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1. Introduction

Consider the elasticity eigenvalue problem (see [27]): Find v € R, (g,u) € T x V
satisfying

AQ - é(u) = Qa in Qa
—dive = vypu, in €, (1.1)

u=0, on 99,

in which © C R? is a bounded polygonal domain, V = Hj(Q), £ = {7 € L*(;S);
Jq, trrdx = 0} with the notations L*(Q), H§(Q) = {v € H(Q) : v[so = 0} and S
being the scalar-valued Lebesgue function space, the vector-valued Sobolev space
and the real symmetric matrices of order 2 x 2, respectively. u and o denote the
displacement and stress, respectively, and p is the mass density which we assume
that p = 1 throughout this paper. The strain tensor £(u) = (Vu + (Vu)”) where
Vu is the displacement gradient tensor. The tensor A is the compliance tensor of
fourth order defined by

1
Ao =5 <o’ — 2 o I> , (1.2)
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where I = (I;j)2x2 is the identity tensor, p and X are two positive Lamé parameters
satisfying

E FEv

S A () "

with the Poisson ratio v € (0,4) and Young’s modulus E. Notice that the coeffi-
cients (u, A) € [p1, p2] X (0,400) and 0 < py < po < +00.

When the Lamé parameter A tends to 4oc0, namely, the material becomes in-
compressible, the performance of the linear conforming finite element deteriorates
( [10,28)]), leading to the so-called locking phenomenon [4,5]. So, it is impor-
tant to design robust numerical methods to solve the elasticity problem. In or-
der to deal with the locking phenomenon, there have been quite a few numerical
methods, including the nonconforming finite element method [10, 11], p-version fi-
nite element method [28], discontinuous Galerkin method [18,20,23,29], the mixed
method [22,24, 25, 35], and so on.

Up to now, the literatures [6, 7,16, 21, 25,27, 36] have done a lot of excellent
works for the linear elasticity eigenvalue problem. Bertrand et al. in [6] analyzed
the approximation of eigenvalues coming from the Hellinger-Reissner variational
principle for elasticity problem and discussed an adaptive scheme. Meddahi et
al. in [25] analyzed a mixed variational formulation with reduced symmetry, and
proved quasi-optimal error estimates of the eigenvalues and eigenfunctions for the
elasticity eigenvalue problem. Russo in [27] gave the theory of nonconforming meth-
ods for the approximation of mixed eigenvalue problems and applied it to discuss
the Hellinger-Reissner elasticity mixed eigenvalue problem, and obtained the opti-
mal error estimates of eigenvalues and eigenvectors. Inzunza et al. in [21] applied
Raviart-Thomas elements to analyze a mixed elasticity eigenvalue problem. In this
paper, we discuss two stabilized two-grid discretizations for the nearly incompress-
ible elasticity eigenvalue problem, and our work are as follows:

(1) Inspired by the work of Zhang and Zhao in [35], for the elasticity eigenvalue
problem (1.1), based on the discrete form of the original mixed variational formu-
lation, we adopt the piecewise constant space and the nonconforming Crouzeix-
Raviart (CR) element for the stress and the displacement, respectively, and intro-
duce the jump penalty term to the displacement to estiblish a locking free and
stablilized nonconforming mixed finite element method. Besides, we present an a
priori error analysis in the L2-norm for stress and in the broken H'-norm for dis-
placement. It is worth noting that, our mixed formulation can be reduced to the
stabilized nonconforming finite element method in [18], in which the error estimates
was analyzed in a mesh dependent energy-like norm for the elasticity problem.

(2) One expects to obtain approximate solutions as accurate as possible with
less computation costs, and two-grid discretization is one of the efficient methods
to achieve this goal. It has been successfully used to solve eigenvalue problems (see,
e.g., [1,7,12,15,17,19,30-33,37,38], etc). In this paper, we propose two two-grid
discretization schemes for solving the elasticity eigenvalue problem which belongs
to the second type mixed eigenvalue problems (see [8]). With our schemes, the solu-
tion of the elasticity eigenvalue problem on a fine mesh 7y, is reduced to solving an
eigenvalue problem on a much coarser mesh wy as well as solving a linear algebraic
system on the fine mesh mp,, and the resulting solution remains an asymptotically
optimal accuracy. Numerical experiments suggest that it takes significantly less
time to obtain nearly the same accurate approximations by two-grid discretization
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schemes than direct computation on a fine mesh.

(3) As we know, it is difficult to calculate elasticity eigenvalues in large param-
eter cases. In existing literatures there are few numerical experiments reports for
the elasticity eigenvalue problem in the case of large parameter A (the Poisson ratio
v — %) Here we implement numerical experiments especially with respect to large
parameter A. Numerical results obtained by using the stabilized nonconforming
mixed finite element method and two-grid discretization schemes tend to be stable
as A increases, which indicates that our methods are locking free. The advantage
of two-grid schemes becomes more and more obvious as A increases.

Throughout the paper, C' denotes a positive constant independent of the mesh
size h and Lamé parameter A, which may represent different values in different
occurrences.

2. The linear elasticity eigenvalue problem and its
mixed nonconforming finite element approxima-
tion

In this section, we introduce the linear elasticity problem and the corresponding
eigenvalue problem and its nonconforming mixed finite element approximation.

