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Abstract. Canonical forms of boundary conditions are important in the

study of the eigenvalues of boundary conditions and their numerical com-
putations. The known canonical forms for self-adjoint differential operators,

with eigenvalue parameter dependent boundary conditions, are limited to 4-th

order differential operators. We derive canonical forms for self-adjoint 2n-th
order differential operators with eigenvalue parameter dependent boundary

conditions. We compare the 4-th order canonical forms to the canonical forms

derived in this article.

1. Introduction

Canonical forms of boundary conditions are important in the study of the eigen-
values of boundary conditions [16, Section 1.3], their numerical computations [1],
characterizations of self-adjoint extensions of systems [17] and the study of trans-
mission conditions [19]. In [4], Hao, Sun and Zettl investigate canonical forms of
self-adjoint boundary conditions for fourth order differential operators. They derive
three mutually exclusive types of boundary conditions, which are separated, cou-
pled and mixed boundary conditions. In [2] Bao, Hao, Sun and Zettl provide new
canonical forms of self-adjoint boundary conditions for regular differential operators
of order two and four, while [12] considers canonical forms for regular differential
operators of order three. These results are of importance in the study of depen-
dence of eigenvalues with respect to the parameters of the differential equation
[7, 8, 9, 18]. In particular, this dependence arises in n-th order boundary value
transmission problems [7, 9].

In this paper, we extend the study conducted in [4] to 2n-th order differential
operators. We start our investigation with sixth order differential operators with
self-adjoint boundary conditions that we extend to 2n-th differential operators with
self-adjoint boundary conditions and we show equivalence between the separated
and coupled forms presented in [4] and those obtained during our investigation.

In Section 2, we introduce the self-adjoint sixth order differential operators with
eigenvalue dependent boundary conditions under consideration. In Section 3, we
present the types of boundary conditions for the self-adjoint sixth order differential
operators. Next, using the CS-decomposition, we provide a classification of the
different types of canonical forms for self-adjoint sixth order differential operators
in Section 4 that we extend in Section 5 to canonical forms for self-adjoint 2n-th
order differential operators. Finally, in Section 6 we show equivalences between the
separated and coupled forms provided in [4] with those obtained in this paper.

2010 Mathematics Subject Classification. 34B08, 34B09, 15A21, 15B57.
Key words and phrases. Canonical forms; boundary conditions; self-adjoint operators; the

CS-decomposition; Hermitian.

1



2 YORICK HARDY AND BERTIN ZINSOU

2. Self-adjoint sixth order boundary value problems

We consider on the interval J = (a, b), −∞ ≤ a < b ≤ ∞, the sixth order
differential equation with formally self-adjoint differential expression (with smooth
coefficients) [11, Remark 3.2]

My = −(p3y
′′′)′′′ + (p2y

′′)′′ + (p1y
′)′ + p0y = λwy,(1)

where
1

p3
exists on J , pj ∈ Cj(J) are sufficiently smooth real-valued functions on

J and w ∈ L(J,R) is a real-valued Lebesgue integrable function on J , w > 0 a.e.
on J . If the coefficients are not smooth, we introduce the quasi-derivatives

y[0] = y, y[1] = y′, y[2] = y′′, y[3] = −p3y
′′′

y[4] = (−p3y
′′′)′ + p2y

′′, y[5] = (−p3y
′′′)′′ + (p2y

′′)′ + p1y,
′

y[6] = −(p3y
′′′)′′′ + (p2y

′′)′′ + (p1y
′)′ + p0y,

and (1) is replaced by the equation y[6] = λwy where 1/p3, p2, p1, p0, w ∈ L(J,R),
p3 > 0, w > 0 a.e. on J [11, p. 3]. In either case, the boundary conditions have

the same form. Let Y =
(
y, y′, y′′, y[3], y[4], y[5]

)⊤
. We now consider the sixth order

boundary value problem defined by (1) and the boundary conditions

AY (a) +BY (b) = 0, A,B ∈ M6(C).(2)

For the boundary conditions (2) with the assumptions made so far, [10, Theorem
2.4] leads to

Proposition 2.1. Let C6 be the symplectic matrix of order 6 defined by

C6 = ((−1)rδr,7−s)
6
r,s=1 ,(3)

where δ is the Kronecker delta. Then problems (1)–(2) are self-adjoint if and only
if

rank(A : B) = 6 and AC6A
∗ = BC6B

∗.(4)

3. Types of boundary conditions of sixth order differential
operators

The following theorem gives conditions satisfied by the matrices A, B for the
problems (1)–(2) to be self-adjoint.

