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Abstract In this paper, we study nonlinear elliptic equation with mixed
boundary value condition in annular domain. It is assumed that the non-
linearity is asymptotically linear and depends on the derivative term. Some
results on the existence of solution are established by nonlinear analysis meth-
ods.

Keywords Mixed boundary value, annular domain, radial solution, gradient
term, iterative method.

MSC(2010) 35J91, 35J25, 35A01.

1. Introduction

In this paper, we study the following nonlinear elliptic equation with gradient term
in annular domain 

−∆u = f(|x|, u, x
|x|
· ∇u) in B2\B1,

u
∣∣∣
∂B1

=
∂u

∂ν

∣∣∣
∂B2

= 0,

(M)

where Bi := {x ∈ Rn : |x| < i}, i = 1, 2, n > 2, f : R × R × R → R. f = f(r, s, ξ)
is continuous and C1 with respect to (s, ξ). ∂/∂ν denotes the outward normal
derivative.

Because of the wide interest in mathematics and applied mathematics, the ex-
istence of solution of elliptic equation in annular domains has been investigated by
many authors, see [1, 2, 6, 8–10, 13–19, 24–26, 30] and the references cited therein.
When f(r, s, ξ) = sp, the equation is known as Lane-Emden equation. In [18],
Ni and Nussbaum established numerous results concerning the uniqueness and
nonuniqueness for positive radial solution, when the domain is a ball or an annulus.

When the domain Ω is star-shaped and f(r, s, ξ) = s
n+2
n−2 , the well-known Pohozaev

identity implies that the problem has no solution (see [20]). Brezis and Nirenberg [4]
proved that the perturbation of lower-term can reverse this situation. If Ω is an
annulus, Pohozaev theorem does not work any more since the annulus is not a star-
shaped domain. Therefore, it is possible that the constraints for the growth of f can
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be removed. Provided f(r, s, ξ) = −s + s2N+1, Coffman [5] pointed out that there
are many rotationally nonequivalent positive solutions and the number of these so-
lutions is unbounded as r → +∞. The case f(r, s, ξ) = g(r)h(s) was considered by
Lin [15] and the case f(r, s, ξ) = λk(r)g(s) was studied by Wang [24]. Uniqueness
of solutions was also studied when f(r, s, ξ) = f(s) (see [17]) or f(r, s, ξ) = sp + sq

(see [30]). Recently, Dong and Wei [9] studied the existence of radial solution for
elliptic equation with Dirichlet boundary value condition.

However, all of the above papers are devoted to the superlinear problems. In
this paper, we focus on the asymptotically linear equation with mixed boundary
value condition. There are some known papers related to asymptotically linear
problems, such as [12,21] for second order elliptic equation, [29] for non-local elliptic
equation, [27] for fourth-order elliptic equation and so on. For Sturm-Liouville
equation involving p-Laplacian with mixed boundary condition, we refer to [22].

To state our main results, we introduce the following assumptions:

(F0) For (r, ξ) ∈ [1, 2]× R, f(r, 0, ξ) is uniformly bounded and f(r, 0, ξ) 6= 0;

(F1) There exists k ∈ Z+, and two continuous functions α(r), α(r), such that either
of the following holds uniformly for (r, s, ξ) ∈ [1, 2]× R× R:

i. (k − 1

2
)2π2(n− 2)2C2

n < α(r) 6 r2n−2fs(r, s, ξ) 6 α(r) < k2π2(n− 2)2C2
n;

ii. k2π2(n− 2)2C2
n < α(r) 6 r2n−2fs(r, s, ξ) 6 α(r) < (k +

1

2
)2π2(n− 2)2C2

n,

where

Cn =
2n−2

2n−2 − 1

is a constant.

The first main result of this paper is given as follows.

Theorem 1.1. Assume that (F0)-(F1) hold. Then equation (M) has at least one
nontrivial radial solution.

Remark 1.1. We give a concrete example to illustrate the above result. Let n = 3.
Consider the following boundary value problem:

−∆u =
4

|x|4
(k + ε)2π2u+ h(

x

|x|
· ∇u) in B2\B1,

u
∣∣∣
∂B1

=
∂u

∂ν

∣∣∣
∂B2

= 0,

where 0 < |ε| < 1

2
, k ∈ Z+, h is C1 continuous and there exist constants m1,m2 > 0

such that 0 < m1 < h(ζ) < m2 for any ζ ∈ R. It is easy to know (F0) is satisfied.
Besides, ε < 0 and ε > 0 correspond to the case i and ii of (F1), respectively.
Theorem 1.1 implies that the above problem has at least one radial solution.

Some other asymptotically linear cases can also be considered with the following
assumptions:
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(F2) f(r, 0, ξ) = 0, for all r ∈ [1, 2], ξ ∈ R;

(F3)
0 6 lim inf

s→0
r2n−2fs(r, s, ξ) 6 lim sup

s→0
r2n−2fs(r, s, ξ) <

π2(n− 2)2C2
n

4

< lim inf
|s|→+∞

r2n−2fs(r, s, ξ) 6 lim sup
|s|→+∞

r2n−2fs(r, s, ξ) < +∞

uniformly for (r, ξ) ∈ [1, 2]× R;

(F4) there exists M0 > 0, such that for any r ∈ [1, 2], s ∈ R, ξ ∈ R,

|
f(r, s, ξ)

s
| 6M0;

(F5) f satisfies the local Lipschitz condition: there exist constants L and K, such
that

r2n−2|fs(r, s, ξ)| 6 L(n− 2)2C2
n

and
rn−1|fξ(r, s, ξ)| 6 K(n− 2)Cn

for any r ∈ [1, 2], |s| 6 ρ̄1, |ξ| 6 ρ̄2, where ρ̄1, ρ̄2 are positive constants, which will
be determined later. Moreover,

L <
π2

4
, K <

π

2
− 2L

π
.