2.1. Notations

Let x = (z1,72)T, v(x) = (v1(x),v2(x))?, and 9; = %. The standard notation
H*(f) is used to denote the Sobolev space with norms |[- ||s.q and seminorms |-|.q,
and H(Q) = {v e HY(Q) : v|gpo = 0}. For simplicity, we use || - ||s and || instead
of || - [ls.o and | - |s.q, respectively. We use L?(2), H*(Q2) and H*(;S) to denote

the vector-, tensor- and symmetric tensor-valued spaces, respectively. For vectors

2
w, v € R? and matrices o, T € S, denote (Yu);; = 0ju;, (dive); = > 0j0,; and
j=1

2
oIT= ) 0T
ij=1
7y := {k} is used to denote a regular mesh of ). For an edge (face) F, hg is the

diameter of E, h, is the diameter of element x, and the mesh diameter h = rréax hy.
KE&Th

Let &£ be the set of all interior edges (faces) of 7, £ be the set of all edges (faces)
on the boundary, and &, = &} U 5,2. For any edge (face) E € &}, let n™ be the unit
normal of F pointing from x* to k= and n* = —n~, and for any function w, the
jump of w through F is defined by

Wiz = (Wlet)le = (W)l 5.
For any edge (face) E € £ on the boundary, we define
[Wlle = w|g.
Given a mesh 7, define the following spaces:

X, ={r,€X: 1,lx € Po(k;S), VK € mr},
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Vy, = {Vh € L2(Q): vule € Pi(k), YV € T and/[v]ds =0, VE € Sh},
E

where V), is the nonconforming CR finite element space [14], P,, (k) is the space
of polynomials of degree at most m (m = 0,1) in x and P,,(k;S) is the space of
symmetric tensor in Py, (k).

Define the broken H'-norm || - [|1,, on Vj:

Vie = [ D IV
KETH

2.2. Nonconforming mixed finite element approximation for
the linear elasticity problem

Consider the following linear elasticity problem:
AQ - é(u) = Qa iH Qv
—dive =g, in €, (2.1)

u=0, on 99,

here g is the load function.
The primal mixed variational formulation of (2.1) is stated to seek (o8, u®) €
X x V staisfying
a(o8,7)+b(T,u8) =0, VreXx, (2.2)
b(g8,v)=—(g,v), VWeV, (2.3)

where

1 A
a(o®, 1) = / Ag® : Tdx = / — (ag - tragI) : Tdx,

) = = [ 7 s(ufx, (gv) = [ g-vax

We use || Al|o,q to denote the L?-norm of A (if A is a matrix, [|Allo.o = 1/ [, 4 : Adx;

if Ais a vector, ||Alloo =4/ [oA-Adx ). We also use || - ||o instead of || - ||o,q for
simplicity. From K-ellipticity and In f-sup condition (see (3.2) and (3.3) in [35]), by
the Brezzi-Babuska theory for mixed methods, we know that the problem (2.2)-(2.3)
has a unique solution (g®,u8) € 3 x V such that

le®llo + [uE] < Clglo. (2.4)

A stabilized nonconforming mixed finite element formulation of (2.2)-(2.3) is:
Find (o%,uf) € 3, x V), such that

a(o%, 1)+ bp(T,uf) =0, VreXx,, (2.5)
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bh(g%,v) + Ch(u;gmv) = *(g,V), Vv € Vha (26)

where

bp(T,uf) = Z/Teuh

rETE

cn(uf,v)=—-0 Y hy /E[u%] - [v]ds,

Ee€&y,

where 6 is a positive constant.
Remark 1. Noticing that for finite A, A is invertible, and o8 = A~ g(uf) with g,
being the elementwise version of £. Substituting it into (2.6), we can obtain

Z /A e(uf) e(v)dx+46 Z hz / uf] - [vlds = (g, v), (2.7)

rEmy Y Eec&y

which indicates that the stabilized nonconforming mixed finite element method
(2.5)-(2.6) is exactly the stabilized nonconforming CR element method in [18] in
which the authors analyzed the error estimates for the elasticity problem in an
energy-like norm that is related to mesh and Lamé parameters, while in this paper,
we analyze the errors of stress in L?-norm and displacement in the broken H'-norm,
which are completely independent of the mesh size and Lamé parameters.

We can easily prove that a(-,-) and ¢g(+, -) are symmetric, and from [35] we know
the following conditions hold:

a(gy, 1) < CllalollTllo, Vo, T e X,
bu(t,up) < Cltlollunlli,n, YT € X, up € V.
Zn-ellipticity:
a(zy,, 1) = M|z, ll5, VT, € Zy, (2.9)

where M > 0 is a constant and Z;, = {1, € X, |bn(T},vh) =0,V € Vi }.
Inf-sup condition:

1

> Billvallin — Be < Z h;:1||[Vh]|(2),E> ; (2.10)

Eecé&y

sup bu(Th, V)
0#T,€X, sl

where 31, B2 are two positive constants.

From Brezzi-Babuska theorem, we know that the stabilized formulation (2.5)-
(2.6) admits a unique solution (g%, uf) € X; x Vj.

We refer to [2,22,26] to give the following regularity assumption. Let Q C R? be
a bounded convex polygonal domain. For any g € L?(Q), (2.2)-(2.3) has a unique
solution a® € H(2;S) and u8 € H2(Q2) N H(Q) such that

g8l + lugl2 < Cllgllo- (2.11)

Let (08, u®) and (of, uf) be the solution of (2.2)-(2.3) and (2.5)-(2.6), respectively.
The consistency term of nonconforming mixed finite element is defined by:

Ep(a®,u8,v) = bp(a®,v) + (g, V), VWeV+V, (2.12)
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Referring to [35] we have the following estimate:

[En(g®,u®,v)| < Chlg®|i[lv

l1h, YWEV V. (2.13)

Proposition 1. Assume that Q C R? be a bounded convex polygonal domain,
(o8,u8) and (o%,uf) are the solution of (2.2)-(2.3) and (2.5)-(2.6), respectively,
then it is valid that

oy — a%llo + luf — u®|lin < Chllgllo, (2.14)
[uf —u®llo < Ch?|g]o, (2.15)

where C' is a positive constant.

