition method and Homotopy perturbation technique [13–17] to
solve fractional partial differential equations. In [18], Fractional partial differential
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equations were determined by novel fractional double Laplace-Sumudu integral trans-
form, which is the first paper studied the fractional partial differential equations by
using fractional double Laplace-Sumudu integral transform method.

In this paper, we proposed a new coupling method which called general con-
formable fractional double Laplace-Sumudu transform, it combines conformable frac-
tional Laplace transform with conformable fractional Sumudu transform to solve the
fractional partial differential equations(FPDEs) with arbitrary order derivative, dou-
ble Laplace-Sumudu transform has been studied in [5–7], in which reported integer
order Laplace-Sumudu transform method to solve integer order partial differential
equations, however, we extend them to the fractional derivative with arbitrary order
fractional derivative, besides, a list of new excellent properties of this extension are
given, Lastly, two examples for conformable fractional Laplace-Sumudu transform are
presented to demonstrate the validity and applicability of the presented method.

2. Conformable fractional double Laplace-Sumudu transform

Conformable fractional derivatives were proposed in [1, 2]. in the following, we re-
call the definition of conformable fractional derivatives, and then generalize the con-
formable fractional Laplace transform [3, 4] and conformable fractional Sumudu trans-
form [4] to higher order, lastly, we modify and generalize the conformable double
Laplace-Sumudu transform studied in [5–7], these definitions will be used later.

Definition 2.1. Let f : (0,∞) → R, the conformable fractional derivative of f order
α > 0 by Khalil et el. [1] is defined as:

Dαf(x) = lim
ε→0

f ⌈α⌉−1
(
x+ εx⌈α⌉+α

)
− f ⌈α⌉−1(x)

ε
, n− 1 < α ≤ n, x > 0. (2.1)

where ⌈α⌉ is the smallest integer number greater than or equal α and n ∈ N .
As a special case, if 0 < α ≤ 1, then we have:

Dαf(x) = lim
ε→0

f(x+ εx)− f(x)

ε
, x > 0.

Definition 2.2. Given a real-valued function f(x, t) with two real variables (x, t) ∈
R+×R+. Then, we have the following conformable partial fractional derivative (CPFD)
of higher orders α, β ∈ (n, n+ 1] as follows:

Dα
xf(x, t) = lim

ε→0

f ⌈α⌉−1
(
x+ εx⌈α⌉−α, t

)
− f ⌈α⌉−1(x, t)

ε
, n− 1 < α ≤ n, x, t > 0, (2.2)

Dβ
t f(x, t) = lim

ε→0

f ⌈β⌉−1
(
x, t+ εt⌈β⌉−β

)
− f ⌈α⌉−1(x, t)

ε
, n− 1 < β ≤ n, x, t > 0.

As a special case, if 0 < α, β ≤ 1, equation (2.2) reduces to [16]:

Dα
xf(x, t) = lim

ε→0

f
(
x+ εx1−α, t

)
− f(x, t)

ε
, 0 < α ≤ 1, x, t > 0
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Dβ
t f(x, t) = lim

ε→0

f
(
x, t+ εt1−β

)
− f(x, t)

ε
, 0 < β ≤ 1, x, t > 0.

Definition 2.3. Let f(x, t), x ≥ 0 be a real value function, the conformable Laplace
transform of f(x, t) with respect to x is defined by:

L⌈α⌉−α
x f(x, t)=F⌈α⌉−α(s, t)=

∫ ∞

0
e
−s x⌈α⌉−α

⌈α⌉−α f(x, t)tα−⌈α⌉dx, n− 1 < α ≤ n, x > 0(2.3)

As a special case, if 0 < α ≤ 1, then we have:

Lα
x(f(x, t)) = Fα(s, t) =

∫ ∞

0
e−s xα

α f(x, t)xα−1dx, x > 0.

