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Abstract Based on the product of two-parameter Laplace Birnbaum-Saunders
fatigue life distribution, its failure distribution mode is theoretically derived
under the progressive stress accelerated life test with inverse power law model,
and then three-parameter generalized Laplace Birnbaum-Saunders fatigue life
distribution is introduced. The basic properties of three-parameter general-
ized Laplace Birnbaum-Saunders fatigue life distribution are analyzed, and the
image characteristics of its density function, failure rate function and average
failure rate function are investigated. Meanwhile, the point estimate method
is given for three parameters, and then the point estimates of parameters are
obtained for the product of two-parameter Laplace Birnbaum-Saunders fatigue
life distribution under the progressive stress accelerated life test with inverse
power law model. In addition, the practical example and simulation examples
are illustrated to show the feasibility of the proposed method.
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1. Introduction

The random variable T is assumed to follow two-parameter Birnbaum-Saunders
fatigue life distribution BS(α, β) , then its distribution function and density function
are respectively
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where α > 0 is called a shape parameter, β > 0 is called a scale parameter, and
ϕ(x),Φ(x) are respectively the distribution function and density function of normal
distribution, that is,

ϕ(x) =
1√
2π
e−

x2

2 ,Φ(x) =

∫ x

−∞
ϕ(y)dy.

Birnbaum and Saunders [2] derived the famous two-parameter BS fatigue life
distribution by studying the process of material failure mainly caused by crack prop-
agation. It is more suitable than other common life distributions such as Weibull
distribution and Lognormal distribution to describe life rules of some fatigue failure
products, and become one of common distributions in the reliability engineering.
There have been many researches on two-parameter BS fatigue life distribution, as
shown in references [3–8,10,13–19,21,23,24,27].

With the in-depth research of BS fatigue life distribution, many scholars further
generalize two-parameter BS fatigue life distribution, which is usually called gener-
alized BS fatigue life distribution. The studies all involve generalized BS fatigue life
distribution in references [1,9,20,28]. It is worth pointing out that standard normal
distribution involved in original two-parameter BS fatigue life distribution is re-
placed by standard Laplace distribution in these references, namely two-parameter
Laplace BS fatigue life distribution. Zhu and Balakrishnan [28] studied this kind of
two-parameter Laplace BS fatigue life distribution in detail. They proposed the nu-
merical characteristics of this distribution and researched the image characteristics
of its density function and failure rate function. Besides, they studied maximum
likelihood estimates of parameters and proved that maximum likelihood estimates
exist uniquely.

2. Failure Mode of Progressive Stress Accelerated
Life Test V (t) = Kt for Two-parameter LBS Fa-
tigue Life Distribution under Inverse Power Law
Model

The lifetime T of a product is assumed to follow two-parameter Laplace Birnbaum-
Saunders fatigue life distribution, denoted as T ∼ LBS(α, β), then its distribution
function FT (t) and density function fT (t) are respectively

FT (t) = Φ
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where α > 0 is called a shape parameter, β > 0 is called a scale parameter and

Φ(x) =

 ex/2, x < 0,

1− e−x/2, x ≥ 0.

It is easy to see Φ(−x) = 1− Φ(x).

The inverse power law model refers to the relationship β = 1
dV c between the scale

parameter β ( in hour ) and the voltage ( in volt ) of some products (such as some
insulation materials, capacitors, micro motors and electronic devices, etc.) when
the voltage is taken as the accelerated stress, according to the physical principle
and experimental experience summary, where d > 0 and c > 0 are both constants.
If the product is an electronic component, the physical tests show that c is only
connected with its type and not related to its specification.

After taking the logarithm of both sides of above equation, β satisfies the log-
arithmic linear relationship lnβ = a + bφ(V ), where a = − ln d , b = −c and
φ(V ) = lnV is the function of the stress V.

Most statistical analyses about step stress or progressive stress accelerated life
tests are based on the Nelson Assumption ( CE model for short).

Nelson Assumption [11] : The residual life of a product depends only
on the accumulated failure part and the stress level at that time, and is
not related to the accumulative mode.