2.3. Nonconforming mixed finite element approximation for
the linear elasticity eigenvalue problem

The weak formulation of (1.1) is: Seek v € R, (g, u) € ¥ x V satisfying

a(g,)+b(r,u) =0, VreX, (2.16)
b(o,v) =—y(u,v), VveV. (2.17)

A stabilized nonconforming mixed finite element formulation of (2.16)-(2.17)
reads: Find v, € R, (o), up) € X, X V}, such that

a<ghvl) + bh(I, uh) =0, Vre X, (218>
br(ap,v) + cp(un, v) = =y (up,v), Vv € Vy,. (2.19)
Define the operators S : L2(Q) — X and T : L2(Q) — V <5 L2(Q) by

a(Sg, T)+b(r, Tg) =0, VT € X, (2:20)
b(§g7V) = —(g7v), Vv € Vv (221)

then Sg = 08, Tg = u®.
Define S, : L*(Q;S) = X, and T, : L*(Q) — V, by

(8,8, T) + bu(T, Thg) =0, VT € X, (2.22)
bh(ﬁhgvv) + Ch(Thg,V) = —(g,V)7 Vv e Vh7 (223)

then S, g = of, Tyg = u}. Thus, (2.16)-(2.17) and (2.18)-(2.19) have the following
equivalent operator forms, respectively:

g = §(’Yu)7 ,-Y'I‘u =u, (224>

g, =S, (vun),  WThu, = up, (2.25)

and % and %} are the eigenvalues of T and T},, respectively.

Lemma 2.1. For any g € L%(Q), the operators
T: L*(Q) = L%(Q) and T}, : L3(Q) — L*(Q) (2.26)

are both self-adjoint.
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Proof. Since a(-,-) is symmetric, by a similar argument with that on page 753
in [3], we can verify that T is self-adjoint. Next we will prove T}, is self-adjoint.

For any g, f € L?(Q2), let v = Thf in (2.23) and we can obtain
br (S8, Trf) + cn(Trhg, Trf) = —(g, Tihf).
Let g =f and 7 = S, g in (2.22), then we have
a(S,f,8,8) +bn(S,g, Trf) =0,
which together with (2.27) yields
(8, Tnf) = a(S,f, S),8) — cn(Thg, Thf).
Denote g = f and v = T),g in (2.23), we get
br(S,f, Thg) + cn(Thf, Trg) = —(f, T1,g),
and let 7 = S, f in (2.22) we have
(81,8, Suf) + bn(Spf, Trg) = 0.
From (2.30) and (2.31) we obtain
(f,Trg) = a(8,8,8,f) — cn(Thf, Trg),
which together with the symmetry of a(-,-), cn(+,-) and (2.32) we derive

(Trg,f) = (f, Thg) = a(S,,8,8,f) — cn(Trf, Trg)
= a’(ﬁhf7§hg) - C}L(Thga Thf) = (g7 Thf)a

i.e., T}, is self-adjoint.

Lemma 2.2. For any g € L%(Q), there hold

Trgll1,n < Cligllos
1S,gllo < Cligllo-

Proof. By the triangle inequality, (2.14) and (2.4) we derive

IThglli,n = |Thg — Tg+ Tgl1n < | Thg — Tg
< Chlgllo + Cllgllo < C|gllo-

l1.n + I Tgll

Using the similar arguments to (2.36) we have

1Srgllo < [1S,g — Sgllo + [ISgllo < Clgllo,

The proof is completed.
From (2.14) and (2.15) we get

ITrhg — Tgllo

T —T|lo = sup 2 T2 < Ch? = 0(h — 0),
geL2(Q)\{o0} lgllo
S,;g—S
||§h _§||0 — sup ||—hg ngO S Ch.

geL2(Q)\{o} ||g|\0

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.38)
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By (2.38) and T}, is a finite rank operator, we know that T is completely con-
tinuous operator. According to the spectral approximation theory, the eigenvalues
of (2.16)-(2.17) can be arranged as

0<m << << S +oo,
and the corresponding eigenfunctions are

(leul)a (QZﬂUQ)a T 7(£k7uk)a t

where (u;,u;) = d;;. The eigenvalues of (2.18)-(2.19) can be arranged as
0<vipn<vn< - <vhn<--<TINh,

and the corresponding eigenfunctions are

(Ql,}w ul,h)? (QZ,hv u2,h)7 ) (Qk,ha uk,h)7 Tty (QN,}N uN,h)7

where (w; p,u;p) = d;5, N = dimVy,.

Let v = %, Vioh = %1 —. In the following discussion, 7 and ~y, all denote the kth
eigenvalue. Y

Suppose that {v;} and {7y} are eigenvalues of (2.16)-(2.17) and (2.18)-(2.19),
respectively. We use v = 7% to denote the kth eigenvalue with the algebraic mul-
tiplicity ¢, that is v = 9% = Y41 = -+ = Yr4¢—1. The space spanned by all
eigenfunctions corresponding to v is written as M(y), and direct sum of eigenspaces
corresponding to all eigenvalues of (2.18)-(2.19) converge to « is written as My (7).