Theorem 1.2. Assume that (F2)-(F5) hold. Then equation (M) has at least two
nontrivial radial solutions. One of them is positive, and the other one is negative.

Remark 1.2. Consider the case n = 3, f(r, s, ξ) =
1

r4
h(s)(1 + τγ(ξ)), where

|τ | < 1

2
, γ ∈ C1(Rn), |γ(ξ)| < 1,

h(s) =



π2

4
(8s+ 6Λ + 3), s 6 −Λ− 1;

−
π2

4
(3(s+ Λ)2 − 2s), −Λ− 1 < s < −Λ;

π2

2
s, |s| 6 Λ;

π2

4
(3(s− Λ)2 + 2s), Λ < s < Λ + 1;

π2

4
(8s− 6Λ− 3), s > Λ + 1.

Obviously, h is a C1 function. It is easy to know that for τ small enough and Λ big
enough, all assumptions of Theorem 1.2 are satisfied.

The approaches of the present paper are based on some methods of nonlinear
analysis. We derive an equivalent ordinary differential equation for (M), and then,
deal with the corresponding ordinary differential equation. Some fixed point the-
orems are used and some iterative methods are also introduced to overcome the
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difficulty caused by the gradient term. Schauder’ s fixed point theorem is essen-
tial to the proof of Theorem 1.1. Meanwhile, Mountain pass theorem and iterative
technique are applied to prove Theorem 1.2.

This paper is organized as follows. In Section 2, we derive an equivalent ordinary
differential equation and introduce some function spaces. Section 3 is devoted to
proving Theorem 1.1. We first study the special problem provided that the nonlin-
earity does not contain the gradient term. Then, the general case involving gradient
term is considered. To prove the second main theorem, we apply Mountain pass
theorem to establish existence of solutions for the non-gradient problem in Section
4. Finally, the proof of Theorem 1.2 is given in Section 5.

2. Preliminaries and Equivalent ODE

For x = (x1, · · · , xn) ∈ Rn, denote r = |x|. Then

r =
√
x2

1 + · · ·+ x2
n,

∇u = (
∂u

∂x1
, · · · , ∂u

∂xn
) = (

du

dr

x1

r
, · · · , du

dr

xn
r

) =
1

r

du

dr
x,

x

|x|
· ∇u =

x

r
· 1

r

du

dr
x =

1

r2

du

dr
|x|2 =

du

dr
,

∆u = div(∇u) = div(
1

r

du

dr
x) =

d2u

dr2
+
n− 1

r

du

dr
.

Hence, the elliptic problem (M) is equivalent to the following second order differen-
tial equation

− u′′(r)− n− 1

r
u′(r) = f(r, u(r), u′(r)) (2.1)

with mixed boundary condition

u(1) = u′(2) = 0.

Let t = t(r), which will be determined later. Then (2.1) implies

− (t′(r))2u′′(t)− t′′(r)u′(t)− n− 1

r
t′(r)u′(t) = f(r(t), u(t), u′(t)t′(r)). (2.2)

To make the gradient term in the left of (2.2) vanish, we choose t(r) such that

t′′(r) +
n− 1

r
t′(r) = 0 (2.3)

and

t(1) = 0, t(2) = 1. (2.4)

Let

t(r) = Cn

(
1− 1

rn−2

)
, (2.5)

where

Cn =
2n−2

2n−2 − 1
.
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Therefore,

t′(r) =
(n− 2)Cn
rn−1

. (2.6)

Meanwhile, (2.5) implies

r =
(

1− t

Cn

)− 1
n−2

,

and

t′(r) = (n− 2)Cn

(
1− t

Cn

)n−1
n−2

. (2.7)

From (2.2) we have

− u′′(t) =
f(r, u(t), u′(t)t′(r))

(t′(r))2
. (2.8)

Let g : R× R× R→ R,

g(t, s, η) :=
(r(t))2n−2

(n− 2)2(Cn)2
f
(

(1− t

Cn
)−

1
n−2 , s, (n− 2)Cn

(
1− t

Cn

)n−1
n−2 η

)
.

It follows from (2.6) that

g(t, s, η) =
(r(t))2n−2

(n− 2)2(Cn)2
f(r(t), s,

η

r′(t)
),

gs(t, s, η) =
(r(t))2n−2

(n− 2)2(Cn)2
fs(r(t), s,

η

r′(t)
),

and

gη(t, s, η) =
(r(t))n−1

(n− 2)Cn
fξ(r(t), s,

η

r′(t)
).