Definition 2.4. Over the following set of functions:

Aβ=

{
f(x, t) : ∃M, τ1, τ2 > 0, |f(x, t)|<Me

− |f
⌈β⌉−β|

u(⌈β⌉−β) , ift⌈β⌉−β ∈ (−1)j × [0,∞), j=1, 2

}
,

then the conformable fractional Sumudu transform of f(x, t) with respect to t can be
generalized by:

St
β[f(x, t)] = Fβ(x, u) =

1

u

∫ ∞

0
e
− t⌈β⌉−β

u(⌈β⌉−β) f(x, t)tβ−⌈β⌉dt, n− 1 < β ≤ n, t > 0,

then the conformable fractional Sumudu transform of f(x, t) with respect to can be
generalized by:

St
β[f(x, t)] = Fβ(x, u) =

1

u

∫ ∞

0
e
− t⌈β⌉−β

u(⌈β⌉−β) f(x, t)tβ−⌈β⌉dt, n− 1 < β ≤ n, t > 0, (2.4)

Provided the integral exists.
As a special case, if 0 < β ≤ 1, then we have:

St
β[f(x, t)] = Fβ(x, u) =

1

u

∫ ∞

0
e−

tβ

uβ f(x, t)tβ−1dt, t > 0

Provided the integral exists.

Definition 2.5. The conformable fractional double Laplace-Sumudu transform of the
function f(x, t) of two variable x > 0 and t > 0 is denoted by:

L⌈α⌉−α
x S

⌈β⌉−β
t f(x, t) = U(s, u)

=
1

u

∫ ∞

0

∫ ∞

0
e
−s x⌈α⌉−α

⌈α⌉−α
− t⌈β⌉−β

(⌈β⌉−β)u f(x, t)xα−⌈α⌉tβ−⌈β⌉dxdt, n− 1 < α, β ≤ n, x, t > 0.
(2.5)
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As a special case, if 0 < α, β ≤ 1, then we have:

Lα
xS

β
t f(x, t) = U(s, u)

=
1

u

∫ ∞

0

∫ ∞

0
e−s xα

α
− tβ

βu f(x, t)xα−1tβ−1dxdt, x, t > 0

Definition 2.6. The conformable fractional inverse double Laplace-Sumudu trans-
form denoted by:

L−1
x S−1

t [U(s, u)] = f(x, t)

=
1

2πi

∫ γ+i∞

γ−i∞
e

s⌈α⌉T−α

⌈α⌉−α ds
1

2πi

∫ ω+i∞

ω−i∞

1

u
e

t⌈β⌉−β

(⌈β⌉−β)uU(s, u)du, n− 1 < α, β ≤ n.
(2.6)

As a special case, if 0 < α, β ≤ 1, then we have:

L−1
x S−1

t [U(s, u)] = f(x, t)

=
1

2πi

∫ γ+i∞

γ−i∞
e

xα

α ds
1

2πi

∫ ω+i∞

ω−i∞

1

u
e

tβ

βuU(s, u)du.
(2.7)

Theorem 2.1. Let f(x, t) be function that f(x, t), Lα
xf(x, t), α ∈ (n − 1, n] are con-

tinuous with respect to x, then, we have [19]:

Lα
x

(
D⌈α⌉f(x, t)

)
= s⌈α⌉Fα(s, t)− s⌈α⌉−1f(0, t)− s⌈α⌉−2Fα(0, t)

− · · · − s(⌈α⌉−2)Fα(0, t)− s(⌈α⌉−1)Fα(0, t),
(2.8)

Theorem 2.2. Let f(x, t) be a n times differentiable real value function with respect
to t, then we have:

Sβ
t

[
Dnβf(x, t)

]
=

Sβ
t [f(x, t)]

un
− f(x, 0)

un

=

Lβ
t

[
f
(
x, tβ

) 1

β

]
s= 1

u

− f(x,0)
un

un+1

, 0 < β ≤ 1, n ∈ N.

(2.9)

Where s, u are Laplace transform and Sumudu transform variables respectively.