Lemma 2.3. Assume that (Y, op,un) is the kth eigenpair of (2.18)-(2.19) and
llunllo =1, and vy is the kth eigenvalue of (2.16)-(2.17). Then v, — v when h — 0,
and there exists an eigenpair (o,u) corresponding to vy satisfying

[vn — 71 < Ch?, (2.39)

|up —ullo < Ch?, (2.40)

loy, —allo < Ch, (2.41)

|lup —ull1,n < Ch. (2.42)
Moreover, let u € M(y) and ||ullo = 1, then we have uy, € Mp(y) such that

lup —ulj1,n < Ch. (2.43)

Proof. We refer to [3,34] to complete the proof. From Lemma 1 in [34] we have
Yn — 7 (h — 0). By Theorem 7.2 in [3] and (2.38) we get

vn =41 < C((Th = T)u, w) + [[(Th = T)laae) I
< CI(Th = T)ullo + (T — T) |y 1§ < CR,
i.e., (2.39) holds. From Lemma 2 in [34] we get
lar = ullo < Cll(Th = T)|nay llo, (2.45)

which together with (2.38) yields (2.40). Using the triangle inequality, (2.24), (2.25),
(2.39), (2.40), (2.35) and (2.14), we derive (2.41) as follows

(2.44)

ey —allo < 1Sy vrun — Spyun + Spyup — Sy yu+ S,yu — Syullo
< Clvn —MISpunllo + vl[un —ullo) + [[Spyu — Syullo (2.46)
< Ch.
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Using a similar argument as (2.46), we can get

lun = uflin < Clvn = Al Taunlln +vlun —ulo)

2.47
<on, (2.47)

that is (2.42). Next we will prove (2.43). The eigenfunctions {u; 5 } is used to denote
an orthonormal system of My, (y) with respect to the inner product (-, ). Combining
with (2.40) we have a basis {ug}zﬂ_l for M(v) satisfying |[ul|lo = 1 and making

k+q—1
(2.40) hold. Hence, for any u € M(v) with ||uljo = 1, let u = Zk ajul, then we
j=k
have
k+q—1 k+q—1
1=ul2 = Z a + Z a;ai(u ) (2.48)
i#j,1,0=k

By (2.40) we have (u?, u(])) (u?,u(])) — (u; p,u5,) = 0 (b — 0) when i # j, thus,
k+q—1 k+q—1
> oz? —1(h—0). Let u, = >, aju;y, we have u, € My (y). By (2.40) we
=k =k
derive
k4+q—1
fun —ulo £C 3 a2fugn - ulllo < CR2, (2.49)

J=k

combining the triangle inequality, the inverse estimate and the interpolation error
estimation, we derive

ullin+ [ Thu—uln
< Ch=Y||up = Tpullo + Ch < Ch, (2.50)

i.e., (2.43) holds. Here I, u is a linear interpolation function. O
Suppose that (g, u) is an eigenfunction of (2.16)-(2.17), then for any v € V4V,

En(o,u,v) =by(a,v) + (yu,v). (2.51)
For any (g2, u%) € ), x Vj,, u® # 0, define the Rayleigh quotient

. a(a®,a%) + 2b,(a%,u’) + cp(u’,u’)
7= —(uO, u") ‘

(2.52)

Lemma 2.4. For any (¢°, u°) € £, x Vj, u® # 0, assume that (v, o, u) is an
eigenpair of (2.16)-(2.17), then the Rayleigh quotient 4" satisfies

. a(e® — g, — o) +2by(a® — o, u’ —u) + ¢ (u’ — u,u’ — u)
Y —y=
—(uf,u?) (2.53)
n (u’ —u,u’ —u) 2E,(g,u,u’)
K _(uO’uO) _<u0’u0)

Proof. From (2.16)-(2.17), (2.18)-(2.19), the symmetry of a(-,-) and (2.12), we

can derive

0 0

a(e® —o,06° —a) +2b,(a’ — o, u’ —u) + ¢, (0’ —u,u’ — u) + y(u’ — u,u’ —u)

a(a o )+2bh(0’ u )+Ch(u07u0) +7<u07u0)
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- [a(g 72) + bh(Q(), u) + bh(gv uO) + Ch(uov 11) + 7(“07 ll)}
— la(a, a®) + by (a®, u) + by (g, u’) + ¢ (u,u’) + y(u,u’)]
[

+ [a(o, o) + bp(o,u) + bp(o,u) + cp(u,u) + y(u,u)]
=a(a®, &%) + 2b, (e, u°) + i (u’, u®) + y(u’, u)

— [a(g,a®) + bu(a®,u)] — 2B, (e, u,u’)
=a(a?,a") + 2b,(a°,u®) + ci(u®,u’) + y(u’,u’) — 2E; (o, u,u’), (2.54)
dividing by —(u®, u®) on both sides of (2.54) yields (2.53). O

3. Two-grid discretizations for the linear elasticity
eigenvalue problem

In this section, two two-grid discretizations are presented to solve the linear elastic-
ity eigenvalue problem. Suppose that 7y (H € (0, 1)) is a sequence of shape-regular
coarse triangulation, and a fine grid refined from 7y is written as m, (h < H).

3.1. Two-grid discretization based on inverse iteration

We refer to [30] to establish the following two-grid scheme.
Scheme 3.1. Two-grid discretization scheme based on inverse iteration.

Step 1. Solve the mixed eigenvalue problem (2.18)-(2.19) on X x Vg: Seek
(i, o, ug) ER X Xy x Vg, |luglo =1, satisfying

a(£H7£)+bH(I;uH) :07 VIGEHv

3.1
bir(@ 1, v) + e (Wi, v) = —yir(un,v), W € Vi, 3.1)

Step 2. Compute a linear system on 3, x Vj: Seek (o, u"’) € X, X Vy, such
that
a(g", 7)) +ba(zy,0") =0, V1, € X, (3.2)
bn(a",vi) +en(u vy) = =y (ug,vi), Vvi, € Vi,
Step 3. Calculate the Rayleigh quotient

wala ah) + 20, (", u) + ep(uh, uh)
7= D .
_(u yu )

Let (va,op,ux) be the kth eigenpair of (2.18)-(2.19), then (v",a",u") ob-
tained by Scheme 3.1 is the kth eigenpair approximation of (2.16)-(2.17).

