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1. Introduction

The polynomial vector field

y
∂

∂x
+
[
− g(x) + εf(x)y

] ∂
∂y

= 0

with 0 < ε� 1 is a result of perturbation on the Hamiltonian system,

ẋ = y, ẏ = −g(x) + εf(x)y, (1.1)

which has the Hamiltonian H(x, y) = y2

2 +
∫
g(y)dx. When analyzing limit cycles

arising from Bogdanov-Takens bifurcation, the normal form

ẋ = y, ẏ = −1 + x2 + ε(a0 + a1x)y

is usually used for codimension two [18], and

ẋ = y, ẏ = −1 + x2 + ε(a0 + a1x+ a3x
3)y

for codimension three of cusp case, see [7]. For codimension four of cusp case, the
reduced perturbed Hamiltonian is given by (see [19]),

ẋ = y, ẏ = −1 + x2 + ε(a0 + a1x+ a2x
3 + a3x

4)y.
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The bifurcation diagrams have been obtained for codimensions two, three and four
by a sophisticated analysis. In [28], Xiao studied a codimension five bifurcation of
cusp case, for which two different truncated systems were obtained by applying the
principle re-scaling and central re-scaling. The first truncated system is a Hamil-
tonian system, and its bifurcation diagram was obtained. The second truncated
system is the following 5th-degree perturbed Hamiltonian,

ẋ = y, ẏ = x(x− 1)(x− α)(x− β) + ε(a0 + a1x+ a2x
2)y. (1.2)

The unperturbed system (1.2) can be classified into 11 cases according to the values
of α and β when it has at least one period annulus [28]. The Hopf bifurcation surface
was obtained for all values of α and β. However, the limit cycle bifurcation surfaces
on the whole period annulus are still unknown. The main difficulty of the analysis
is due to the higher order of the Hamiltonian. The outer boundaries of the period
annulus of the system (1.2)ε=0 have two degenerate cases, one is the nilpotent-saddle
loop when α = β = 1, and the other is the cusp-saddle cycle when α = 0 and β = 3

5 ,
as shown in Figure 1(a) and (b), respectively.
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Figure 1. Phase portraits of system (1.2) showing (a) a nilpotent-saddle loop for α = β = 1; and (b) a

cusp-saddle cycle for α = 0, β = 3
5 .

Perturbation on Hamiltonian systems is also a main topic in the study of the
weak Hilbert’s 16th problem, proposed by Arnold [1] for studying the maximal
number of zeros of the Abelian integral, which is the first order approximation of
the return map,

A(h, δ) =

∮
Γh

q(x, y)dx− p(x, y)dy, h ∈ J,

for the perturbed Hamiltonian system,

ẋ = Hy(x, y) + εp(x, y), ẏ = −Hx(x, y) + εq(x, y),

where p(x, y) and q(x, y) are polynomials of degree n ≥ 2, H(x, y) is of degree
n + 1, Γh represents closed algebra curves of H(x, y) which are parameterized by
{(x, y)|H(x, y) = h, h ∈ J}, J is an open interval, δ is a set of coefficients of p(x, y)
and q(x, y), and ε represents small perturbations satisfying |ε| � 1. Some relatively
new estimated bounds for general n can be found in [23,24] and references therein.
More relative references on study of the number of zeros of Abelian integrals for
perturbed integral systems can be found in [17]. A so called “much weaker” case

is defined by H = y2

2 +
∫
g(x)dx, p = 0 and q = f(x)y, for which the perturbed
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Hamiltonian is reduced to system (1.1), and the corresponding Abelian integral has
a simple form,

A(h, δ) =

∮
Γh

f(x)ydx.

System (1.1) is called type (m,n) if g(x) and f(x) are polynomials of degree m and
n, respectively. A lot of works on the study of A(h, δ) with various polynomials
f(x) and g(x) were reported, for example, see [6] for type (3, 2), and [2–4,27,32] for
type (5, 4) with symmetry. For type (3, 2), the authors not only deduced the sharp
bounds for the number of zeros but also obtained the bifurcation diagrams. The
main tools used in these studies are Picárd-Focus equations and Ricatti equations.
Because of symmetry in type (5, 4), the perturbation terms are reduced to three,
and the dimension of Picárd-Focus equations is thus the same as that of type (3, 2).
The sharp bounds were obtained for most cases, however the bifurcation diagrams
have not been obtained and an advanced analysis is needed. We also noticed that
the existence and uniqueness of limit cycles in system (1.1) without restriction on
the first order bifurcation have been reported in [5, 10] and references therein, and
the integrability of system (1.1) was summarized in [21]. The lower bounds on
the number of system (1.2) with more higher order perturbation terms have been
studied in [25,30,31].