Since

g(t, u, u′(t)) =
r2n−2

(n− 2)2C2
n

f(r, u, u′(r)),

(M) becomes the following problem−u′′(t) = g(t, u(t), u′(t)),

u(0) = u′(1) = 0.
(M)ODE

From (F0)-(F5), g satisfies the following conditions:

(G0) g(t, 0, η) is uniformly bounded for (t, η) ∈ [0, 1]× R and g(t, 0, η) 6= 0;

(G1) There exists k ∈ Z+ and two continuous functions β(t) and β(t), such that
either of the following holds uniformly for (t, s, η) ∈ [0, 1]× R× R:

i. (k − 1

2
)2π2 < β(t) 6 gs(t, s, η) 6 β(t) < k2π2;

ii. k2π2 < β(t) 6 gs(t, s, η) 6 β(t) < (k +
1

2
)2π2;
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(G2) g(t, 0, η) = 0, for all t ∈ [0, 1], η ∈ R;

(G3)

0 6 lim inf
s→0

gs(t, s, η) 6 lim sup
s→0

gs(t, s, η) <
π2

4
;

< lim inf
|s|→+∞

gs(t, s, η) 6 lim sup
|s|→+∞

gs(t, s, η) < +∞;

uniformly for (t, η) ∈ [0, 1]× R;

(G4) there exists M > 0, such that for any t ∈ [0, 1], s ∈ R, η ∈ R,

|
g(t, s, η)

s
| 6M ;

(G5) g satisfies local Lipschitz condition: there exist constants L and K, such that

|gs(t, s, η)| 6 L

and
|gη(t, s, η)| 6 K

for any t ∈ [0, 1], |s| 6 ρ1, |η| 6 ρ2, where ρ1, ρ2 are positive constants, related to
ρ̄1, ρ̄2 in (F5), which will be determined later in Lemma 4.7. Moreover,

L <
π2

4
, K <

π

2
− 2L

π
.

Now we introduce the working spaces. Define I := (0, 1). Let C1(I) be the
space of continuously differentiable functions in I, and

C1
M (I) := {u ∈ C1(I), u(0) = u′(1) = 0},

equipped with the norm

‖u‖ = max
t∈[0,1]

|u(t)|+ max
t∈[0,1]

|u′(t)|. (2.9)

It is easy to know that C1(I) and C1
M (I) are Banach spaces. Denote by H1

M (I)
the closure of C1

M (I) in Hilbert space H1(I) equipped with the scalar product of
H1(I). Since C1

M (I) is densely imbedded into H1
M (I), H1

M (I) is the completion of
C1
M (I) by H1 norm. Hence, H1

M (I) is also a Hilbert space equipped with the scalar
product of H1(I).

By a standard argument, we know that the eigenvalue problem−u′′ = λu,

u(0) = u′(1) = 0
(2.10)

possesses a class of eigenvalues {λk}, where

λk = (k − 1

2
)2π2, k = 1, 2, · · · .

It is well known that

||u||H1 := (

∫
I

|u′(t)|2dt)
1
2
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is an equivalent norm in H1(I). Notice that λ1 =
π2

4
, and the corresponding

eigenfunction of λ1 is denoted by ϕ1, which is positive in I. Moreover, from

λ1 = inf
u∈H1

M (I),u 6=0

||u||2H1

||u||2L2

,

we know

||u||L2 6
2

π
||u||H1 , ∀ u ∈ H1

M (I). (2.11)

3. Proof of Theorem 1.1

In this section, we first consider some special cases, where the nonlinearities do
not contain the gradient terms. The similar argument can also be found in [28].
Consider the following problem:−u′′ = h(t, u),

u(0) = u′(1) = 0,
(3.1)

where h: [0, 1]× R→ R is continuous and C1 with respect to u.

The following comparison theorem is known as Theorem of Strum-Picone (see
[23]), which describes the location of the zero points of nontrivial solution.

Lemma 3.1. Let x = x(t) and y = y(t) be the solutions of equations

x′′(t) + P (t)x = 0 (3.2)

and

y′′(t) +Q(t)y = 0,

respectively. Assume that there exist t1 and t2, t1 < t2, such that y(t1) = y(t2) = 0,
and P (t) > Q(t), P (t) 6≡ Q(t), t ∈ [t1, t2]. Then x(t) has a zero point in (t1, t2).

Lemma 3.2. Assume that m2π2 6 P (t) 6 M2π2, P (t) 6≡ m2π2,M2π2, t ∈ [0, 1],
where m,M are positive constants. Then for any successive zero points of x(t),
denote by t1 and t2, 0 6 t1 < t2 6 1, the following holds:

1

M
< t2 − t1 <

1

m
.

Proof. See [9].

The following lemma is essential to prove the existence of sulution concerning
(3.1).

Lemma 3.3. Assume that either of the following holds:

i. (k − 1

2
)2π2 6 P (t) 6 k2π2, P (t) 6≡ (k − 1

2
)2π2, k2π2;

ii. k2π2 6 P (t) 6 (k +
1

2
)2π2, P (t) 6≡ k2π2, (k +

1

2
)2π2.
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Then problem −x′′ = P (t)x,

x(0) = x′(1) = 0,

only has the trivial solution x(t) ≡ 0.

Proof. Assume that there exists a solution x(t) 6= 0 satisfying x(0) = x′(1) = 0.
To prove the lemma we make some extensions by

x̄(t) =

x(t), t ∈ [0, 1];

x(2− t), t ∈ (1, 2],

and

P̄ (t) =

P (t), t ∈ [0, 1];

P (2− t), t ∈ (1, 2].