Theorem 3.1. Assume that (v, a”, u") is an approzimate eigenpair obtained by
Scheme 3.1. Then we have u € M(7y) satisfying

|u" =l < C(H? + h), (3.3)
le" — allo < C(H? + h),
V" =~ < C(H* + h?),

where C' is a positive constant independent of mesh size and .
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Proof. From Lemma 2.3 we have u € M(v) making uy — u satisfy (2.42). Com-
bining (2.23) and (3.2) we have u* = ygTjuy. Using (2.24) and the triangle
inequality yields

0" —ull1,n = |yaTrug —vTul|1,,
= |lyaThug —yThug +yThug —yThu+yTru —~yTu|1 s (3.6)
< lye =Y Trugllin + I Th(ag — W)l n + [ Thyu — Tyu

which together with (2.34), (2.14) and Lemma 2.3 gives

1,h>

lu" —ullip < C(H? + |[lug —ullo +h) < C(H? +h), (3.7)

i.e., (3.3) holds. Using (2.24), (2.25), the triangle inequality, (2.35), (2.39), (2.40)
and (2.38), we deduce

le" — allo = |lvuS,un — ¥Spun +¥S,ug — ¥S,u+yS,u — ySuljo
< lva = AlISpurllo + VIS, (ua —w)llo + (1S, yu — Svyulfo

3.8
< C(H + [ugr — ullo + ) (38)
< C(H? +h),
i.e., (3.4) holds. Finally, we prove (3.5). From (5.4) in [35] we have
len(un, up)| < Cllunlli - (3.9)

Since u € H}(Q2) and u” € V, is a piecewise H!-function, by (1.5) in [9] we obtain
" = ullo < Clju* — uy (3.10)
By (2.51), Ep(o,u,u) =0, (2.13) and (3.3) we obtain

‘Eh(gv u, uh)| = |Eh(ga u, u" - u)‘

3.11
< Chlgh|u" —ullyn < C(H?h + h?). (8.11)

In Lemma 2.4, let 4" = 7", ¢ = g" and u® = u”, then, by (2.8), (3.9), (3.10),
(3.11), (3.3) and (3.4) we have

n a(e" —a,0" — o) + 2b,(a" — a,u" — 1) + ¢ (W —u,u" — )
"V _’7| = —(uh,uh)
oy (u" —u,u* —u) 2E,(a,u,u”)
—(u, uh) —(uh, uh)
<c (Hah — o8+ 2lle” — efollu” — ullun + o~ ulf,
- [[u” (I3
(3.12)

+

Huh _ullg Eh(gﬂ u, uh)>
[[u"l3 [u"l3

IN

c {(Ildh —allo + [lu" —ulf1,n)* Eh(mu,uh)}
[u”|3 |3

Cl(H? + h)? + H?h + h?]

C(H* + 1h?),

that is (3.5) holds. O

<
<
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3.2. Two-grid discretization based on the shifted-inverse iter-
ation

Referring to the literature [32], we have the following scheme.
Scheme 3.2. Two-grid discretization scheme based on the shifted-inverse iteration.
Step 1. Solve the mixed eigenvalue problem (2.18)-(2.19) on X, x Vp: Seek

(Yya,oq,ug) ER XXy X Vg, ||lugllo = 1, satisfying
CL(QH,Z)—FZ)H(Z,UH):O, vIeZHa (3 13)
bu(oy,v)+ca(ug,v) = —yu(ug,v), Vve Vy. '

Step 2. Compute a linear system on X, x Vj: Seek (g/,u’) € 3, x V}, such

that
a(e’, 1)+ bp(T),0') =0, V1, € 3,, (3.14)
bp(a’,vi) +cen(0,vy) + v (W', vy) = —(ug,vy), Vv, € Vi, '

’
and set u* = 4 — o = Z—.
lu’llo [lullo

Step 3. Calculate the Rayleigh quotient

B a(ah,a") + 2b,(a", u") + ¢ (", u")
a _(uhauh) '

Den()le
15 ( I ) W U||1,h

For the sake of simplicity, we also denote (yr, un) = (Y., Uk ) and (", u") =
(v, ul) for simplicity. The following lemma comes from Lemma 3.1 in [37] and can
be proved similarly.

Lemma 3.1. Assume that (3., W.) is an approzimation for the kth eigenpair (¥,u)
where Y, is not an eigenvalue of T, W, € Vi, with ||wi]o =1, and u, = ”,EfTWHD
Suppose that

A1) inf - <1

(A1) _nf . = vlo < &

hY
(A’Q) |§* _§| S g; |§j,h _77| S % fOTj =k - 17kak+q(.] 7é 0)7 where P =
II;IE [7; — 7| is the separation constant of the kth eigenvalue 7;
J
(A3) Let u’ € V}, and u" € V, satisfying

!

u
Fe = Tp)u' =u,, u' = ——. (3.15)
'l
Then
4 ~ )
dist(u", My (7)) < = max  |F. — 3j.n|dist(w., Mp(7)). (3.16)

 p k<j<kiq-1

Theorem 3.2. Assume that (v", a”, u") is an approzimate eigenpair obtained by
Scheme 3.2. Then we have u € M(y) satisfying

[u" —uly 4, < C(H? +h), (3.17)
le" — allo < C(H?+ h), (3.18)
W' =~ < C(H* + R?), (3.19)

where C' is a positive constant independent of mesh size and .
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Proof. The proof is similar to that of Theorem 3.1 in [37]. We briefly describe
as follows for the convenience of reading. Denote 7, = ,%H and w, = ug, then
u, = Tpug/|| Thugllo. From Lemma 2.3 we have u € M(v) making ug — u
satisfy (2.42). Since v € My () and uy € Vp are piecewise H!-functions, using
(1.5) in [9], the triangle inequality, (2.42) and (2.43), we derive

inf |lw, — vl < dist(ug, My (7))
veMy(v) (3.20)
<||lug — 1, + dist(a, My (y)) < CH,

which shows that Condition (A1) in Lemma 3.2 is true when H is properly small.
Because 7, and 7; 5, are approximations of v, by Lemma 2.3 we have