Theorem 3.1. Assume that the matrices A,B ∈ M6(C) satisfy (4). Then
(i) 3 ≤ rankA ≤ 6, 3 ≤ rankB ≤ 6;
(ii) let 0 ≤ r ≤ 3; if rankA = 3 + r, then rankB = 3 + r.

Proof. See [15, Theorem 3]. □

Note that the boundary conditions (2) are invariant under left multiplication by
a non singular matrix G ∈ M6(C) and if AC6A

∗ = BC6B
∗, then

(GA)C6(GA)∗ = (GB)C6(GB)∗.

Therefore, the boundary condition form (4) is invariant under elementary matrix
row transformations of (A : B).

Next, we define the different types of boundary conditions based on Theorem
3.1.
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Definition 3.2. Let the hypotheses and notation of Theorem 3.1 hold. Then the
boundary conditions (2), (4) are
(1) separated if r = 0,
(2) mixed if r = 1, 2,
(3) coupled if r = 3.

Remark 3.3. Note that the boundary conditions (2) are separated if each of the six
boundary conditions involves only one endpoint, coupled if each of the six boundary
conditions involves both endpoints, while they are mixed if there is at least one
separated and one coupled boundary conditions.

4. Canonical forms for sixth order differential operators

Here we follow the approach of [6], the matrices concerned are neither centro-
unitary nor pseudo-unitary but they do share some algebraic characteristics of these
matrices. Equation (4) can be written in the form

(5) rank(A : B) = 6, (A : B)

(
C6 0
0 −C6

)
(A : B)∗ = 0,

where

(
C6 0
0 −C6

)
is a skew-Hermitian matrix with eigenvalues i and −i. Thus,

each column vector x∗
j of (A : B)∗ may be written in the form

(6) x∗
j = x∗

j,i + x∗
j,−i

where x∗
j,±i belongs to the eigenspace corresponding to the eigenvalue±i. Condition

(5) may now be written

(7) xj,ix
∗
k,i = xj,−ix

∗
k,−i.

Taking xj,i as the rows of Xi and similarly for X−i, (6) may be summarized as
(A : B) = Xi +X−i and (7) as

(8) XiX
∗
i = X−iX

∗
−i.

Now decompose

(9)

(
C6 0
0 −C6

)
= V

(
iI6 0
0 −iI6

)
V ∗

where V is an arbitrary unitary matrix providing the diagonalization. From the
ordering of eigenvectors (columns of V ) in (9) and the solution (6) in terms of
eigenvectors, the matrix V may be chosen so that (A : B) has the form

(10) (A : B) = (C : D)V ∗.

Writing

V =
(
y∗
1,i · · · y∗

6,i y∗
1,−i · · · y∗

6,−i

)
, V ∗ =



y1,i

...
y6,i

y1,−i

...
y6,−i


,
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where V is unitary and each yj,±i is an eigenvector corresponding to the eigenvalue
±i. Equation (8) yields

Xi = C

y1,i

...
y6,i

 , X−i = D

y1,−i

...
y6,−i


so that (8) becomes

CC∗ = DD∗.

and, since positive definite square roots are unique, the singular value decomposi-
tions C = UCΣCV

∗
C and D = UDΣDV ∗

D show that

ΣC = (U∗
CUD)ΣD(U∗

CUD)∗.

Hence

(A : B) = (UCΣC : UDΣD)

(
VC 0
0 VD

)∗

V ∗

= UC(ΣC : U∗
CUDΣD)

(
VC 0
0 VD

)∗

V ∗

= UC(ΣC : ΣC)

(
VC 0
0 VD(U∗

CUD)∗

)∗

V ∗

= UCΣC(I6 : I6)

(
VC 0
0 VD(U∗

CUD)∗

)∗

V ∗

yields the solution (6) and satisfies (7). Since rank(A : B) = 6, we have rank(ΣC) =
6 and hence ΣC is invertible. By invariance of the boundary conditions under
elementary row operations, we obtain the general form

(11) (A : B) = (I6 : I6)

(
VX 0
0 VY

)∗

V ∗

where VX and VY are arbitrary unitary matrices. Here, the first 6 columns of V are
eigenvectors corresponding to the eigenvalue i of C6 ⊕ (−C6), and the remaining 6
columns correspond to the eigenvalue −i. We write V as the block matrix

V =

(
V11 V12

V21 V22

)
so that (11) becomes

(A : B) = (V ∗
XV ∗

11 + V ∗
Y V

∗
12 : V ∗

XV ∗
21 + V ∗

Y V
∗
22)

where(
C6 0
0 −C6

)(
V11

V21

)
= i

(
V11

V21

)
,

(
C6 0
0 −C6

)(
V12

V22

)
= −i

(
V12

V22

)
.