Hence, it is easy to check that

−x̄′′ = P̄ (t)x̄, x̄(0) = x̄(2) = 0.

For Case 1, we notice that y(t) = sin(k− 1
2 )πt is a solution of y′′+(k− 1

2 )2π2y = 0.
Now we compare x̄(t) with y(t) by Lemma 3.2. Obviously, the zeros of y(t) in [0, 2]
are ti = 2i

2k−1 , 0 6 i 6 2k − 1, i ∈ Z. Hence, y(t) has 2k zero points in [0, 2], which
implies x̄(t) has at least 2k − 1 zero points in (0, 2) . Since x̄(0) = x̄(2) = 0, we
know that x̄(t) has at least 2k + 1 zero points in [0, 2] . Denote by t̄1, · · · , t̄2k+1

the zero points of x̄(t) in [0, 2] such that 0 = t̄1 6 t̄2 6 · · · 6 t̄2k+1 = 2. For any
successive zeros t̄i, t̄i+1 ∈ [0, 2], Lemma 3.2 implies that

t̄i+1 − t̄i >
1

k
, i = 1, · · · , 2k.

Then, we get

2− 0 = t̄2k+1 − t̄1 =

2k∑
i=1

(t̄i+1 − t̄i) > 2k · 1

k
= 2,

which leads to a contradiction.
For Case 2, we notice that y(t) = sin kπt is a solution of y′′ + k2π2y = 0. Then

the zeros of y(t) in [0, 2] are ti = i
k , 0 6 i 6 2k, i ∈ Z. Hence, y(t) has 2k + 1

zero points in [0, 2], which implies x̄(t) has at least 2k zero points in (0, 2). Since
x̄(0) = x̄(2) = 0, we know that x̄(t) has at least 2k+ 2 zero points in [0, 2]. Denote
t̄1, · · · , t̄2k+2 as the zero points of x̄(t) in [0, 2] such that 0 = t̄1 6 t̄2 6 · · · 6 t̄2k+2 =
2. For any successive zeros t̄i, t̄i+1 ∈ [0, 2], Lemma 3.2 implies that

t̄i+1 − t̄i >
1

k + 1
2

, i = 1, · · · , 2k + 1.

Then, we get

2− 0 = t̄2k+2 − t̄1 =

2k+1∑
i=1

(t̄i+1 − t̄i) > (2k + 1) · 1

k + 1
2

= 2,

which is also a contradiction.
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Remark 3.1. It should be pointed out that this result is quite different from the
result for Dirichlet problem. For Dirichlet problem, it is well-known that when
P (t) locates between two successive eigenvalues, the linear equation only has trivial
solution. This difference is mainly owing to the fact that Dirichlet condition ensures
the right endpoint is also a zero point of the solution, so more accurate estimate
about the distance between two zero points can be obtained. However, the same
argument can not be applied to mixed boundary value problem, because the right
endpoint 1 is not a zero point of the solution any more. We use the extension
to treat the problem as a Dirichlet problem in [0, 2]. Actually, if the assumptions
in the lemma are replaced by (k − 1

2 )2π2 6 P (t) 6 (k + 1
2 )2π2, P (t) may cross

an eigenvalue of Dirichlet problem in [0, 2], which can not ensure the result. For

example, if k = 1, π
2

4 6 P (t) 6 9π2

4 , then P (t) may cross π2, which is an eigenvalue
of Dirichlet problem in [0, 2].

The following lemma ensures the existence and uniqueness for problem (3.1).

Lemma 3.4. There exist two continuous functions β(t) and β(t), such that either
of the following holds uniformly:

i. (k − 1

2
)2π2 < β(t) 6 hu(t, u) 6 β(t) < k2π2;

ii. k2π2 < β(t) 6 hu(t, u) 6 β(t) < (k +
1

2
)2π2.

Then the equation (3.1) has a unique solution.

To prove the above lemma, we first show the following results.

Lemma 3.5. Assume that all of the assumptions of Lemma 3.4 hold. The equation
(3.1) has at most one solution.

Proof. Assume that u1(t), u2(t) are the solutions of (3.1), namely,

−u′′1 = h(t, u1), − u′′2 = h(t, u2).

Let u = u1 − u2. Hence,

−u′′ = −u′′1 + u′′2 = h(t, u1)− h(t, u2) = hu(t, u2 + θ(u1 − u2))u, 0 6 θ 6 1,

and u(0) = u′(1) = 0. According to Lemma 3.3, we know u ≡ 0.
Now, we consider the existence of solutions for equation (3.1). Rewrite equation

(3.1) in the following form:

−u′′ = h(t, u)− h(t, 0) + h(t, 0) =
(∫ 1

0

hu(t, θu)dθ
)
u+ h(t, 0).

For any u ∈ C1
M (I), from Lemma 3.3 we know that the linear boundary value

problem

− v′′ =
(∫ 1

0

hu(t, θu)dθ
)
v + h(t, 0), v(0) = v′(1) = 0 (3.3)

has a unique solution v ∈ C1
M (I).

Define operator P : C1
M (I)→ C1

M (I). For u ∈ C1
M (I),

P [u](t) = v(t)
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is the unique solution of equation (3.3). Then the existence of solution is equivalent
to the existence of fixed point of P in C1

M (I).