~ ~ |ver — 7l P
Fe =7 = —— < T
el
andforﬁj,hz,yj%?j:k,k—i-l, o k+qg—1
~ el e
Fjn =Tl = —F+ < 7
! ! V5,175 4

which means that Condition (A2) is satisfied when H is properly small. From (3.14)
we have

a(a’, 1) +bp(ty,0') =0, V1, €X,,

3.21
bu(a’,vi) +cn(W,vy) = —(uy +yuu',vy), Vv, € Vi, (3:21)
which together with (2.24) and (2.25) yields
g/ = Sh(uH + ’yHu’), (322)
u = Ty(uyg +ygu'), (3.23)
then from (3.23) we have
1 1 u’
— —Ty)u' = —Thuy, u"=—. 3.24
G T =2, oo (3:24)
Note that u, differs from Tpuy = || Trug|ou. by a constant, then
1 !
(— —Tpu' =u,, u"= ui/,
YH [0
i.e., Condition (A3) true. Thus, we have
‘ 4 I
dist(u", My (7)) < =  max |F. — 3;.n|dist(ug, Mp(7)). (3.25)

TP k<j<k+g—1

Using the triangle inequality and (2.39), for j =k, k+ 1, ..., k+ ¢ — 1 we get

. 11
|%—7j,h\:|7*H—r|SC(|7H—W|+|7—%',hDSC(H2+h2)~ (3.26)

j.h

Since the dimension of space My, (7) is ¢, we have u® € My,(7) such that

= w01 4 = dist(u”, My (7)), (3.27)
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which together with (3.25), (3.26), (3.20) and (2.39) yields

[u" —u®|,, < CH(H? +h*) < CH?. (3.28)
From (2.42) we have u € M(y) satisfying
[u’ —uljy 4 < Ch. (3.29)
Combining the triangle inequality, (3.28) and (3.29) we derive
" = wllun < fla" = u¥up+ 0 = ullun < CCH? + ), (3.30)
that is (3.17) holds. Using (2.43) we have uj, € My, () satisfying
(3« = Tr) " Thunllo = (3« = Fj.n) " Thunllo. (3.31)

Since uj, € My, () and uy € Vg are piecewise H!-functions, using (1.5) in [9] and
(2.34) we derive

13 = Tn) "' Th(ug — wp)llo = [|Th(F = Ta) ™ (umr — wp)llo
< CITh(Fe — Tr) " ug — wp)l1,n
< CFe = Tr)~ llag —unllo (3.32)
<Ol = )Ml —upllo
< Clvg =7 Hug — uplfo.

By (3.24) and 7. = -1, the triangle inequality, (3.31) and (3.32), we obtain

~ 1~ 1
[u'llo = |3+ — Ta) "' 3« Thus) o > CHH%IIO. (3.33)

Because u® € H'(Q2) and u”* € V, is a piecewise H!-function, using (1.5) in [9] and
(3.28) we have

[u —u’p < Cllu" —u°|1 0 < CHE. (3.34)

’

Denote &, = Sp(ypu’). Combining o = ~Z—, (3.22), ub = Y (2.35), the

llullo? llu"llo

triangle inequality, (3.33) and (3.34), we derive

g/

le" —aullo= | Su(ynu”) o

oo
ug
<0 (It + b =3l + s =) (3.5)

< Clm =yl + [u" = o)
< C(H? +h?).
Combining the triangle inequality, (3.35) and (2.41), we have
lo" — allo < Clla" — &y llo + 15, — all) < C(HE+ 1), (3.36)

i.e., (3.18) holds. Using the similar proof of (3.5), from (3.17), (3.18) and (3.11),
we obtain (3.19). The proof is completed.

In the above proof, C' is independent of mesh diameters and A. O
Remark 2. Biet al. in [7] analyzed the regularity estimate for the elastic equations
in concave domains. For 2 C R3, Inzunza et al. in [21] presented the regularity
estimate. Hence, the conclusions and analysis in this paper can be extended to the
case of concave and three-dimensional domains.
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4. Numerical experiments

In this section, some numerical experiments will be reported to show our theoreti-
cal analysis and the high efficiency of two-grid schemes. In practical computation,
we adopt the command (’\’) to solve linear equations. Thanks to the package of
iFEM [13]. We use MATLAB 2018b on a DELL inspiron15 7510 with 32G memory
to solve the discrete mixed eigenvalue problems. In the following we specify the
notations appeared in our tables.

H,h: H and h is the mesh size of 7y and 7y, respectively.

Vin: the kth eigenvalue of (2.18)-(2.19) on 7, obtained by using the noncon-
forming mixed finite element directly.

vg;h (i = 1,2): the kth eigenvalue obtained by Schemes 3.1 and 3.2 on 7, re-
spectively.

—: the calculation cannot continue because the computer runs out of memory.

t(s): The CPU time(s) from the program starting until the calculation results
appear.

Example 4.1. Consider the elasticity eigenvalue problem (2.16)-(2.17) with the
density p = 1 on three test domains. When the domain € is the unit square
Qs = (0,1)? we take § = 1, the regular hexagon Qy with side length of 1 take
¢ = 0.08 and the L-shaped domain Q;, = (0,1)?/[$,1]? take 6 = 1.