Theorem 2.3. Let f(x, t) be a given real value function, 0 < β ≤ 1, then we have:

Sβ
t [f(x, t)] =

1

u
Lβ
t

[
f
(
x, tβ

) 1

β

]
s= 1

u

(2.10) (2.10)

Theorem 2.4. Let f(x, t) be a given real value function, 0 < β ≤ 1, then we have:

Sβ
t [f(x, t)] =

1

u
Fβ

(
x,

1

u

)
(2.11)
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Theorem 2.5. Let f(x, t) be a given real value function, 0 < α ≤ 1, then we have
[4]:

Lα
x(f(x, t)) = Fα(s, t) = Lα

x

(
f
(
(αx)

1

α , t
))

(s)

3. Some Results and Theorems of the General Conformable Double
Laplace-Sumudu Transform

Theorem 3.1. if 0 < α, β ≤ 1, then conformable Double Laplace-Sumudu transform
for some certain functions are given by:

(a) Lα
xS

β
t (c) =

c

s
, c is a real constant.

(b) Lα
xS

β
t

[(
xα

α

)m (
tβ

β

)n]
=

m!n!

sm+1
un,m, n ∈ N

(c) Lα
xS

β
t

[
e−

xα

α
+τ tβ

β

]
=

1

(s− λ)(1− τu)
, s > λ, u > 1

τ .

(d)

Lα
xS

β
t

[
sin

(
axα

α

)
cos

(
btβ

β

)]
=

a

(s2 + a2) (1 + b2u2)
, s > 0, u >

1

|b|

(e)

Lα
xS

β
t

[
sinh

(
axα

α

)
cosh

(
btβ

β

)]
=

a

(s2 − a2) (1− b2u2)
, s > |a|, u >

1

|b|

(f)

Lα
xS

β
t [xptq] = α

p

αβ
q

β
u

q

β

s1+
p

α

Γ
(
1 +

p

α

)
Γ

(
1 +

q

β

)
,
p

α
,
q

β
> −1.

Proof. (a) Applying the Proposition 1 in [20] and Theorem 2.3 in [4], we get:

Lα
xS

β
t (c) = Lα

x(1)S
β
t (c) =

1
sc =

c
s .

(b) Applying the Proposition 1 in [20] and Theorem 2.3 in [4], we get:

Lα
xS

β
t

[(
xα

α

)m( tβ

β

)n]
= Lα

x

(
xα

α

)m

Sβ
t

(
tβ

β

)n

=
m!

sm+1
n!un.

Similarly, we can prove (c-f) easily

Theorem 3.2. If function f(x, t) is continuous in every finite internal (0, X) and

(0, T ) of exponential order ec
xα

α
+d tβ

β , then the conformable double Laplace-Sumudu
transform of f(x, t) exists for all s and 1

u provided s > c, 1
u > d, 0 < α, β ≤ 1.
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Proof. From the definition 2.5, we have:∣∣∣L⌈α⌉−α
x S

⌈β⌉−β
t f(x, t)

∣∣∣ = |U(s, u)|

=

∣∣∣∣1u
∫ ∞

0

∫ ∞

0
e
−s x⌈α⌉−α

⌈α⌉−α
− t⌈β⌉−β

(⌈β⌉−β)u f(x, t)xα−⌈α⌉tβ−⌈β⌉dxdt

∣∣∣∣
≤ M

∫ ∞

0
e
− (s−c)x⌈α⌉−α

⌈α⌉−α xα−⌈α⌉dx

∫ ∞

0

1

u
e
− ( 1

u
−d))⌈β⌉−β

(⌈β⌉−β) tβ−⌈β⌉dt

≤ M

(s− c)(1− du)
→ 0, s > c,

1

u
> d, x, t → ∞.

Thus, the proof is completed.

Theorem 3.3. Some Derivative Properties of the conformable double LaplaceSumudu
Transform.

Let f1(x, t), f2(x, t) be two functions that have the conformable double Laplace-
Sumudu Transform. then, we have:

(a) Lα
xS

β
t (c1f1(x, t) + c2f2(x, t)) = c1L

α
xS

β
t (f1(x, t)) + c2L

α
xS

β
t (f2(x, t)) , c1, c2 are

real constants.

(b) Lα
xS

β
t

[
e−a xα

α
−b tβ

β f(x, t)

]
= 1

uU
(
s+ a, 1

u + b
)
, a, b are real constants.

(c) Lα
xS

β
t [f(γx, σt)] =

1
rU
(

s
γα ,

u
σβ

)
, r = γασβ

(d) (−1)m+nLα
xS

β
t

[
xmα

αm
tnβ

βn f(x, t)
]
= 1

u
∂mFα(s)

∂sm

[
∂n

∂snFβ(s)
]
s= 1

u

.