Lemma 3.6. The operator P is continuous.

Proof. For any sequence {un} ⊂ C1
M (I) satisfying un → u0 as n → ∞, let

vn = Pun, then we have

− v′′n =
(∫ 1

0

hu(t, θun)dθ
)
vn + h(t, 0). (3.4)

Claim that {vn} is bounded in C1
M (I). If not, ‖vn‖ → ∞. Let ωn = vn/‖vn‖. Then

{ωn} ⊂ C1
M (I), ||ωn|| = 1, and

− ω′′n =
(∫ 1

0

hu(t, θun)dθ
)
ωn +

h(t, 0)

‖vn‖
. (3.5)

Hence,
‖ω′′n‖ 6 max

t∈[0,1]
β(t) + 1 <∞.

From

ω′n(t) = ω′n(0) +

∫ t

0

ω′′n(s)ds, (3.6)

ωn(t) = ωn(0) +

∫ t

0

ω′n(s)ds, (3.7)

{ω′n} and {ωn} are uniformly bounded and equicontinuous sequence of functions. By
Ascoli-Arzelà Theorem, {ω′n} and {ωn} contain a uniformly convergent subsequence
respectively (for convenience we also use the same notation), such that

ωn−→ω0, ω′n−→ϕ.

It is easy to know ω0 ∈ C1
M (I).

From (3.5) and (3.6), we obtain

ω′n(t) = ω′n(0)−
∫ t

0

(∫ 1

0

hu(s, θun)dθωn +
h(s, 0)

‖vn‖

)
ds. (3.8)

Let n→∞, from (3.7) and (3.8), we have

ω0(t) = ω0(0) +

∫ t

0

ϕ(s)ds,

ϕ(t) = ϕ(0)−
∫ t

0

(∫ 1

0

hu(s, θu0)dθω0

)
ds.

Therefore,

−ω′′0 =

∫ 1

0

hu(t, θu0)dθω0.

By Lemma 3.4, we have ω0 ≡ 0, which is a contradiction with ‖ω0‖ = 1, so {vn} is
a bounded sequence. Then, by (3.5) we know {v′′n} is bounded and {v′n}, {vn} are
bounded and equicontinuous sequences of functions. By Ascoli-Arzelà Theorem,

vn−→v0, v′n−→ϕ0.
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Then we know

v′n(t) = v′n(0) +

∫ t

0

v′′n(s)ds

= v′n(0)−
∫ t

0

(( ∫ 1

0

hu(s, θun)dθ
)
vn + h(s, 0)

)
ds,

vn(t) = vn(0) +

∫ t

0

v′n(s)ds.

Let n→∞, from the above we obtain

−v′′0 =
(∫ 1

0

hu(t, θu0)dθ
)
v0 + h(t, 0).

By the uniqueness we know v0 = Pu0, which completes the proof.

Lemma 3.7. P is a compact operator.

Proof. For any bounded set S ⊂ C1
M (I), we claim that P (S) is bounded in

C1
M (I). Otherwise, by an analogous manner as the proof of Lemma 3.6 we will get

a contradiction. For every u ∈ S, v = Pu is defined by (3.3). Since ‖u‖, ‖hu‖ are
all bounded, then ‖v′′‖ < ∞. Then we conclude that {v′}, {v} are bounded and
equicontinuous. By Ascoli-Arzelà Theorem, P is a compact operator.

Lemma 3.8. P (C1
M (I)) is bounded in C1

M (I).

Proof. If not, there exists a sequance {un}, ‖Pun‖ → ∞ (n→∞). Let vn = Pun.
Then (3.4) holds. Take ωn = vn/‖vn‖. Then {ωn} ⊂ C1

M (I), ‖ωn‖ = 1, (3.5), (3.6),
(3.7) and (3.8) hold. Then we get

ωn−→ω0, ω′n−→φ

and ‖ω0‖ = 1. Since {
∫ 1

0
hu(t, θun)dθ} is bounded in L2(I),∫ 1

0

hu(t, θun)dθ ⇀ h1(t)

in L2(I). Obviously,

β(t) 6 h1(t) 6 β(t),

where β(t), β(t) satisfies either i or ii in Lemma 3.4. Let k → ∞, from (3.7) and
(3.8), for a.e. t ∈ I,

−ω′′0 (t) = h1(t)ω0(t), ω0(0) = ω′0(1) = 0.

Hence, ω0 ≡ 0, which is a contradiction to ‖ω0‖ = 1.

Proof of Lemma 3.4. The uniqueness is given in Lemma 3.5. To obtain the
existence, assume D = {u ∈ C1

M (I), ‖u‖ 6 K + 1}, where K is given in Lemma
3.8. The continuity and compactness are established in Lemma 3.6 and Lemma 3.7,
respectively. By Schauder’s fixed point theorem, the operator P : D → D has at
least one fixed point.



2798 J. Tian & Y. Wei

Next, we study the existence of boundary value problem involving the gradient
term. For any v ∈ C1

M (I), consider the following problem:−u′′ = g(t, u, v′),

u(0) = u′(1) = 0.
(M)v

Lemma 3.9. Assume that g(t, 0, p) 6= 0 and either of the following holds uniformly:

i. (k − 1

2
)2π2 < β(t) 6 gu(t, u, p) 6 β(t) < k2π2;

ii. k2π2 < β(t) 6 gu(t, u, p) 6 β(t) < (k +
1

2
)2π2.