When the Hamiltonian is of degree more than four, i.e., the degree of g(x) is
more than three without symmetry, it is more difficult to obtain the bifurcation
diagrams with three perturbation parameters, since the dimensions of the Picárd-
Focus equation and Ricatti equation become higher and some new perturbation
terms will appear when analyzing the centroid curve (see the method in [6]). It is
almost impossible to analyze the intersection of the lines (planes) and curves (sur-
faces) by a classical method. In this paper, we will propose a method to analyze the
zero bifurcation diagrams of the Abelian integrals for the three parameter perturba-
tion of higher order Hamiltonian systems. We use the method to obtain bifurcation
diagrams for two perturbed systems which exhibit truncated codimension-5 bifurca-
tions, and present the results for a higher order perturbation of a Hamiltonian. We
will not only show this integral is Chebyshev, but also give the exact zero bifurcation
diagram.

The rest of the paper is organized as follows. In section 2, we give the asymptotic
expansions of the Abelian integrals A(h) andM(h) for two degenerate cases, which
are obtained by using the methods developed in [13,15,16,26]. Then we present the
Chebyshev criterion [9, 22], which is the generalization of the method developed in
[20] to determine the monotonicity of two Abelian integrals. It was efficiently used to
bound the number of zeros of some Abelian integrals with more than two generation
elements. In our work, we will apply it to “restrict” the perturbation parameters
with the help of “combination” skill, which is essential in the bifurcation diagram
analysis. In order to achieve this, we need a primary analysis on the unperturbed
systems and the Abelian integrals A(h) and M(h). Especially, for the saddle-cusp
cycle case, instead of directly studying the original system, we transform the system
to an equivalent system with the same Abelian integral of the original one. The
main aim of this step is to demonstrate that our method can deal with general
polynomial perturbations involving three parameters. In section 3, we study the
bifurcation diagram for A(h) using the asymptotic expansions and the combination
skill. In section 4, we consider the bifurcation diagram forM(h). Finally, in section
5 we discuss the Hamiltonian systems with higher-degree perturbations and give a
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complete zero bifurcation diagram for this problem.

2. Asymptotic Expansions and Chebyshev Criteri-
on

Consider system (1.2) with α = β = 1. The Hamiltonian is

H(x, y) =
y2

2
+
x2

2
− x3 +

3x4

4
− x5

5
, (2.1)

satisfying H = h for h ∈ (0, 1
20 ) and x ∈ (− 1

4 , 1), as depicted in Figure 1(a),
which shows a family of closed orbits Γh surrounded by a homoclinic loop Γ 1

20
, with

a nilpotent saddle of order one at (1, 0). Correspondingly, we have the Abelian
integral,

A(h) = a0I0(h) + a1I1(h) + a2I2(h), (2.2)

where

In(h) =

∮
Γh

xnydx, n = 0, 1, 2. (2.3)

Next, consider system (1.2) with α = 0 and β = 3
5 , yielding the Hamiltonian,

H(x, y) =
y2

2
− x3

5
+

2x4

5
− x5

5
, (2.4)

satisfying H(x, y) = h for h ∈ (− 108
15625 , 0) and x ∈ (0, 1), as given in Figure 1(b),

showing a family of closed orbits Γh surrounded by a saddle-cusp cycle Γ0, with a
nilpotent cusp of order 1 at (0, 0) and a hyperbolic saddle at (1, 0). Correspondingly,
we have the Abelian integral,

A(h) = a0Ī0(h) + a1Ī1(h) + a2Ī2(h), (2.5)

where Īn(h) =
∮

Γh
xnydx, n = 0, 1, 2.

Introducing the transformation u = − 5
3x+ 1, v = − 25

√
15y

27 and the time scaling

dτ = 3
√

15
25 dt into (1.2) yields the perturbed Hamiltonian system, (x and y are still

used instead of u and v for convenience),

dx

dτ
= y,

dy

dτ
= −x

(
x+

2

3

)
(x− 1)2 + ε

[
a0q0(x) + a1q1(x) + a2q2(x)

]
y, (2.6)

where

q0(x) =
5
√

15

9
, q1(x) =

√
15

3
(1− x) and q2(x) =

√
15

5
(x2 − 2x+ 1).