Nelson Assumption is essentially a time conversion, that is, if a constant stress is
kept on, the products that have not been failed will fail according to the distribution
function under that stress, but starting with the accumulated failure part before.

The life Ti of a product is assumed to follow two-parameter Laplace BS fatigue
life distribution LBS(α, βi) under a constant stress Vi, i = 1, 2 , then its distribution
function is

FVi
(t) = Φ
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, t > 0, α > 0, βi > 0, i = 1, 2.

Based on Nelson Assumption, we know
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, t1 = β1

β2
t2, which means that the working time t2 of a product

under the stress V2 is equivalent to the working time t1 = β1

β2
t2 under the stress V1.

The general progressive stress accelerated life test V (t) = Kt + V1, V1 > 0 is
considered. The life distribution of a product is assumed to follow two-parameter
Laplace BS fatigue life distribution LBS(α, β1) under the stress V1 , and the scale
parameter β1 satisfies the inverse power law model β1 = 1

dV c
1
.

According to W. Nelson [12], the working time t under the stress V (t) = Kt +
V1, V1 > 0 is equivalent to working under the constant stress V1 for the following
time ∫ t
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Then the life distribution of the product under progressive stress V (t) = Kt +
V1, V1 > 0 is

FV (t)(t) = Φ
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In particular, for V1 = 0, the life distribution of the product under progressive
stress V (t) = Kt is
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Since the parameter c > 0 is required, the parameter m > 0.5 is also required.

If we define m = c+1
2 , β =
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, then we have

FV (t)(t) = Φ

{
1

α

[(
t

β

)m
−
(
β

t

)m]}
.

Therefore, if the product whose life follows two-parameter Laplace BS fatigue life
distribution is subjected to accelerated life test under progressive stress V (t) = Kt,
then its failure distribution is

FV (t)(t) = Φ
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)m]}
, α, β > 0,m > 0.5.

3. Image Characteristics and Basic Properties of
Three-parameter Generalized Laplace BS Fatigue
Life Distribution

Based on the conclusions of previous section, three-parameter generalized Laplace
Birnbaum-Saunders fatigue life distribution is introduced. If non-negative random
variable X follows three-parameter generalized Laplace BS fatigue life distribution,
denoted as X ∼ GLBS(α, β,m), then its distribution function FX(x) and density
function fX(x) are respectively
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fX(x) =
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where α > 0 is called the first shape parameter, m > 0 is called the second shape

parameter, β > 0 is called a scale parameter, and Φ(x) =

 ex/2, x < 0,

1− e−x/2, x ≥ 0.

Remark 3.1. Three-parameter generalized Laplace BS fatigue life distribution in-
volved in the progressive stress accelerated life V (t) = Kt requires the parameter
m > 0.5 , but that given above requires only m > 0.

The true values of parameters are taken as ( α = 1, 1.35, 2, β = 1,m = 0.75 ),
( α = 1, 1.35, 2, β = 1,m = 4), (α = 2, β = 1,m = 0.5, 1, 2, 4 ) and (α = 6, β =
1,m = 5, 6, 7 ). The images of density functions f(x) for GLBS(α, β,m) are shown
in Figure 1 − Figure 4, from which we can see that the graphs of f(x) are diversified.

Figure 1. Image of f(x) with different parameter α ( β = 1,m = 0.75)

Figure 2. Image of f(x) with different parameter α ( β = 1,m = 4)

It is obvious that the expressions of failure rate function λ(x) and average failure
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Figure 3. Image of f(x) with different parameter m ( α = 2, β = 1)

Figure 4. Image of f(x) with different parameter m ( α = 6, β = 1)

rate function λ̄(x) are respectively
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where RX(x) = 1− FX(x) is the reliability function and ϕ(x) = 1
2e
−|x|.

The true values of parameters are taken as (α = 0.5, 1, 1.5, β = 1,m = 0.5 )
and ( α = 2, β = 1,m = 0.5, 1, 1.5, 2). The images of failure rate functions λ(x) for
GLBS(α, β,m) are shown in Figure 5 and Figure 6. The images of average failure
rate functions λ̄(x) for GLBS(α, β,m) are shown in Figure 7 and Figure 8. It can
be seen that the graphs of λ(x), λ̄(x) are diversified.