Again, since the boundary conditions are invariant under row operations, we will
assume

(12) (A : B) = (V ∗
11 +WV ∗

12 : V ∗
21 +WV ∗

22)

where W = VXV ∗
Y is unitary. Choosing a particular V provides some additional

insight. For the purpose of illustration, we also setW = I6 in the following example.
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Let

Vi =
1√
2


1 0 0
0 1 0
0 0 1
0 0 −i
0 i 0
−i 0 0

 =
1√
2

(
I3
iC3

)
,

V−i =
1√
2


1 0 0
0 1 0
0 0 1
0 0 i
0 −i 0
i 0 0

 =
1√
2

(
I3

−iC3

)

where

C3 =

 0 0 −1
0 1 0
−1 0 0

 .

Now consider V given by

(13) V =

(
Vi 0 V−i 0
0 V−i 0 Vi

)
.

Hence

(A : B) =

(
V ∗
i + V ∗

−i 0
0 V ∗

i + V ∗
−i

)
=

(√
2I3 0 0 0

0 0
√
2I3 0

)
.

Here rank(A) = rank(B) = 3. Choosing V as above, leads to a canonical form for
separated boundary conditions in Lemma 4.1.

Let

W =

(
0 I3
I3 0

)
.

Then

(A : B) =

(
V ∗
i V ∗

i

V ∗
−i V ∗

−i

)
=

1√
2

(
I3 −iC3 I3 −iC3

I3 iC3 I3 iC3

)
.

Here we obtain coupled boundary conditions, leading to a canonical form in Lemma
4.1.

From (13), we have

V11 =
1√
2

(
I3 0
iC3 0

)
, V12 =

1√
2

(
I3 0

−iC3 0

)
,

V21 =
1√
2

(
0 I3
0 −iC3

)
, V22 =

1√
2

(
0 I3
0 iC3

)
.

Choosing appropriate W provides the remaining canonical forms. Thus

A =
1√
2

[(
I3 −iC3

0 0

)
+W

(
I3 iC3

0 0

)]
,

B =
1√
2

[(
0 0
I3 iC3

)
+W

(
0 0
I3 −iC3

)]
.
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Let

W =

(
W1 W2

W3 W4

)
.

It follows that

A =
1√
2

(
W1 I3
W3 0

)(
I3 I3
I3 −I3

)(
I3 0
0 iC3

)
,

B =
1√
2

(
0 W2

I3 W4

)(
I3 I3
I3 −I3

)(
I3 0
0 iC3

)
,

and hence

rank(A) = rank(I3) + rank(W3),

rank(B) = rank(I3) + rank(W2).

Necessarily rank(W3) = rank(W2). The CS-decomposition, described in detail
in [13] and [5, Theorem 2.7,1], provides a useful way to speak about rank. In
particular, we obtain the CS-decomposition of W using [3, Corollary 3,1]

W =

(
U1 0
0 U2

)(
C S
−S C

)(
V1 0
0 V2

)
for some unitary matrices U1, U2, V1 and V2, and positive semi-definite diagonal
matrices C and S satisfying C2+S2 = I3. Hence, up to elementary row operations,

A =
1√
2

(
C U∗

1

−S 0

)(
V1 0
0 I3

)(
I3 I3
I3 −I3

)(
I3 0
0 iC3

)
,

B =
1√
2

(
0 S
U∗
2 C

)(
I3 0
0 V2

)(
I3 I3
I3 −I3

)(
I3 0
0 iC3

)
with

rank(A) = rank(B) = rank(I3) + rank(S).

When rankS = 0, then

(14) W =

(
W1 0
0 W4

)
where W1 = U1V1 and W2 = U2V2 are unitary. If rankS ̸= 0, then W does not
simplify in an obvious way. Thus we have the following Lemma.

Lemma 4.1. Let A and B be 6× 6 matrices satisfying

rank(A : B) = 6 and AC6A
∗ = BC6B

∗.

Let Z be the matrix

Z =
1√
2


I3 I3 0 0
I3 −I3 0 0
0 0 I3 I3
0 0 I3 −I3



I3 0 0 0
0 iC3 0 0
0 0 I3 0
0 0 0 iC3

 .