Proof. (a) By applying the definition of conformable double Laplace-Sumudu trans-
form (a) can be proved easily.

(b) By using the Theorems 2.4 and 2.5, we get:

Lα
xS

β
t

[
e−− xα

α
−b tβ

β f(x, t)

]
=

∫ ∞

0
e−s xα

α
−a xα

α xα−1

(
1

u

∫ ∞

0
e−

tβ

uβ
−b tβ

β tβ−1f(x, t)dt

)
dx

=

∫ ∞

0
e−s xα

α
−axα α

αxα−1 1

u

(
Lβ
t

(
e−b tβ

β f(x, t)

∣∣∣∣
s= 1

u

)
dx

=

∫ ∞

0
e−s xα

α
−a xα

α xα−1 1

u
Lβ
t

(
e−btf

(
x, (βt)

1

β

)∣∣∣
s= 1

u

)
dx

=

∫ ∞

0
e−s xα

α
−a xα

α xα−1 1

u
Fβ

(
1

u
+ b

)
dx

=
1

u
U

(
s+ a,

1

u
+ b

)
.
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(c)

Lα
xS

β
t [f(γx, σt)] =

=

∫ ∞

0
e−s xα

α

(
1

u

∫ ∞

0
e−

tβ

βu f(γx, σt)tβ−1dt

)
xα−1dx

χ=σt
=

1

σβ

∫ ∞

0
e−s xα

α

(
1

u

∫ ∞

0
e
− tβ

βuσβ f(γx, χ)χβ−1dχ

)
xα−1dx

=
1

σβ

∫ ∞

0
e−s xα

α

(
U
(
γx,

u

σβ

))
xα−1dx

τ=γx
=

=
1

γασβ

∫ ∞

0
e−s τα

αγα

(
U
(
τ,

u

σβ

))
τα−1dτ

=
1

r
U

(
s

γα
,
u

σβ

)
, r = γασβ.

(d) due to the order of differentiation and integration can be changed(convergence
of improper integral), we get:

(−1)m+nLα
xS

β
t

[
xmα

αm

tnβ

βn
f(x, t)

]
=

1

u

∂mFα(s)

∂sm

[
∂n

∂sn
Fβ(s)

]
s= 1

u

=

∫ ∞

0

∂m

∂sm
e−s xα

α

[
1

u

∂n

∂sn
Fβ(s)

]
s= 1

u

xα−1dx

Then differentiating with respect to two times and using Theorems 2.4 and 2.5,we
get the desired results.

Theorem 3.4. (The Convolution Theorem for Conformable fractional Double

Laplace-SumuduTransform). If Lα
xS

β
t [f1(x, t)] = U1(s, u), Lα

xS
β
t [f2(x, t)] = U2(s, u)

exist, then, we have:

Lα
xS

β
t [f1(x, t) ∗ f2(x, t)] = uU1(s, u)U2(s, u).

Where f1(x, t) ∗ f2(x, t) is the convolution of the functions f1(x, t), f2(x, t).

Proof. By using the definition 2.5 and Theorem 6 in [6] and using Heaviside unit
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function, we have,

Lα
xS

β
t [f1(x, t) ∗ ∗f2(x, t)]

=
1

u

∫ ∞

0

∫ ∞

0
e−s xα

α
− tβ

βu (f1(x, t) ∗ ∗f2(x, t))xα−1tβ−1dxdt

=
1

u

∫ ∞

0

∫ ∞

0
e−s xα

α
− tβ

βu

[∫ x

0

∫ t

0
f1(x− δ, t− ε)f2(δ, ε)

]
xα−1tβ−1dxdt

=

∫ ∞

0

∫ ∞

0
f2(δ, ε)dδdε

[
1

u

∫ ∞

0

∫ ∞

0
e−s xα

α
− tβ

βu f1(x− δ, t− ε)H(x− δ, t− ε)xα−1tβ−1dxdt

]
=

∫ ∞

0

∫ ∞

0
f2(δ, ε)dδdε

[
1

u

∫ ∞

0

∫ ∞

0
e−sδ− ε

uU1(s, u)