Figure 5. Image of λ(x) with different parameter α ( β = 1,m = 0.5)

Figure 6. Image of λ(x) with different parameter m ( α = 2, β = 1)

Figure 7. Image of λ̄(x) with different parameter α ( β = 1,m = 0.5)
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Figure 8. Image of λ̄(x) with different parameter m ( α = 2, β = 1)

X. Zhu and N. Balakrishnan [28] studied basic properties of two-parameter
Laplace BS fatigue life distribution. For example, if X ∼ LBS(α, β) , then cX ∼
LBS(α, cβ) and X−1 ∼ LBS(α, β−1). Then the properties of three-parameter GLB-
S fatigue life distribution are given as follows.

Property 3.1. If X ∼ GLBS(α, β,m), then we have X−1 ∼ GLBS(α, β−1,m).

Proof. We define Y = X−1 , then for y > 0, we have

FY (y) = P (X−1 < y) = P (X > y−1)

= 1− Φ

{
1

α

[(
y−1

β

)m
−
(

β

y−1

)m]}
= Φ

{
1

α

[(
y

β−1

)m
−
(
β−1

y

)m]}
.

That is, X−1 ∼ GLBS(α, β−1,m).

Property 3.2. If X ∼ GLBS(α, β,m), then we have cX ∼ GLBS(α, cβ,m) for a
positive constant c.

Proof. It is denoted as Y = cX , then for y > 0 , we have
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That is, cX ∼ GLBS(α, cβ,m).

Property 3.3. If X ∼ GLBS(α, β,m) and it is denoted as Y = β
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X
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, then

we have Y ∼ LBS(α, β).
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That is, Y ∼ LBS(α, β).
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Property 3.4. If X ∼ GLBS(α, β,m), then for k > 0, we have
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In particular, we have
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E(X2m) =
β2m

23

[∫ +∞

0

(−αt+
√
α2t2+4)

2
e−tdt+

∫ +∞

0

(αt+
√
α2t2 + 4)

2
e−tdt

]
=
β2m

2

∫ +∞

0

(α2t2 + 2)e−tdt

= β2m(α2 + 1),

E(X3m) =
β3m

24

[∫ +∞

0

(−αt+
√
α2t2+4)

3
e−tdt+

∫ +∞

0

(αt+
√
α2t2 + 4)

3
e−tdt

]
=
β3m

2

∫ +∞

0

(α2t2 + 1)
√
α2t2 + 4e−tdt,

E(X4m) =
β4m

25

[∫ +∞

0

(−αt+
√
α2t2+4)

4
e−tdt+

∫ +∞

0

(αt+
√
α2t2 + 4)

4
e−tdt

]
=
β4m

2

∫ +∞

0

(α4t4 + 4α2t2 + 2)e−tdt

=
β4m

2
(24α4 + 8α2 + 2)

= β4m(12α4 + 4α2 + 1).

Property 3.5. If X ∼ GLBS(α, β,m) and it is denoted as Y = lnX , then we
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It is denoted as Z = Y−µ
σ , then the distribution function FZ(z) and density

function fZ(z) of Z are respectively

FZ(z) =
1

2
exp

[
1

α

(
ez − e−z

)]
, fZ(z) =

1

2α

(
ez + e−z

)
exp

[
1

α

(
ez − e−z

)]
, z < 0,

FZ(z) = 1− 1

2
exp

[
− 1

α

(
ez − e−z

)]
, z ≥ 0,

fZ(z) =
1

2α

(
ez + e−z

)
exp

[
− 1

α

(
ez − e−z

)]
, z ≥ 0.

Since fZ(−z) = fZ(z), we know

E(Zk) =

∫ 0

−∞
zkfZ(z)dz +

∫ +∞

0

zkfZ(z)dz =

∫ +∞

0

[
(−z)k + zk

]
fZ(z)dz, k > 0.