There exist a 6× 6 non singular matrix U , 3× 3 unitary matrices U1, U2, V1 and
V2, and positive semi-definite diagonal matrices C and S with C2 + S2 = I3, such
that

(A : B) = U

(
C I3 0 S
−S 0 I3 C

)
V1 0 0 0
0 U∗

1 0 0
0 0 U∗

2 0
0 0 0 V2

Z
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and, the boundary conditions are

(1) separated, if and only S = 0,
(2) mixed, if and only if 0 < rank(S) < 3.
(3) coupled, if and only if rank(S) = 3.

Remark 4.2. It may be assumed, in this representation of (A : B), that the diagonal
entries of C are non-increasing and that the diagonal entries of S are non-decreasing.

5. Canonical forms for 2n-th order differential operators

We consider on the interval J = (a, b), −∞ ≤ a < b ≤ ∞, the 2n-th order
differential equation with formally self-adjoint differential expression (with smooth
coefficients) [11, Remark 3.2]

(15) My = (−1)n(pny
(n))(n) + (pn−1y

(n−1))(n−1) + · · ·+ (p1y
′)′ + p0y = λwy,

where
1

pn
exists on J , pj ∈ Cj(J) and w ∈ L(J,R), w > 0 a.e. on J . If the

coefficients are not smooth, we introduce the quasi-derivatives [11]

y[1] = y′, y[2] = y′′, . . . , y[n−1] = y(n−1),

y[n] = (−1)npny
(n),

y[n+1] = (−1)n(pny
(n))′ + pn−1y

(n−1),

y[n+2] = (−1)n(pny
(n))′′ + (pn−1y

(n−1))′ + pn−2y
(n−2),

...

y[2n] = (−1)n(pny
(n))(n) + (pn−1y

(n−1))(n−1) + · · ·+ p0y,

and (15) is replaced by the equation y[2n] = λwy where 1/pn, pn−1, . . . , p1, p0, w ∈
L(J,R), pn > 0, w > 0 a.e. on J [11, p. 3]. In either case, the boundary conditions

have the same form. Let Y =
(
y[0], . . . , y[2n−1]

)⊤
. We now consider the 2n-th order

boundary value problem defined by (15) and the boundary conditions

AY (a) +BY (b) = 0, A,B ∈ M2n(C).(16)

For the boundary conditions (16), [10, Theorem 2.4] leads to

Proposition 5.1. Let C2n be the symplectic matrix of order 2n defined by

C2n = ((−1)rδr,2n+1−s)
2n
r,s=1 .(17)

Then problems (15)–(16) are self-adjoint if and only if

rank(A : B) = 2n and AC2nA
∗ = BC2nB

∗.(18)

The method in Section 4 generalizes in a straightforward way. Thus we obtain
the following theorem.

Theorem 5.2. Let A and B be 2n× 2n matrices satisfying

rank(A : B) = 2n and AC2nA
∗ = BC2nB

∗.



8 YORICK HARDY AND BERTIN ZINSOU

Let Z be the matrix

Z =
1√
2


In In 0 0
In −In 0 0
0 0 In In
0 0 In −In



In 0 0 0
0 (−1)n+1iCn 0 0
0 0 In 0
0 0 0 (−1)n+1iCn

 .

Then there exists a 2n × 2n non singular matrix U and n × n unitary matrices
V1, U∗

1 , U∗
2 and V2, and positive semi-definite diagonal matrices C and S with

C2 + S2 = In, such that

(A : B) = U

(
C In 0 S
−S 0 In C

)
V1 0 0 0
0 U∗

1 0 0
0 0 U∗

2 0
0 0 0 V2

Z.

and the boundary conditions are

(1) separated, if and only if S = 0,
(2) mixed, if and only 0 < rank(S) < n.
(3) coupled, if and only if rank(S) = n.

6. Revisiting canonical forms for fourth order differential
operators

Hao, Sun and Zettl derived canonical forms for self-adjoint boundary conditions
for differential equations of order four [4]. In this section we will show some equiv-
alences between the canonical forms in [4] and the forms presented in Lemma 4.1.
The following canonical forms are given [4].

Theorem 6.1 ([4, Theorems 3, 4 and 5]). Let A and B be 4×4 matrices satisfying

rank(A : B) = 4 and AC4A
∗ = BC4B

∗.