Referring to [29] we set Young’s modulus E = 3, the Poisson ratio v = 0.49999,
0.499999, 0.4999999 in formula (1.3), respectively, and calculate in three cases of
Lamé parameters: Case 1: p = 1.0000, A\ = 49999.3333; Case 2: p = 1.0000, A =
499999.3333; Case 3: p = 1.0000, A = 4999999.3333, respectively. We compute
the first two numerical eigenvalues of (2.16)-(2.17), and list the solutions in Tables

1 - 6. Because the exact eigenvalues of (2.16)-(2.17) are unknown, the formula
Vo Vg b
o k% |/lg2 is used to calculate the approximate convergence

h =7
T b Vi, b

ratio(ye.n) = lg|

order.
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Table 1. The numerical results on ()s obtained by direct calculation.

Case 1
h yin  ratio(yin) yon  ratio(yzn) t(s)
% 51.6878 2.20 87.4997 2.21 0.06
\1/—65 52.1999 2.13 91.1013 2.09 0.11
3—‘/25 52.3114 2.11 91.8805 2.05 0.71
V2 523369 92.0642 8.27
1—\258 52.3428 92.1086 109.49
V2 - - -
256

Case 2
h mn ratio(yin)  von  ratio(ysn)  t(s)
g 51.6878 2.20 87.5009 2.21 0.06
% 52.2000 2.13 91.1024 2.09 0.14
g 52.3114 2.11 91.8816 2.05 0.79
6*‘/3 52.3369 92.0653 8.29
V2523428 92.1097 107.96
V2 - - -
256

Case 3
h Y.n  ratio(yin) Yo ratio(yzn)  t(s)
% 51.6878 2.20 87.5010 2.21 0.06
‘1/—65 52.2000 2.13 91.1025 2.09 0.14
g 52.3114 2.11 91.8817 2.05 0.80
g 52.3369 92.0654 8.28
Y2 59 3428 92.1098 108.18

‘ =
SM
Nloo

DN
ot
[}
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Table 2. The numerical results on Q2 obtained by direct calculation.

Case 1
h yin  ratio(yin)  y2n  ratio(yan)  t(s)
T716.7400 179 194273 1.22 0.07
1 170836 206 280543 194 021
% 18.3440 228  31.7512  2.03 0.85
75 18.4306 32.7142 6.88
oy 18.4482 32.9498 95.25
ﬁls - - -

Case 2
h mn  ratio(yin)  Yen  ratio(yen)  t(s)
1716.7400 1.79 19.4275 1.22 0.07
1 17.9836 2.06 28.0546 1.94 0.21
% 18.3440 2.28 31.7515 2.03 0.90
25 18.4306 32.7146 6.68
ap 18.4483 32.9501 97.70
ﬁ - - -

Case 3

Yi,n  ratio(yin) 2 ratio(yan)  t(s)
16.7400 1.79 19.4275 1.22 0.09
17.9836 2.06 28.0546 1.94 0.20
18.3440 2.28 31.7516 2.03 0.93
18.4306 32.7146 6.91
18.4483 32.9501 100.12

‘»—l@‘»—l%‘»—l&‘»—'ooh—%h—‘ >

—
n
o5}
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Table 3. The numerical results on 1 obtained by direct calculation.

Case 1
h Yin  ratio(yin) Yo ratio(yan)  t(s)
Y2 109.566 1.43 134.088  2.17 0.06
Y2 120.998 1.23 144.819 1.94 0.09
Y2 125.229 1.16 147.211 1.86 0.43
Y2 127.036 147.834 4.60
V2 127.843 148.005 105.93
V2 i - -
256

Case 2
h Y1, ratio(y1,n) Y2,h ratio(y2,n)  t(s)
Y2 109.567 1.43 134.089 217 0.06
Y2 120.999 1.23 144.820 1.94 0.09
Y2 125.230 1.16 147.212 1.86 0.46
Y2 127.036 147.835 4.63
V2 127.844 148.006 107.91
V2 i, - -
256

Case 3
h Y1,k ratio(y1,n) Ya.h ratio(ya,n)  t(s)
Y2 109.567 1.43 134.089 217 0.06
Y2 120.999 1.23 144.820 1.94 0.11
Y2 125.230 1.16 147.212 1.86 0.46
Y2 127.037 147.835 4.59
V2 127.844 148.007 104.81

—
SM
Nloo

[~}
ot
[=2]
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Table 4. The numerical results on ()s obtained by Schemes 3.1 and 3.2.

Case 1
H h  yg' o9& 68 g % 68 v jen t()
Y2 Y2 523397 921107 0.82 52.3369 92.0644 0.87 52.3369 92.0641 8.27
Y2 V2523429 921104 4.40 52.3428 92.1086 4.39 52.3428 92.1086 109.49
Y2 2 523443 92.1214 46.54 52.3442 92.1196 48.08 - - -
Y2 Y2 523445 92.1224 374.10 52.3445 92.1223 379.59 - - -
Case 2
H h g 95t gy ve 88 v qea t(s)
Y2 V2523397 92,1118 0.84 52.3369 92.0655 0.87 52.3369 92.0653 8.29
YZ 2523430 92.1115 4.50 52.3428 92.1097 4.66 52.3428 92.1097 107.96
Y2 V2 59344367 92.1225 46.16 52.3442 921207 47.49 - - -
Y2 V2 523446 92.1235 373.75 52.3446 92.1234 379.20 - - -
Case 3
H h g 95 ) e ve 68 v e t(s)
¥Z Y2 523397 92.1119 0.90 52.3369 92.0656 0.89 52.3369 92.0654 8.28
Y2 V2 523430 921116 4.49 52.3428 92.1098 4.75 52.3428 92.1098 108.18
Y2 V2 593444 921226 4541 52.3442 921208 47.94 - - -
YZ V2523446 92.1237 369.71 52.3446 92.1235 380.81 - - -

Table 5. The numerical results on 2y obtained by Schemes 3.1 and 3.2.