If k is odd, we have E(Zk) = 0.
If k is even, we have

E(Zk) = 2

∫ +∞

0

zkfZ(z)dz

=
1

α

∫ +∞

0

zk
(
ez + e−z

)
exp

[
− 1

α

(
ez − e−z

)]
dz

=

∫ +∞

0

(
ln
αt+

√
α2t2 + 4

2

)k
e−tdt.

Thus, we know E(Y ) = µ+ σE(Z) = µ,

E(Y 2) = µ2 + σ2E(Z2) = µ2 + σ2

∫ +∞

0

(
ln
αt+

√
α2t2 + 4

2

)2

e−tdt,

E(Y 3) = µ3 + 3µ2σE(Z) + 3µσ2E(Z2) + σ3E(Z3)

= µ3 + 3µσ2

∫ +∞

0

(
ln
αt+

√
α2t2 + 4

2

)2

e−tdt,

E(Y 4) = µ4 + 4µ3σE(Z) + 6µ2σ2E(Z2) + 4µσ3E(Z3) + σ4E(Z4)

= µ4 + 6µ2σ2

∫ +∞

0

(
ln
αt+

√
α2t2 + 4

2

)2

e−tdt

+ σ4

∫ +∞

0

(
ln
αt+

√
α2t2 + 4

2

)4

e−tdt.

4. Parameter Estimates for Three-parameter GLB-
S Fatigue Life Distribution

LetX1, X2, · · · , Xn be a simple random sample from the populationX ∼ GLBS(α, β,m)
of the sample size n. The order statistics are X(1), X(2), · · · , X(n), and the order ob-
servations are x(1), x(2), · · · , x(n).
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4.1. Point estimate of the scale parameter β

Due to FX(β) = 0.5, the scale parameter β can be estimated by the sample median.

When n is odd, it is β̂1 = X(n+1)/2 . When n is even, it is β̂1 =
X(n/2)+X(n/2)+1

2 .
Xu et al. [26] suggested using geometric mean of samples as the point estimate of

scale parameter β for two-parameter BS fatigue life distribution BS(α, β) . Here for
three-parameter GLBS distribution GLBS(α, β,m) , it is denoted as Y = lnX, Yi =

lnXi, i = 1, 2, · · · , n and Ȳ = 1
n

n∑
i=1

Yi, Y 2 = 1
n

n∑
i=1

Y 2
i , Y

4 = 1
n

n∑
i=1

Y 4
i . According to

Property 3.5, the moment estimate of parameter µ is µ̂ = Ȳ , and then the estimate

of scale parameter β is β̂2 =

(
n∏
i=1

Xi

)1/n

.

Lemma 4.1 ( [25]). Let X1, X2, · · · , Xn be a simple random sample from the pop-
ulation X of the sample size n , and it is denoted as E(X) = µ,D(X) = σ2 < +∞.
The fourth order central moment v4 = E(X − EX)4 of the population X is finite.
If the fourth derivative of the function is existent and bounded, then we have

E
[
h(X̄)

]
= h(µ) +

1

2n
h′′(µ)σ2 +O(n−2),

D
[
h(X̄)

]
=

1

n
[h′(µ)]

2
σ2 +

1

n2

{
h′(µ)h′′(µ)v3 +

1

2
[h′′(µ)]

2
σ4 + h′(µ)h′′′(µ)σ4

}
+O(n−3).

Theorem 4.1. The point estimate β̂2 of the scale parameter β is the approximate
unbiased estimate and consistent estimate of β.

Proof. Due to Y = σZ + µ,E(Y ) = µ, Y − E(Y ) = σZ, the first to fourth order
central moments of Y are

v1 = E[Y − E(Y )] = 0, v3 = E[Y − E(Y )]3 = σ3E(Z3) = 0,

v2 = E[Y − E(Y )]2 = σ2E(Z2) = σ2

∫ +∞

0

(
ln
αt+

√
α2t2 + 4

2

)2

e−tdt,

v4 = E[Y − E(Y )]4 = σ4E(Z4) = σ4

∫ +∞

0

(
ln
αt+

√
α2t2 + 4

2

)4

e−tdt.