]
= U1(s, u)

1

u

∫ ∞

0

∫ ∞

0
e−sδ− ε

u f2(δ, ε)dδdε

= uU1(s, u)U2(s, u)

Lemma 3.1. If 0 < α, β ≤ 1, then the conformable fractional Double Laplace-Sumudu
transform of ∂α

∂xα f(x, t),
∂β

∂tβ f(x, t) are given below:

Lα
xS

β
t

[
∂α

∂xα
f(x, t)

]
= sU(s, u)− Sβ

t [f(0, t)]

Lα
xS

β
t

[
∂β

∂tβ
f(x, t)

]
=

1

u
U(s, u)− 1

u
Lα
x(f(x, 0)) · (3.2)

Proof. (3.1)
Applying the definition of Conformable fractional Double Laplace-Sumudu trans-

form,we have:

Lα
xS

β
t

[
∂α

∂xα
f(x, t)

]
=

1

u

∫ ∞

0

∫ ∞

0
e−

xα

α
∂

∂x
f(x, t)x1−αxα−1e−

tβ

βu tβ−1dxdt

=
1

u

∫ ∞

0

∫ ∞

0
e−s xα

α
∂

∂x
f(x, t)e

tβ

βu tβ−1dxdt

Taking integration by part, yields:

=
1

u

∫ ∞

0

∫ ∞

0
e−s xα

α
∂

∂x
f(x, t)e

tβ

βu tβ−1dxdt

= −1

u

∫ ∞

0
f(0, t)e−

xβ

βu tβ−1dt+
s

u

∫ ∞

0

∫ ∞

0
e−s xα

α e−
tβ

βu f(x, t)xα−1tβ−1dt

= sU(s, u)− Sβ
t [f(0, t)].

(3.2) can be proved similarly.
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Theorem 3.5. If 0 < α, β ≤ 1, then the Conformable fractional Double Laplace-
Sumudur transform of ∂2β

∂t2β f(x, t),
∂2α

∂x2α f(x, t), are given below:

Lα
xS

β
t

[
∂2α

∂x2α
f(x, t)

]
= s2U(s, u)− sSβ

t [f(0, t)]− Sβ
t

[
∂α

∂xα
f(0, t)

]
Lα
xS

β
t

[
∂2β

∂t2β
f(x, t)

]
=

1

u2
U(s, u)− 1

u2
Lα
x [f(x, 0)]−

1

u
Lα
x

[
∂β

∂tβ
f(x, 0)

]
.

Proof. Follows by similar process as Lemma 3.1.

Theorem 3.6. If 0 < α, β ≤ 1, then the Conformable fractional Double Laplace-
Sumudu transform of ∂mα

∂xmα f(x, t),
∂nβ

∂tnβ f(x, t) are given below:

Lα
xS

β
t

[
∂mα

∂xmα
f(x, t)

]
= smU(s, u)−

m−1∑
i=0

sm−1−iSβ
t

[
∂iα

∂xiα
f(0, t)

]
,

Lα
xS

β
t

[
∂nβ

∂tnβ
f(x, t)

]
=

1

un
U(s, u)−

n−1∑
j=0

1

un−j
Lα
x

[
∂jβ

∂tjβ
f(x, 0)

]
.

Proof. Follows by using the induction process on n and Lemma 3.1 and Theorems
3.5 .

4. Principle of the FCDLST Method

In this section, we adopt a new technique called FCDLST method for solving FPDEs.
The main idea of the proposed approach is to apply CDLST on the given FPDE
with conformable derivatives to obtain the equation in a new space. Finally, we apply
the inverse FCDLST to obtain the solution of the following nonhomogeneous linear
fractional partial differential equations with conformable derivatives in the original
space.