The above perturbed Hamiltonian system is a cubic polynomial perturbation to the
Hamiltonian,

H∗(x, y) = − 4

45
+
y2

2
+
x2

3
− x3

9
− x4

3
+
x5

5
,

satisfying H∗(x, y) = h for h ∈ (− 4
45 , 0) and x ∈ (− 2

3 , 1), as depicted in Figure 2,
showing a family of closed orbits Γ∗h surrounded by a saddle-cusp cycle Γ∗0, with a
nilpotent cusp of order one at (1, 0) and a hyperbolic saddle at (− 2

3 , 0).
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Figure 2. Phase portrait of system (1.2) showing a family of closed orbits.

The Abelian integral of the perturbed Hamiltonian system (2.6) is given by

M(h) = a0J0(h) + a1J1(h) + a2J2(h), (2.7)

with Ji(h) =
∮

Γ∗h
qi(x)ydx. By [14], we have

M(h) =
243

3125
A
(3125

243
h
)
,

which will be analyzed in the following sections.
The asymptotic expansions of Abelian integrals are proposed to study its zeros

near the endpoints of the annuluses, and these zeros correspond to limit cycles near
the centers, homoclinic loops and heteroclinic loops, see [11,29], and the book [14].
In this work, we will apply the expansions to study the dynamics of the Abelian
integrals on the whole period annulus.

2.1. Asymptotic Expansion of A(h)
A(h) has the following expansion (see [12,13]):

A(h) =c0(δ) + c1(δ)
∣∣∣h− 1

20

∣∣∣ 3
4

+
[
c2(δ) +m0c1(δ)

](
h− 1

20

)
ln
∣∣∣h− 1

20

∣∣∣
+
[
c3(δ) +m1c1(δ) +m2c2(δ)

]
(h− 1

20 ) +O
((
h− 1

20

) 5
4
) (2.8)

for 0 < 1
20 − h� 1, mi (i = 0, 1, 2) are some constants, and

A(h) =
∑
i≥0

bi(δ)h
i+1, (2.9)

for 0 < h � 1. The explicit expressions of the coefficients ci(δ) are obtained by
using the formulas in [12] as follows:

c0(δ) =
25
√

2

72072
(858a0 + 143a1 + 78a2),

c1(δ) = 4Ã0(a0 + a1 + a2),

c2(δ) =

√
2

2
(a1 + 2a2),
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with the constant Ã0 < 0, and the coefficients bi(δ) can be obtained by applying
the program in [13] as

b0 = 2π a0, b1 =
π

4
(21 a0 + 12 a1 + 4 a2) ,

b2 =
π

32
(1379 a0 + 872 a1 + 440 a2) .

Thus, using the expansions (2.8) and (2.9), we can easily obtain the expansions for
Ii(h) and its derivative I ′i(h), which will be used in the following sections.

2.2. Asymptotic Expansion of M(h)

By [13,15,16,26], we obtain the expansions of M(h) as follows:

M(h) = e0(δ) +B00e1(δ)|h| 56 + e2(δ)h ln |h|
+
[
e3(δ) +m∗1e1(δ) +m∗2e2(δ)

]
h+O

(
|h| 76

)
,

(2.10)

for 0 < −h� 1, where m∗1, m∗2 and B00 are constants with B00 > 0, and

M(h) =
∑
j≥0

dj(δ)
(
h+

4

45

)j+1

, (2.11)

for 0 < h+ 4
45 � 1. The coefficients ei(δ) can be computed by applying the methods

developed in [15,16,26], given by

e0 =
1000

√
10

168399
(99 a0 + 55 a1 + 35 a2) ,

e1 = −2
√

2
3
√

5 a0,

e2 = −
√

10

2
(a0 + a1 + a2) ,

and dj(δ) can be obtained by employing the program in [13],

d0 =
π
√

10

15
(25 a0 + 15 a1 + 9 a2) ,

d1 =
π
√

10

480
(1025 a0 + 435 a1 + 369 a2) ,

d2 =
π
√

10

9216
(85085 a0 + 33843 a1 + 28557 a2) .

Similarly, we can easily obtain the expansions of Ji(h) and its derivative J ′i(h) by
using the expansions (2.10) and (2.11).

2.3. Chebyshev criterion

For convenience of analysis in the next section, we introduce some preliminary
results related to Chebyshev criterion.