Let the function be h(x) = ex , and any order derivative of h(x) is ex . By Lemma
4.1, it is known that

E(β̂2) = E(eȲ ) = eµ +
1

2n
eµ · σ2E(Z2) +O(n−2) = β +

σ2

2n
βE(Z2) +O(n−2),

D(β̂2) = D(eȲ )

=
1

n
e2µ · σ2E(Z2) +

1

n2

{
1

2
e2µ · σ4

[
E(Z2)

]2
+ e2µ · σ4

[
E(Z2)

]2}
+O(n−3)

=
σ2

n
β2E(Z2) +

3σ4

2n2
β2
[
E(Z2)

]2
+O(n−3).

It is easy to see lim
n→+∞

E(β̂2) = β and lim
n→+∞

D(β̂2) = 0. Thus, β̂2 is the approx-

imate unbiased estimate and consistent estimate of β.
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Table 1. Simulation comparison of two point estimates for parameter β

n α m
point estimate β̂1 point estimate β̂2

Mean Mean
square
error

Mean Mean
square
error

20

0.5

0.5 1.00341 0.01559 1.00530 0.01982
0.8 1.00052 0.00640 0.99953 0.00801
1 1.00285 0.00412 1.00284 0.00578
1.2 1.00346 0.00293 1.00507 0.00387

1

0.5 1.05067 0.07879 1.04284 0.07921
0.8 1.01836 0.02499 1.01720 0.02594
1 1.00918 0.01806 1.00973 0.01879
1.2 1.01015 0.01181 1.01111 0.01187

1.5

0.5 1.08721 0.21354 1.05402 0.15105
0.8 1.02605 0.05763 1.02318 0.04727
1 1.01945 0.03855 1.01838 0.03119
1.2 1.00986 0.02347 1.00380 0.02006

30

0.5

0.5 1.00848 0.01117 1.01192 0.01526
0.8 1.00489 0.00444 1.00510 0.00536
1 0.99732 0.00253 0.99778 0.00365
1.2 1.00006 0.00192 1.00142 0.00258

1

0.5 1.03110 0.04471 1.02557 0.05025
0.8 1.01182 0.01710 1.01199 0.01806
1 1.00434 0.01030 1.00577 0.01086
1.2 1.00757 0.00760 1.01014 0.00840

1.5

0.5 1.03673 0.10220 1.03871 0.09880
0.8 1.03140 0.03828 1.02236 0.03271
1 1.01826 0.02852 1.01501 0.02301
1.2 1.00978 0.01649 1.00649 0.01435

40

0.5

0.5 1.00614 0.00778 1.00469 0.01025
0.8 1.00172 0.00276 1.00325 0.00388
1 1.00039 0.00170 1.00032 0.00261
1.2 1.00039 0.00128 1.00249 0.00190

1

0.5 1.02260 0.03545 1.01526 0.03553
0.8 1.00654 0.01268 1.00672 0.01332
1 1.00148 0.00819 1.00327 0.00919
1.2 1.00514 0.00504 1.00213 0.00565

1.5

0.5 1.02755 0.07810 1.01481 0.06223
0.8 1.01255 0.02643 1.01659 0.02353
1 1.01140 0.01867 1.01037 0.01577
1.2 1.01261 0.01175 1.00815 0.01026

50

0.5

0.5 1.00144 0.00676 1.00647 0.00907
0.8 1.00223 0.00261 1.00273 0.00350
1 1.00043 0.00149 1.00072 0.00210
1.2 1.00171 0.00107 1.00228 0.00138

1

0.5 1.00667 0.02509 1.00977 0.02752
0.8 1.00568 0.00965 1.00555 0.01075
1 1.00173 0.00618 1.00233 0.00651
1.2 1.00391 0.00429 1.00300 0.00433

1.5

0.5 1.01821 0.05754 1.01090 0.04744
0.8 1.01424 0.02079 1.01310 0.01794
1 1.00532 0.01358 1.00457 0.01224
1.2 1.00685 0.00887 1.00502 0.00839
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The true values of parameters are taken as α = 0.5, 1, 1.5, β = 1,m = 0.5, 0.8, 1,
1.2, and the sample size is taken as n = 20(10)50. The means and mean square

errors of two point estimates β̂1, β̂2 of the scale parameter are calculated by Monte
Carlo simulations for 1000 times. The results are shown in Table 1, and it can be
seen that (1) the means and mean square errors of β̂1, β̂2 are little different, which

means that the point estimates of β are very close; (2) β̂1 is better for the smaller

true value of α , while β̂2 is better for the larger true value of α ; (3) Considering
that the sample quantile is usually highly fluctuant for the smaller sample size n ,
we recommend using β̂2.