A
∂2α

∂x2α
u(x, t)+B

∂2β

∂t2β
u(x, t)+C

∂α

∂xα
u(x, t)+D

∂β

∂tβ
u(x, t)+Eu(x, t) = g(x, t), (4.1)

Subjecting to the following initial and boundary conditions:

u(x, 0) = h1(x),
∂β

∂tβ
u(x, 0) = h2(x), (4.2)

u(0, t) = h3(t),
∂α

∂xα
u(0, t) = h4(t), (4.3)

where A,B,C,D,E are real constants and g(x, t) is the nonhomogeneous source term.
Then by applying the property of partial derivative of the conformable double

Laplace-Sumudu transform to Eq. (4.1), single conformable Laplace transform to Eq.
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(4.2) and single conformable Sumudu transform to Eq. (4.3), lastly, yields the simpli-
fied Eq. (4.4):

U(x, t) =
1

As2 + Cs+ B
u2 + D

u + E

{
Ash3(u) +Ah4(u) +

B
u2h1(s)

+B
u h2(s) + Ch3(u) +

D
u h1(s) +G(s, u)

}
,(4.4)

Performing the inverse of conformable double Laplace-Sumudu transform to Eq. (4.4),
yields the analytic solution of Eq. (4.1) as following:

U(x, t)=L−1
x S−1

t

{
1

As2 + Cs+ B
u2 + D

u + E

{
Ash3(u) +Ah4(u) +

B
u2h1(s)

+B
u h2(s) + Ch3(u) +

D
u h1(s) +G(s, u)

}}
.(4.5)

5. Illustrating examples

Example 5.1. Consider the following conformable fractional homogeneous wave
equation:

∂2α

∂x2α
u(x, t)− ∂2β

∂t2β
u(x, t) = 0, (5.1)

the initial and boundary conditions are as below:

u(x, 0) = sin

(
xα

α

)
,
∂β

∂tβ
u(x, 0) = 2 (5.2)

u(0, t) = 2

(
tβ

β

)
,
∂α

∂xα
u(0, t) = cos

(
tβ

β

)
Substituting h1(s) =

1
s2+1 , h2(s) =

2
s , h3(u) = 2u, h4(u) =

1
u2+1 , G(s, u) = 0 into

Eq. (4.5), yields the solution of Eq. (5.1):

U(x, t) = L−1
x S−1

t

[
2u

s
+

1

(s2 + 1) (u2 + 1)

]
= 2

tβ

β
+ sin

(
xα

α

)
cos

(
tβ

β

)
. (5.3)

This result is exactly the same as the solution in [5] when α = β = 1

Example 5.2. Consider the following conformable fractional nonhomogeneous heat
equation:

∂2α

∂x2α
u(x, t)− ∂β

∂tβ
u(x, t)− 3u(x, t) = −3, (5.4)

Subjecting to the conditions:

u(x, 0) = sin

(
xα

α

)
+ 1,

∂β

∂tβ
u(x, 0) = 0, (5.5)
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u(0, t) = 1,
∂α

∂xα
u(0, t) = e

−4
(

tβ

β

)
.

Substituting h1(s) = 1
s2+1 + 1

s , h2(s) = 0, h3(u) = 1, h4(u) = 1
4u+1 , G(s, u) = 3

s into
Eq. (4.5), yields the solution of Eq. (5.4):

U(x, t) = L−1
x S−1

t

[
1

s
+

1

(s2 + 1) (4u+ 1)

]
= 1 + sin

(
xα

α

)
e−4 tβ

β . (5.6)

This result is exactly the same as the solution in [5] when α = β = 1.

6. Conclusion

In this manuscript, the fractional conformable double Laplace-Sumudu transform
(FCDLST)method for solving fractional conformable partial differential equations is
proposed. We presented the related theorems and some properties of the new frac-
tional transform and some examples are given. Examples shows that the fractional
conformable double Laplace-Sumudu transform was a effective approach to solve these
equations, besides, we can conclude the following conclusions:

I. The advantages of the proposed approach over other methods are: (i) its simplicity
and ease of operation of the technique aimed to determine exact solutions to a large
class of nonhomogeneous fractional partial differential equations; (ii) The (FCDLST)
can solve the conformable fractional partial differential equations easily by turning
these equations into algebraic ones; (iii) The (FCDLST) has a rapid convergence of
the exact solution without any restrictive assumption of the solution compared to
other techniques [21].

II. However, it should be noted that the solutions obtained by using this method
are valid only when the inverse of this double Laplace-Sumudu transform exists.
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