Then, the boundary conditions are

(1) separated, if there exists 4 × 4 and 8 × 8 non singular matrices R and R′,
respectively, such that

(A : B) = R


r1 a21 0 −1 0 0 0 0
a21 r2 1 0 0 0 0 0

0 0 0 0 r3 b41 0 −1
0 0 0 0 b41 r4 1 0

R′

for some r1, r2, r3, r4 ∈ R and a21, b41 ∈ C,
(2) mixed, if there exist 4× 4 and 8× 8 non singular matrix R and R′, respec-

tively, such that

(A : B) = R


r1 a21 0 −1 −a31 −za31 0 0
a21 r2 1 0 −a32 −za32 0 0

a31 a32 0 0 r3 b41 0 −1
za31 za32 0 0 b41 r4 1 0

R′,

for some r1, r2, r3, r4 ∈ R and a21, a31, a32, a41, a42, b41 ∈ C,
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(3) coupled, if there exist 4 × 4 and 8 × 8 non singular matrix R and R′, re-
spectively, such that

(A : B) = R


r1 a21 0 −1 −a31 −a41 0 0
a21 r2 1 0 −a32 −a42 0 0

a31 a32 0 0 r3 b41 0 −1
a41 a42 0 0 b41 r4 1 0

R′.

for some r1, r2, r3, r4 ∈ R and a21, a31, a32, a41, a42, b41 ∈ C,

We will consider these forms in the context of Theorem 5.2. In the case of
differential equations of order four, Theorem 5.2 becomes

Corollary 6.2. Let A and B be 4× 4 matrices satisfying

rank(A : B) = 4 and AC4A
∗ = BC4B

∗.

Let Z be the matrix

Z =
1√
2


I2 I2 0 0
I2 −I2 0 0
0 0 I2 I2
0 0 I2 −I2



I2 0 0 0
0 −iC2 0 0
0 0 I2 0
0 0 0 −iC2

 .

Then there exists a 4×4 non singular matrix U and 2×2 unitary matrices V1, U
∗
1 ,

U∗
2 and V2, and positive semi-definite diagonal matrices C and S with C2+S2 = I2,

such that

(A : B) = U

(
C I2 0 S
−S 0 I2 C

)
V1 0 0 0
0 U∗

1 0 0
0 0 U∗

2 0
0 0 0 V2

Z.

and the boundary conditions are

(1) separated, if and only if S = 0,
(2) mixed, if and only if rank(S) = 1.
(3) coupled, if and only if rank(S) = 2.

There are 36 canonical forms according to [4, Theorem 2], which yield (by ele-
mentary operations) the forms listed in Theorem 6.1. To show that Theorem 6.1
and Corollary 6.2 are equivalent, we need to show that U (and C, S, U1, U2, V1

and V2) and R and R′ exist for each canonical form (i.e. for each type of boundary
conditions) which gives equality of the forms. The forms given in both the theorem
and the corollary ensure that AC4A

∗ = BC4B
∗. An exhaustive comparison of all

36 forms is too lengthy and cumbersome to pursue here. We will show equivalence
for two of the forms, which show clear connections between the two representations
of boundary conditions.

First, we consider separated boundary conditions, i.e. S = 0:

U

(
V1 U∗

1 0 0
0 0 U∗

2 V2

)
Z = R

(
A11 C2 0 0
0 0 B21 C2

)
R′

where the left hand side is obtained from the separated boundary conditions form
of Corollary 6.2 and the right hand side from the separated boundary conditions
form of Theorem 6.1. Thus for example,

A11 =

(
r1 a21
a21 r2

)
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is Hermitian, and similarly for B21. Without loss of generality we may assume
R = I4, and we will also assume R′ = I4. We obtain

U

(
V1 U∗

1 0 0
0 0 U∗

2 V2

)
=

1√
2

(
A11 + iI2 A11 − iI2 0 0

0 0 B21 + iI2 B21 − iI2

)
.

From

U

(
V1

0

)
=

1√
2

(
A11 + iI2

0

)
, U

(
U∗
1

0

)
=

1√
2

(
A11 − iI2

0

)
,

U

(
0
U∗
2

)
=

1√
2

(
0

B21 + iI2

)
, U

(
0
V2

)
=

1√
2

(
0

B21 − iI2

)
,

we find

U−1 =
i√
2

(
U∗
1 − V1 0
0 V2 − U∗

2

)
.