4.2. Point estimates of the shape parameters α,m

By using Property 3.5, three moment equations can be established as follow.

µ = Y , µ2 + σ2

∫ +∞

0

(
ln
αt+

√
α2t2 + 4

2

)2

e−tdt = Y 2,

µ4+6µ2σ2

∫ +∞

0

(
ln
αt+
√
α2t2+4

2

)2

e−tdt+σ4

∫ +∞

0

(
ln
αt+
√
α2t2+4

2

)4

e−tdt=Y 4.

They can be simplified to

∫ +∞
0

(
ln
αt+

√
α2t2 + 4

2

)4

e−tdt∫ +∞
0

(
ln
αt+

√
α2t2 + 4

2

)2

e−tdt

2 =
Y 4 − 6µ̂2Y 2 + 5µ̂4

(Y 2 − µ̂2)
2 . (4.1)

Then the point estimate α̂ of parameter α can be obtained by solving the equation
(4.1). Furthermore, the point estimate of parameter m is

m̂ =

√√√√ 1

Y 2 − µ̂2

∫ +∞

0

(
ln
α̂t+

√
α̂2t2 + 4

2

)2

e−tdt.

Lemma 4.2. Let s =
Y 4 − 6µ̂2Y 2 + 5µ̂4

(Y 2 − µ̂2)
2 . If the sample data meets the condition

1 < s < 6, then the equation (4.1) has one positive real root at least.

Proof. Let the function be g(α) =

∫ +∞
0

(
ln
αt+

√
α2t2 + 4

2

)4

e−tdt∫ +∞
0

(
ln
αt+

√
α2t2 + 4

2

)2

e−tdt

2 , α > 0.
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It is denoted as λ = α
2 , then we have

g(α) =

∫ +∞
0

[
ln

(
α

2
t+

√(α
2

)2

t2 + 1

)]4

e−tdt∫ +∞
0

[
ln

(
α

2
t+

√(α
2

)2

t2 + 1

)]2

e−tdt


2

=

∫ +∞
0

[
ln
(
λt+

√
λ2t2 + 1

)]4
e−tdt{∫ +∞

0

[
ln
(
λt+

√
λ2t2 + 1

)]2
e−tdt

}2 .

Let the function be G(λ) =

∫ +∞
0

[
ln
(
λt+

√
λ2t2 + 1

)]4
e−tdt{∫ +∞

0

[
ln
(
λt+

√
λ2t2 + 1

)]2
e−tdt

}2 , λ > 0.

lim
λ→0

ln
(
λt+

√
λ2t2 + 1

)
λt

= lim
λ→0

[
1

t

(
t+

λt2√
λ2t2 + 1

)
1

λt+
√
λ2t2 + 1

]
= 1,

lim
α→0

g(α) = lim
λ→0

G(λ) = lim
λ→0

∫ +∞
0

(λt)
4
e−tdt[∫ +∞

0
(λt)

2
e−tdt

]2 =

∫ +∞
0

t4e−tdt[∫ +∞
0

t2e−tdt
]2 = 6,

lim
λ→+∞

ln
(
λt+

√
λ2t2 + 1

)
lnλ

= lim
λ→+∞

[
λ

(
t+

λt2√
λ2t2 + 1

)
1

λt+
√
λ2t2 + 1

]
= lim
λ→+∞

λt√
λ2t2 + 1

= 1,

lim
α→+∞

g(α) = lim
λ→+∞

G(λ)

= lim
λ→+∞

∫ +∞
0

[
ln
(
λt+

√
λ2t2 + 1

)]4
e−tdt{∫ +∞

0

[
ln
(
λt+

√
λ2t2 + 1

)]2
e−tdt

}2

= lim
λ→+∞

∫ +∞
0

(lnλ)
4
e−tdt[∫ +∞

0
(lnλ)

2
e−tdt

]2 = 1.