Then, for any v ∈ C1
M (I), problem (M)v has a unique nontrivial solution uv.

Proof. The proof can be obtained by Lemma 3.4.

Lemma 3.10. Let all of the assumptions of Lemma 3.9 hold. Then, for any v ∈
C1
M (I), there exists a positive constant ρ, independent of v, such that

||uv|| 6 ρ

for all solutions uv obtained in Lemma 3.9.

Proof. Assume that there exists {vn} such that ‖uvn‖ → ∞. Then

−u′′vn =
(∫ 1

0

gu(t, θuvn , v
′
n)dθ

)
uvn + g(t, 0, v′n).

Denote ωn = uvn/‖uvn‖ and then ||ωn|| = 1. Since (G0) holds, the second term in
the above equation is bounded. Then a similar argument can be obtained, as the
proof of Lemma 3.8.

Proof of Theorem 1.1. Define Bρ := {x ∈ C1
M (I), ||x|| 6 ρ}, where ρ > 0 is the

uniform bound in Lemma 3.10. We consider the operator Q : Bρ → Bρ. For every
v, Qv denotes the solution uv of (M)v determined by Lemma 3.9. By Schauder’s
fixed point theorem, Q has at least one fixed point.

4. Variational method

In this section, we consider (M)ODE by means of variational methods. In fact, the
problem (M)ODE is non-variational because of the influence of the gradient term.
We first study auxiliary problem (M)v. For any fixed v ∈ C1

M (I), we call u ∈ H1
M (I)

a weak solution, if∫
I

u′(t)ϕ′(t)dt =

∫
I

g(t, u(t), v′(t))ϕ(t)dt, ∀ ϕ ∈ C∞M (I).

Then the weak solutions are equivalent to the critical points of the Euler-Lagrange
functional Jv : H1

M (I)→ R,

Jv(u) =
1

2

∫
I

|u′(t)|2dt−
∫
I

G(t, u, v′)dt,
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where

G(t, u, η) :=

∫ u

0

g(t, s, η)ds.

Let u+ = max{u, 0}, u− = min{u, 0}. Consider the following problem−u′′ = g±(t, u, v′),

u(0) = u′(1) = 0.
(4.1)

where

g+(t, s, η) =

 g(t, s, η), s > 0,

0, s < 0;
g−(t, s, η) =

0, s > 0,

g(t, s, η), s 6 0.

Define the corresponding functional J±v : H1
M (I)→ R as follows:

J±v (u) =
1

2
‖u‖2H1 −

∫
I

G±(t, u, v′)dt, u ∈ H1
M (I),

where G±(t, u, η) =
∫ u

0
g±(t, s, η)ds. Obviously, J±v ∈ C1(H1

M (I),R). Let u be a
critical point of J±v , which implies that u is a weak solution of (4.1). Furthermore,
by the weak maximum principle it follows that u > 0(6 0) in I. Thus u is also a
solution of problem (M)v. Hence, a nontrivial critical point of J+

v (J−v ) is actually
a positive (negative) solution of (M)v.

Lemma 4.1. Under the assumptions (G3) and (G4), J±v is unbounded from below.

Proof. (G3) and (G4) imply that there exist ε > 0 and Cε > 0 such that

G±(t, s±, η) >
1

2
(
π2

4
+ ε)|s±|2 − Cε, ∀ t ∈ I, s ∈ R, η ∈ R. (4.2)

From (4.2) we obtain

J±v (±kϕ1) 6
1

2
‖kϕ1‖2H1 −

1

2
(
π2

4
+ ε)

∫
I

k2ϕ2
1dt+

∫
I

Cεdt

6
k2

2
‖ϕ1‖2H1 −

k2

2
(
π2

4
+ ε)‖ϕ1‖2L2 + Cε

6
k2

2
(1−

π2

4 + ε
π2

4

)‖ϕ1‖2H1 + Cε. (4.3)

Then lim
k→+∞

J±v (kϕ1) = −∞.

Remark 4.1. Obviously, there exists γ > 0 independent of v, such that

J±v (±kϕ1) 6 0, for all k > γ.

Lemma 4.2. Assume that (G2)-(G4) hold. Then there exist ρ,R > 0 such that
J±v (u) > R, if ‖u‖H1 = ρ.
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Proof. From (G2)-(G4), we can take ε0 > 0, C0 > 0, τ > 2 such that

G±(t, s, η) 6
1

2
(
π2

4
− ε0)|s|2 + C0|s|τ . (4.4)

Then Poincaré inequality and Sobolev inequality imply

J±v (u) >
1

2
‖u‖2H1 −

π2

4 − ε0

2

∫
I

|u|2dt− C0

∫
I

|u|τdt

>
1

2
(1−

π2

4 − ε0

π2

4

)‖u‖2H1 − CsC0‖u‖τH1 , (4.5)

where Cs is the Sobolev constant. Choosing ‖u‖H1 = ρ small enough, we obtain
J±v (u) > R > 0.

Lemma 4.3. Suppose that (G3) and (G4) hold. Then every Palais-Smale sequence
of J±v has a convergent subsequence in H1

M (I).