Case 1
H h Vél ’Y%l t(s) 7%*2 7%2 t(s) Y1,h V2,h t(s)
% 35 18.4489 32.8040 0.72 18.4306 32.7172 0.74 18.4306 32.7142 6.88
& & 18.4493 32,9516 4.13 18.4483 32.9498 4.23 18.4483 32.9498 95.25
Tla 1%% 18.4510 33.0058 25.31 18.4500 33.0046 24.82 - - -
3—12 555 18:4489 33.0157 199.80 18.4489 33.0158 208.73 - - -
Case 2
H h Vé1 ’Y%l t(s) 752 7%2 t(s) Y1,h V2,h t(s)
% % 18.4489 32.8043 0.74 18.4306 32.7175 0.74 18.4306 32.7146 6.68
6 é 18.4493 32.9519 4.13 18.4483 32.9501 4.25 18.4483 32.9501 97.70
Tla 1%% 18.4510 33.0062 23.72 18.4500 33.0047 24.03 - - -
3—12 555 18:4489 33.0160 196.92 18.4489 33.0160 204.90 - - -
Case 3
H h g vzl ) e @ b8 v ven t(8)
% 3% 18.4490 32.8043 0.77 18.4306 32.7175 0.80 18.4306 32.7146 6.91
i6 6%1 18.4493 32.9512 4.09 18.4483 32.9501 4.38 18.4483 32.9501 100.12
1—16 1%% 18.4510 33.0062 23.39 18.4500 33.0047 24.49 - - -
32

18.4489 33.0161 196.23 18.4489 33.0160 202.33 - - -
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Table 6. The numerical results on 2 obtained by Schemes 3.1 and 3.2.

Case 1
e e s vsy vey t8) e ven t(s)
128.284 148.087 0.52 127.165 147.838 0.52 127.036 147.834 4.60
128.062 148.014 3.08 127.847 148.005 3.19 127.843 148.005 105.93
128.455 148.062 25.99 128.216 148.053 25.92 - ; ;
128.433 148.067 146.52 128.381 148.067 144.53 - ; ;
Case 2
Vsl e ) ver yes t(8) yun vem t(s)
128.285 148.088 0.57 127.166 147.839 0.56 127.036 147.835 4.63
128.063 148.015 3.22 127.848 148.006 3.17 127.844 148.006 107.91
128.456 148.063 26.15 128.217 148.054 25.88 - ; -
128.434 148.069 144.97 128.382 148.068 145.49 - - -
Case 3
Ve e ) sy e ) i vem t(s)
128.285 148.088 0.52 127.166 147.839 0.52 127.037 147.833 4.5
128.063 148.015 3.21 127.848 148.007 3.06 127.844 148.007 104.81
128.456 148.063 25.95 128.217 148.054 25.74 - - -
128.434 148.069 146.25 128.382 148.068 145.18 - - ;
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From Tables 1 - 6 we can find that the numerical results obtained by the sta-
bilized nonconforming finite element and Schemes 3.1 and 3.2 are convergent and
tend to be stable as A increases, which means that it is locking free to use the non-
conforming finite element and two-grid schemes to solve the nearly incompressible
elasticity eigenvalue problem. The results in Tables 1 - 3 show that the convergence
order of the first two eigenvalues are approximately equal to 2.00 on g, 2.00 on Qg
and 1.00 on €, respectively. Comparing Schemes 3.1, 3.2 and direct calculation,
we can find that the numerical results obtained by Schemes 3.1 and 3.2 are close
to the results by direct calculation. Besides, in Tables 1 - 6, due to the computer
memory limitation, direct calculation cannot be performed when the mesh becomes
smaller and smaller, but two-grid schemes can still work. The results in Tables 4 -
6 also suggest that it takes significantly much less time to get the numerical results
by Schemes 3.1 and 3.2 than directly calculation, and our two-grid discretization
schemes have great advantage as the mesh size decreases with respect to lager Lamé
parameter .

In order to illustrate the influence of the Lamé parameter A on eigenvalues, we
plot the error curves of approximations for the first two eigenvalues of (2.16)-(2.17)
by taking p = 1.0067, A\ = 49.3289; p = 1.0001, A = 4999.3333; p = 1.0000, \ =
49999.3333; p = 1.0000, A = 499999.3333; p = 1.0000, A = 4999999.3333 while

h = % on Qg and Qp, h = %8 on Qpy, respectively. Due to the exact eigenvalues

n n
are unknown, we adopt the formulas |’y§’1h - *y:.’lz | and |fy§’2h — 72’22 | to denote the

» 99 3 k7h kyh 7 ” 2
error” of the eigenvalue ¢}  and g, , respectively, and the ”error” curves are
depicted in Figures 1 - 2. From Figures 1 - 2 we can see that the “error” of the
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numerical results tend to be stable as X increases, which means that the stabilized
nonconforming finite element method and our schemes are locking free.

Lh__1h/2 ~Lh_ 1h/2
—>—the curve of [yg;-vg; | —p—the curve of |y 75,

31
10 Lh_1,h/2, _Lh_1h2
—8—the curve of |7g,"7g, | —a—the curve of [g,-7g, |

Y
4
4

_ e P P _
2 103
o o
104
. . . . . 10 . . . . .
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the parameter A the parameter A
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Lh_ 1hi2,
o —p—the curve of |751 Vo1 |

—a—the curve of /-0

“Vsp |

102 10° 10* 10° 10°
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Figure 1. Error curves of the first eigenvalue.
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