Therefore, if the sample data meets the condition 1 < s < 6, then the equation
(4.1) has one positive real root at least.

The graph of the function g(α) is shown in Figure 9, and it can be seen that
g(α) is a strictly monotone decreasing function.

The true values of parameters are taken as α = 0.5, 1, 1.5, β = 0.5, 1, 1.5,m =
0.5, 1, 1.5, and the sample size is taken as n = 50. The number of times that the
sample data meets the condition 1 < s < 6 (called Condition A) is calculated by
Monte Carlo simulations for 1000 times. The results are shown in Table 2, and it
can be seen that (1) For the fixed parameters α, β , the number of times is gradually
decreasing with the increase of m ; (2) For the fixed parameters α,m , the number
of times is increasing at first and then decreasing with the increase of β ; (3) For
the fixed parameters β,m , the number of times is gradually increasing with the
increase of α ; (4) When β is around one, the number of times that Condition A is
satisfied will be relatively higher.
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Figure 9. Image of the function g(α)

Table 2. The number of times that the sample meets Condition A

α β m number

0.5

0.5
0.5 733
1 429
1.5 273

1
0.5 933
1 921
1.5 918

1.5
0.5 868
1 670
1.5 469

1

0.5
0.5 970
1 810
1.5 645

1
0.5 994
1 993
1.5 989

1.5
0.5 981
1 952
1.5 859

1.5

0.5
0.5 999
1 948
1.5 825

1
0.5 1000
1 1000
1.5 1000

1.5
0.5 999
1 998
1.5 979

From above analysis, it can be seen that Condition A is not always satisfied. At
the same time, considering that the number of times that Condition A is satisfy is
relatively higher for β = 1, the right side of equation (4.1) can be approximately
modified as follow.
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It is denoted as Y ′i = ln Xi

β̂2
, i = 1, 2, · · · , n and Y ′ = 1

n

n∑
i=1

Yi
′ , (Y ′)

2
=

1
n

n∑
i=1

(Yi
′)

2
, (Y ′)

4
= 1

n

n∑
i=1

(Yi
′)

4
, s′ =

(Y ′)4−6(Y ′)
2
(Y ′)2+5(Y ′)

4[
(Y ′)2−(Y ′)

2
]2 . The value of s′ is

more likely to be between one and six, and 1 < s′ < 6 is called Condition B. Thus,
equation (4.1) becomes to

∫ +∞
0

(
ln αt+

√
α2t2+4
2

)4

e−tdt[∫ +∞
0

(
ln αt+

√
α2t2+4
2

)2

e−tdt

]2 = s′. (4.2)

If Condition A is satisfied, then the estimate of α can be solved by equation
(4.1). If Condition A is not satisfied and Condition B is satisfied, then the estimate
of α can be solved by equation (4.2).

Example 4.1. Air pollution index means that several routinely monitored air pol-
lution concentrations are simplified into a single conceptual index form, and indicate
the degree of air pollution and the state of air quality by classification, which is suit-
able to represent the status and variation trend of short-term air quality in the city.
The monitored pollutants include PM10, ozone, nitrogen dioxide, sulfur dioxide
and so on. Filidor Vilca [22] gave daily ozone concentrations in New York during
May-September 1973, which are provided by the New York State Department of
Conservation and shown as follows.
41, 36, 12, 18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34, 6, 30, 1, 11, 4, 32, 23, 45, 115,
37, 29, 71, 39, 23, 21, 37, 20, 12, 13, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 48, 35,
61, 79, 63, 16, 108, 20, 52, 82, 50, 64, 59, 39, 9, 16, 78, 35, 66, 122, 89, 110, 44, 65,
22, 59, 23, 31, 44, 21, 9, 45, 168, 73, 76, 118, 84, 85, 96, 78, 91, 47, 32, 20, 23, 21,
24, 44, 21, 28, 9, 13, 46, 18, 13, 24, 16, 23, 36, 7, 14, 30, 14, 18, 20, 11, 135, 80, 28,
73, 13.