Definition 2.1. Suppose f0(x), f1(x), . . . , fn−1(x) are analytic functions on an real
open interval J .
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(i) The family of sets {f0(x), f1(x), . . . , fn−1(x)} is called a Chebyshev system
( T-system for short) provided that any nontrivial linear combination,

k0f0(x) + k1f1(x) + · · ·+ kn−1fn−1(x),

has at most n− 1 isolated zeros on J .

(ii) An ordered set of n functions {f0(x), f1(x), . . . , fn−1(x)} is called complete
Chebyshev system ( CT-system for short) provided that any nontrivial linear
combination,

k0f0(x) + k1f1(x) + · · ·+ ki−1fi−1(x),

has at most i − 1 zeros for all i = 1, 2, · · · , n. Moreover it is called extended
complete Chebyshev system ( ECT-system for short) if the multiplicities of
zeros are taken into account.

(iii) The continuous Wronskian of {f0(x), f1(x), . . . , fn−1(x)} at x ∈ R is defined
by

W [f0(x), f1(x), . . . , fk−1(x)] =

∣∣∣∣∣∣∣∣∣∣∣∣

f0(x) f1(x) · · · fk−1

f
′

0(x) f
′

1(x) · · · f ′k−1(x)

· · · · · · · · · · · ·

f
(k−1)
0 (x) f

(k−1)
1 (x) · · · f (k−1)

k−1 (x)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where f ′i(x) is the first order derivative of fi(x), and f
(j)
i (x) is the jth order

derivative of fi(x), j ≥ 2. The definitions imply that the function tuple
{f0(x), f1(x), · · · , fk−1(x)} is an ECT-system on J , so it is a CT-system on
J , and thus a T-system on J . However the inverse is not necessary true.

Let res(f1, f2) denote the resultant of f1(x) and f2(x), where f1(x) and f2(x)
are two univariate polynomials of x on rational number field Q. As it is known,
res(f1(x), f2(x)) = 0 if and only if f1(x) and f2(x) have at least one common root.

Let res(f, g, x) and res(f, g, z) denote respectively the resultants between f(x, z)
and g(x, z) with respect to x and z, where f(x, z) and g(x, z) are two polynomials
in {x, z} on rational number field. res(f, g, x) is a polynomial in z and res(f, g, z)
is a polynomial in x. Regarding the relation between the common roots of two
polynomials and their resultants, the following result can be found in many works
on polynomial algebra, such as [8]. For completeness we give a short proof.

Lemma 2.1 ( [8]). (i) Let (x0, z0) be a common root of f(x, z) and g(x, z). Then,
res(f, g, x0) = 0 and res(f, g, z0) = 0. However, the inverse is not necessary true.

(ii) Let res(f, g, z) have a unique real root on some open interval (α, β), and
res(f, g, x) have a unique real root on some open interval (γ, θ). Then, there exists
at most one common real root of f(x, z) and g(x, z) on (α, β)× (γ, θ).

Proof. (ii) is obvious if (i) is true. So we only prove (i). A two-variable polynomial
can be treated as one univariate polynomial of one variable with the other treated
as a parameter. Taking f(x, z) = fz(x) and g(x, z) = gz(x) which are polynomials
of x with parameter z. Let x0 be the common root of fz0(x) and gz0(x), where z0 is
the common root of fx0

(z) and gx0
(z). Then, res(fz0(x), gz0(x)) = res(f, g, z0) = 0,

and therefore, res(fx0
(z), gx0

(z)) = res(f, g, x0) = 0.
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Let H(x, y) = U(x) + y2

2 be an analytic function. Assume there exists a punc-
tured neighborhood P of the origin foliated by ovals Γh ⊆ {(x, y)|H(x, y) = h, h ∈
(0, h0), h0 = H(∂P)}. The projection of P on the x-axis is an interval (xl, xr) with
xl < 0 < xr. Under these assumptions, it is easy to verify that xU′(x) > 0 for all
x ∈ (xl, xr)\{0}, and U(x) has a zero of even multiplicity at x = 0 and there exists
an analytic involution z(x), defined by U(x) = U(z(x)), for all x ∈ (xl, xr). Let

Ii(h) =

∮
Γh

fi(x)y2s−1dx, for h ∈ (0, h0), (2.12)

where fi(x), i = 0, 1, . . . , n−1, are analytic functions on (xl, xr) and s ∈ N . Further,
define

li(x) :=
fi(x)

U′(x)
− fi(z(x))

U′(z(x))
.