Thus,

i

2
(U∗

1 − V1)(A11 + iI2) = V1
i

2
(U∗

1 − V1)(A11 − iI2) = U∗
1

i

2
(V2 − U∗

2 )(B21 + iI2) = U∗
2

i

2
(V2 − U∗

2 )(B21 − iI2) = V2

so that the matrices W1 = U1V1 and W4 = U2V2 in (14) are unitary, where

V ∗
1 U

∗
1 = I2 − 2i(A11 + iI2)

−1 = (A11 − iI2)(A11 + iI2)
−1,

U2V2 = I2 − 2i(B21 + iI2)
−1 = (B21 − iI2)(B21 + iI2)

−1,

are unitary since A11 and B21 are Hermitian. Conversely, the matrices

A11 = −i(V ∗
1 U

∗
1 − I2)

−1(V ∗
1 U

∗
1 + I2)

B21 = −i(U2V2 − I2)
−1(U2V2 + I2)

are Hermitian whenever V1, U
∗
1 , U

∗
2 and V2 are unitary.

Next, we consider coupled boundary conditions, where rank(S) = 2:

U

(
CV1 U∗

1 0 SV2

−SV1 0 U∗
2 CV2

)
Z = R

(
A11 C2 −A∗

21 0
A21 0 B21 C2

)
R′

where the left hand side is obtained from the coupled boundary conditions form of
Corollary 6.2 and the right hand side from the coupled boundary conditions form of
Theorem 6.1. Hence A11 and B21 are Hermitian and A21 is non singular. Without
loss of generality we may assume R = I4. We will also assume R′ = I4. Thus

U

(
CV1 U∗

1 0 SV2

−SV1 0 U∗
2 CV2

)
=

1√
2

(
A11 + iI2 A11 − iI2 −A∗

21 −A21∗
A21 A21 B21 + iI2 B21 − iI2

)
.

Since U is an arbitrary invertible matrix, we will begin with the equivalent form

U

(
V ∗
2 S

−1CV1 V ∗
2 S

−1U∗
1 0 I2

−I2 0 V ∗
1 S

−1U∗
2 V ∗

1 S
−1CV2

)
=

1√
2

(
A11 + iI2 A11 − iI2 −A∗

21 −A∗
21

A21 A21 B21 + iI2 B21 − iI2

)
.

Let U ′ be invertible such that

U =

(
I2 A∗

21(B21 + iI2)
−1

−A21(A11 − iI2)
−1 I2

)−1

U ′.
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which is sensible since the matrix(
I2 A∗

21(B21 + iI2)
−1

−A21(A11 − iI2)
−1 I2

)
=

((
A11 0
0 B21

)
+

(
−iI2 A∗

21

−A21 iI2

))(
(A11 − iI2)

−1 0
0 (B21 + iI2)

−1

)
is invertible since (

−iI2 A∗
21

−A21 iI2

)
is skew-Hermitian and invertible (here we take the block determinant [14, Theorem
3] which yields a positive definite matrix I2 +A∗

21A21). Furthermore, we set

U ′ = −
√
2i

(
(B21 + iI2)(A

∗
21)

−1 0
0 −(A11 − iI2)A

−1
21

)−1

U ′′.

It follows that,

U ′′
(
V ∗
2 S

−1CV1 V ∗
2 S

−1U∗
1 0 I2

−I2 0 V ∗
1 S

−1U∗
2 V ∗

1 S
−1CV2

)
=

(
K11 K12 0 I2
−I2 0 K23 K24

)
where

K11 =
i

2

[
(B21 + iI2)(A

∗
21)

−1(A11 + iI2) +A21

]
,

K12 =
i

2

[
(B21 + iI2)(A

∗
21)

−1(A11 − iI2) +A21

]
,

K23 = − i

2

[
(A11 − iI2)A

−1
21 (B21 + iI2) +A∗

21

]
,

K24 = − i

2

[
(A11 − iI2)A

−1
21 (B21 − iI2) +A∗

21

]
.

We must have U ′′ = I4, and since K24 = K∗
11 we can directly find V1, V2 and S and

C using the singular value decomposition of K11 and the fact that S2 + C2 = I2
where S and C are positive semi-definite diagonal matrices. It remains to show
that unitary U1 and U2 exist and satisfy the equations, i.e. if and only if

K12K
∗
12 −K11K24 = I2, K23K

∗
23 −K24K11 = I2.

Straight forward calculation establishes that these equalities hold. We note that
rank(S) = 2 since K12K

∗
12 = I2 +K11K

∗
11 is positive definite and hence S ≤ I2.
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