First, the K-S test method is used to conduct the fitting test of distribution, and
the null hypothesis H0 is that the frequency distribution conforms to the theoretical
distribution. The test statistic is Dn = max |Fn(x) − F0(x)| . When the actual
observed value satisfies D > Dn , H0 is rejected, otherwise H0 is accepted. That
is, when

√
nDn < C is satisfied, H0 is accepted, otherwise H0 is rejected, where C

is the tail quantile of the K-S test.

At the significance level 0.1, we obtain C = 1.224 , Dn = 0.0911 and
√
nDn =

0.9812 < C . Therefore, according to the K-S test principle, it can be consid-
ered that the data in this example follows three-parameter GLBS distribution
GLBS(α, β,m).

Then, the method in this paper is used to obtain that two point estimates of
parameter β are respectively β̂1 = 31.5 and β̂2 = 30.5241 . Due to s = −4.96544
and s′ = 3.84151 , Equation (4.2) is used to solve the estimates α̂ = 0.7493 ,
m̂ = 0.5335.
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5. Point Estimates of parameters in Progressive Stress
Accelerated Life Test V (t) = Kt for Two-parameter
LBS Fatigue Life Distribution under Inverse Pow-
er Law Model

According to Section 2, if the life of a product follows two-parameter Laplace BS
fatigue life distribution and the accelerated life test is carried out under progressive
stress V (t) = Kt , then the failure distribution of this product is

FV (t)(t) = Φ

{
1

α

[(
t

β

)m
−
(
β

t

)m]}
, t > 0, α > 0, β > 0,m > 0.5.

There are n products subjected to progressive stress accelerated life test, and the
life of each product follows two-parameter Laplace BS fatigue life distribution. The
test will continue until all products fail. Then the failure time of these products are
denoted as t1, t2, · · · , tn, and the order failure time are denoted as t(1), t(2), · · · , t(n).
The scale parameter β satisfies the inverse power law model.

Therefore, it is easy to obtain the point estimates α̂, β̂2, m̂ of parameters α, β,m
by using the method proposed in Section 4, and then the point estimates of param-
eters c, d are

ĉ = 2m̂− 1, d̂ =
ĉ+ 1

K ĉβ̂ĉ+1
2

.

Example 5.1. Let the sample size be n = 20. The true values of parameters are
taken as α = 1, c = 1, d = 2, and K = 1. Then the true values of parameters β,m
are β = 1 and m = 1. Twenty random numbers are generated under the progress
stress V (t) = t by Monte-Carlo simulations as follows.
1.06202, 0.77835, 2.16968, 0.99501, 0.80616, 1.26222, 0.25977, 0.62450, 1.02554,
1.30095, 1.53872, 0.92944, 1.39875, 2.19606, 0.76677, 0.88262, 1.05870, 1.92820,
0.83219, 0.49014.

By using the method in this paper, it can be obtained

β̂1 = 1.0103, β̂2 = 0.9986, α̂ = 0.72, m̂ = 0.9026,

ĉ = 0.8052, d̂ = 1.8097.

Example 5.2. Let the sample size be n = 20 . The true values of parameters are
taken as α = 1.5, c = 2, d = 3, and K = 1. Then the true values of parameters β,m
are β = 1 and m = 1.5. Twenty random numbers are generated under the progress
stress V (t) = t by Monte-Carlo simulations as follows.
0.68763, 1.86387, 0.74008, 0.58608, 0.24036, 1.68706, 2.15632, 0.88849, 1.66721,
1.17730, 0.89811, 1.37712, 0.58580, 0.29248, 1.15981, 2.97699, 1.11553, 1.78139,
0.60743, 1.27868.

By using the method in this paper, it can be obtained

β̂1 = 1.1377, β̂2 = 0.9978, α̂ = 1.6313, m̂ = 1.3106,

ĉ = 1.6213, d̂ = 2.6363.
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