Then, we have

Lemma 2.2 ( [9]). Under the above assumption, {I0, I1, · · · , In−1} is an ECT
system on (0, h0) if {l0, l1, · · · , ln−1} is an ECT system on (xl, 0) or (0, xr) and
s > n− 2.

Lemma 2.3 ( [22]). Under the above assumption, if the following conditions are
satisfied:
(i) W [l0, l1, . . . , li] does not vanish on (0, xr) for i = 0, 1, · · · , n− 2,
(ii) W [l0, l1, . . . , ln−1] has k zeros on (0, xr) with multiplicities counted, and
(iii) s > n+ k − 2,
then, any nontrivial linear combination of {I0, I1, · · · , In−1} has at most n+ k − 1
zeros on (0, h0) with multiplicities counted. In this case, {I0, I1, · · · , In−1} is called
a Chebyshev system with accuracy k on (0, h0), where W [l0, l1, . . . , li] denotes the
Wronskian of {l0, l1, . . . , li}.

3. Bifurcation Diagram of A(h)
In this section, we study A(h). We write H(x, y) = y

2 + U(x), and U(x) − U(z) =
(x− z)q(x, z) = 0, where

q(x, z) = x4 + 4x3z + 4x2z2 + 4x z3 + 4 z4 − 15x3 − 15x2z − 15x z2

− 15 z3 + 20x2 + 20x z + 20 z2 − 10x− 10 z,

which defines the involution z(x) on the period annulus. We have the following
result.

Lemma 3.1. 2hIi(h) =
∮

Γh
Si(x)y3dx ≡ Ĩi(h), where Si(x) = xi + Gi(x), with

Gi(x) = xjgi(x)
30(x−1)4 and G̃i(x) = xig̃i(x)

1500(x−1)8 , in which gi(x) is a polynomial in x.

Proof. Multiplying Ii(h) by y2+2U(x)
2h = 1 yields

Ii(h) =

∮
Γh

2U(x) + y2

2h
xiydx

=
1

2h

(∮
Γh

2xiU(x)ydx+

∮
Γh

xiy3dx

)
, i = 0, 1, 2, 3.

(3.1)
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By Lemma 4.1 in [9] (with k = 3 and F (x) = 2xiU(x)), we have∮
Γh

2xiU(x)ydx =

∮
Γh

Gi(x)y3dx, (3.2)

where Gi(x) = d
3dx

2xiU(x)
U ′(x) = xigi(x)

30(x−1)4 with

gi(x) = i(4x4 − 19x3 + 35x2 − 30x+ 10) + 4x4 − 16x3 + 25x2 − 20x+ 10.

Substituting (3.2) into (3.1) proves Lemma 3.1.
Without loss of generality, we assume that η = a0

a2
and λ = a1

a2
if a2 6= 0. Further,

let

I1(h) =

∮
Γh

(
x+

1

λ
x2
)
ydx. (3.3)

Then, A(h) = a2(ηI0(h) + λI1(h)). By Lemma 3.1, we have

Lemma 3.2.

2hI1(h) =

∮
Γh

[
S1(x) +

1

λ
S2(x)

]
y3dx

4
= Ĩ1(h).

Let

Li(x) =
(Si
U ′

)
(x)−

(Si
U ′

)
(z(x)),

L1(x) =
(S1 + 1

λS2

U ′

)
(x)−

(S1 + 1
λS2

U ′

)
(z(x)).

Then,
d

dx
Li(x) =

d

dx

(Si
U ′

)
(x)− d

dz

[(Si
U ′

)
(z(x))

]dz
dx
,

d

dx
Li(x) =

∂

∂x
(Li(x)) +

∂

∂z
(Li(x))

dz

dx
,

where dz
dx = − qx(x,z)

qz(x,z) . So we obtain

W [L0](x) =
(x− z)Q1(x, z)

30xz(x− 1)7(z − 1)7
,

W [L0(x), L1(x)] =

∣∣∣∣∣∣L0(x) L1(x)

L′0(x) L′1(x)

∣∣∣∣∣∣ =
(x− z)3

Q2(x, z)

900x2z2(z − 1)14(x− 1)14P (x, z)
,

W [L0(x),L1(x)] =

∣∣∣∣∣∣L0(x) L1(x)

L′0(x) L′1(x)

∣∣∣∣∣∣ =
− (x− z)3

Q3(x, z)