Proof. It suffices to show that every (PS) sequence {un} is bounded in H1
M (I).

We prove the case of J+
v , and the case of J−v can be proved analogously. Assume

that {un} ⊂ H1
M (I) is a (PS) sequence, i.e.,

J+
v (un)→ c, (J+

v )′(un)→ 0 as n→ +∞. (4.6)

From (G3) and (G4) we know that

|g+(t, s, v′)s| 6 C(1 + |s|2).

(4.6) implies that for all ϕ ∈ H1
M (I),∫

I

(
u′nϕ

′ − g+(t, un, v
′)ϕ
)

dt→ 0. (4.7)

Setting ϕ = un and using Hölder inequality we have

‖un‖2H1 =

∫
I

g+(t, un, v
′)undt+ 〈(J+

v )′(un), un〉

6
∫
I

g+(t, un, v
′)undt+ o(1)‖un‖H1

6 C + C‖un‖2L2 + o(1)‖un‖H1 . (4.8)

We claim that ‖un‖L2 is bounded. Otherwise, passing to a subsequence,

‖un‖2L2 → +∞, as n → +∞.

We put ωn :=
un

‖un‖L2

. Then ‖ωn‖L2 = 1. Moreover, from (4.8) we know

‖ωn‖2H1 6 o(1) + C +
o(1)

‖un‖L2

·
‖un‖H1

‖un‖L2

6 o(1) + C + o(1)‖ωn‖H1 .

Hence, ‖ωn‖H1 is bounded. Passing to a subsequence, we may assume that there
exists ω ∈ H1

M (I), ‖ω‖L2 = 1 such that

ωn ⇀ ω, weakly in H1
M (I), n→ +∞,
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ωn → ω, strongly in L2(I), n→ +∞.

From (4.7) it follows∫
I

ω′nϕ
′dt−

∫
I

g+(t, un, v
′)

‖un‖L2

ϕdt = o(1), ∀ ϕ ∈ H1
M (I). (4.9)

Taking ϕ = ω−n , we know ‖ω−n ‖H1 = o(1), which implies ω−(t) = 0, a.e. in I and
thus ω(t) > 0.

If ω(t) = 0, from (G4) we get

|g+(t, un, v
′)|

‖un‖L2

= |g
+(t, un, v

′)

un
|ωn 6Mωn → 0.

We have

lim
n→+∞

g+(t, un, v
′)

‖un‖L2

= 0.

If ω(t) > 0, un = ωn‖un‖L2 → +∞. (G3) implies that there exists δ > 0 such that

lim inf
n→+∞

g+(t, un, v
′)

‖un‖L2

= lim inf
n→+∞

g+(t, un, v
′)

un
ωn > (

π2

4
+ δ)ω.

From the above two cases, for all t ∈ I,

lim inf
n→+∞

g+(t, un, v
′)

‖un‖L2

> (
π2

4
+ δ)ω. (4.10)

Taking ϕ = ϕ1 in (4.7), since ϕ1 > 0, ω > 0, from Fatou’s Lemma we derive

π2

4

∫
I

ωϕ1dt =

∫
I

ω′ϕ′1dt

= lim
n→+∞

∫
I

ω′nϕ
′
1dt

= lim
n→+∞

∫
I

g+(t, un, v
′)

‖un‖L2

ϕ1dt

>
∫
I

lim inf
n→+∞

g+(t, un, v
′)

‖un‖L2

ϕ1dt

> (
π2

4
+ δ)

∫
I

ωϕ1dt,

which follows that ω ≡ 0. This conclusion contradicts with ‖ωn‖L2 = 1, so ‖un‖L2

is bounded. Then, from (4.8) we know that {un} is bounded in H1
M (I).

Lemma 4.4. Let (G2)-(G4) hold. Then, for any v ∈ C1
M (I), problem (M)v has at

least one positive weak solution and one negative weak solution u±v ∈ H1
M (I).

Proof. Let
c±v = inf

ψ∈Ψ±
max
s∈[0,1]

J±v (ψ(s)), (4.11)

where
Ψ± = {ψ ∈ C([0, 1], H1

M (I)) : ψ(0) = 0, ψ(1) = ±γϕ1},
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γ is given by Remark 4.1. Since Lemma 4.3 holds, Mountain pass theorem implies
that there exists a weak solution u±v such that

(J±v )′(u±v ) = 0, J±v (u±v ) = inf
ψ∈Ψ±

max
s∈[0,1]

J±v (ψ(s)).

The proof is completed.

Lemma 4.5. Let v ∈ C1
M (I). Then there exists a positive constant c0 independent

of v such that
||u±v ||H1 > c0

for all solutions u±v of (M)v obtained in Lemma 4.4.

Proof. Since u±v is a solution of (M)v, we have∫
I

|(u±v )′|2dt =

∫
I

g±(t, u±v , v
′)u±v dt.

From (G3) and (G4) we know there exist ε > 0, cε > 0 such that

|g±(t, s±, η)| 6 (
π2

4
− ε)|s±|+ cε|s±|2

∗−1, for any t ∈ I, s ∈ R, η ∈ Rn.

Hence, ∫
I

|(u±v )′|2dt 6 (
π2

4
− ε)

∫
I

|u±v |2dt+ cε

∫
I

|u±v |2
∗
dt.

By Poincaré inequality and Sobolev embedding, we obtain

(1−
π2

4 − ε
π2

4

)||u±v ||2H1 6 cε‖u±v ‖2
∗

L2∗ 6 cεc
2∗

0 ||u±v ||2
∗

H1 ,

which implies the conclusion.

Lemma 4.6. Let (H1)-(H3) hold. Then there exists a positive constant ρ, which is
independent of v, such that

||u±v ||H1 6 ρ

for all solutions u±v obtained in Lemma 4.4.

Proof. We only give the proof of J+
v , the case of J−v is similar. We suppose, by

contradiction, there exist subsequences {vj} and {uvj}, such that {vj} ⊂ C1
M (I),

{uvj} ⊂ H1
M (I) and

(J+
vj )′(uvj ) = 0, ‖uvj‖H1 → +∞ as j → +∞.

Then for all ϕ ∈ H1
M (I),∫

I

(
u′vjϕ

′ − g+(t, uvj , v
′
j)ϕ
)

dt = 0. (4.12)

From (4.12), a similar argument like in Lemma 4.3 will lead to a contradiction,
which completes the proof.

Now, since f is continuous in all variables and v ∈ C1
0 (I), using the regularity

theory we know that u±v is C2, see [3]. As a consequence of Sobolev embedding
theorem and Lemma 4.6, the following lemma is trivial.
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Lemma 4.7. Assume that v ∈ C1
M (I). Then there exists two positive constants ρ1

and ρ2, independent of v, such that

max
t∈I
|u±v (t)| 6 ρ1, max

t∈I
|(u±v )′(t)| 6 ρ2.

5. Iterative method and proof of Theorem 1.2

In this section, we prove Theorem 1.2 by some iterative arguments, which was
established in [7]. Define map

T : H1
M (I)→ H1

M (I), T v 7→ uv,

with domain D(T ) = C1
M (I) ⊂ H1

M (I). Here uv is the solution of (M)v giv-
en by Lemma 4.4. For any v ∈ H1

M (I), the map is well-defined, and actually,
D(C1

M (I)) ⊂ C1
M (I) because of the regularity theory. Moreover, denote Bρ :=

{x ∈ H1
M (I), ||x|| 6 ρ}, where ρ > 0 is the uniform bound in Lemma 4.6. Then,

T (C1
M (I)) ⊂ Bρ. Hence, T (C1

M (I)) ⊂ Bρ∩C1
M (I). It should be pointed out that, in

contrast to the proof of Lemma 3.4, T is a multivalued map because of the absence
of uniqueness. Recall that x is a fixed point of map T , if and only if x ∈ T (x).

Proof of Theorem 1.2. We prove the existence of positive solution and the
negative one is similar. Construct a sequence {un} ⊂ Bρ ∩ C1

M (I) as the solutions
of −u′′n = g+(t, un, u

′
n−1),

un(0) = u′n(1) = 0,
(IE)n

obtained by Lemma 4.4, and choose u0 ∈ Bρ ∩ C1
M (I). Hence, un ∈ Bρ ∩ C1

M (I).
By (IE)n and (IE)n+1, we know∫

I

u′n(u′n+1 − u′n)dt =

∫
I

g+(t, un, u
′
n−1)(un+1 − un)dt,∫

I

u′n+1(u′n+1 − u′n)dt =

∫
I

g+(t, un+1, u
′
n)(un+1 − un)dt.

Then

||un+1 − un||2H1 =

∫
I

(
g+(t, un+1, u

′
n)− g+(t, un, u

′
n−1)

)
(un+1 − un)dt

=

∫
I

(
g+(t, un+1, u

′
n)− g+(t, un, u

′
n)
)
(un+1 − un)dt

+

∫
I

g+(t, un, u
′
n)− g+(t, un, u

′
n−1)

)
(un+1 − un)dt

=

∫
I

g+
u (t, un + θ(un+1 − un), u′n)(un+1 − un)2dt

+

∫
I

g+
η (t, un, u

′
n−1 + ϑ(u′n − u′n−1))(u′n − u′n−1)(un+1 − un)dt,

where 0 6 θ 6 1, 0 6 ϑ 6 1. Using hypothesis (G5), (2.11) as well as Cauchy-
Schwarz inequality, we obtain

||un+1 − un||2H1 6 L

∫
I

(un+1 − un)2dt+ K

∫
I

(u′n − u′n−1)(un+1 − un)dt
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6
4L

π2
||un+1 − un||2H1 +K||un − un−1||H1 ||un+1 − un||L2

6
4L

π2
||un+1 − un||2H1 +

2K

π
||un − un−1||H1 ||un+1 − un||H1 .

Hence,

||un+1 − un||H1 6
2Kπ

π2 − 4L
||un − un−1||H1 .

From (G5) we know that L < π2/4 and k := 2Kπ/(π2 − 4L) satisfying k ∈ (0, 1).
It can be easily seen that {un} ⊂ H1

M (I) is a Cauchy sequence, which implies that
there exists u∗ ∈ H1

M (I) such that u∗ ∈ T (u∗). According to the regularity theory,
it follows that u∗ ∈ C2(I), which is actually a classical solution. Finally, from
Lemma 4.5 we know that ||u∗||H1 > c0, which means that u∗ is nontrivial.
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