900x2z2λ(z − 1)14(x− 1)14P 3(x, z)
,

where

P (x, z) = 4x3 + 8x2z + 12xz2 + 16 z3 − 15x2 − 30xz − 45 z2 + 20x+ 40 z − 10,

Q1(x, z) and Q2(x, z) are two-variate polynomials of degree 11 and 24, respectively.
Q3(x, z) = γ12(x, z)λ − γ11(x, z), in which γ11(x, z) and γ12(x, z) are two-variate
polynomials of degree 24 and 25, respectively, and Q3(x, z) is of degree 25.
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Computing the resultant of Q1 and q with respect to z, and applying Sturm’s
Theorem, we can show that Q1 and q have no common zeros for x ∈ (0, 1). There-
fore, W [L0] does not vanish for x ∈ (0, 1). Similarly, we can show that P (x, z) and
W [L0, L1] do not vanish for x ∈ (0, 1).

Computing the resultant of γ12 and q with respect to z, and applying Stur-
m’s Theorem, we can prove that γ12 and q have no common zeros for x ∈ (0, 1).
Therefore, γ12 does not vanish for x ∈ (0, 1). Solving γ12(x, z)λ−γ11(x, z) = 0 gives

λ(x, z) =
γ11(x, z)

γ12(x, z)
, (3.4)

for which we have the following result.

Lemma 3.3. λ(x, z) is monotonic for x ∈ (0, 1), and λ(x, z) ∈ (−2,− 1
3 ).

Proof. A direct computation shows that

λ′(x, z) =
∂λ(x, z)

∂x
+
∂λ(x, z)

∂z

dz

dx
=
γ21(x, z)

γ22(x, z)
.

Computing the resultant res(γ22, q, z) and applying Sturm’s Theorem, we can prove
that res(γ22, q, z) has no zero for x ∈ (0, 1). Therefore, γ22 does not vanish for
x ∈ (0, 1), and so the function λ(x, z) is well defined.

Computing the resultant res(γ21, q, z) and applying Sturm’s Theorem, we can
show that res(γ21, q, z) has a unique zero in

[
47393
65536 ,

94787
131072

]
⊆ (0, 1). Further, com-

puting the resultant res(γ21, q, x) and applying Sturm’s Theory show that
res(γ21, q, x) has three zeros for z in the three intervals:[

−130431

524288
,− 65215

262144

]
,

[
− 71233

524288
,−1113

8192

]
and

[
− 123841

1048576
,− 1935

16384

]
.

Therefore, if γ21 and q have common roots on (− 1
4 , 0)× (0, 1), the roots must lie in

one of the following three domains:

D1 :

[
−130431

524288
,− 65215

262144

]
×
[

47393

65536
,

94787

131072

]
,

D2 :

[
− 71233

524288
,−1113

8192

]
×
[

47393

65536
,

94787

131072

]
,

D3 :

[
− 123841

1048576
,− 1935

16384

]
×
[

47393

65536
,

94787

131072

]
.

The resultant res( ∂q∂x ,
∂q
∂z , z) has no zeros in

[
47393
65536 ,

94787
131072

]
⊆ (0, 1), implying that q

reaches its extreme values on the boundary of Di. By Sturm’s Theorem, we know
that the derivatives of the four functions obtained by restricting q(x, z) on the four
boundaries of Di (i = 1, 2) have no zeros. Therefore, q(x, z) gets its maximal and
minimum values at the four vertexes on each Di. A direct computation yields

max
D1

q(x, z) = −30744752459453635399
73786976294838206464 , min

D1

q(x, z) = −7870962560159761458239
18889465931478580854784 ,

max
D2

q(x, z) = −−15560983032441920664435
18889465931478580854784 , min

D2

q(x, z) = −−927524299079375
1125899906842624 .

The minimum and maximum values have the same signs on each Di. Hence, q
and γ21 have no common zeros on each Di. Therefore, γ21 does not vanish for
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x ∈ (0, 1). This implies that λ′(x, z) 6= 0 for x ∈ (0, 1). Thus, λ(x, z) is monotonic
for x ∈ (0, 1), and so

lim
x→0

= λ(x, z) = −1

3
, lim

x→1
= λ(x, z) = −2.

This completes the proof of Lemma 3.3.

Lemma 3.3 implies that when λ ∈ (−2,− 1
3 ), W [L0,L1] has a simple root for

x ∈ (0, 1), and W [L0,L1] has no roots for x ∈ (0, 1) when

λ ∈ (−∞,−2]
⋃[
− 1

3
,+∞

)
.

By Lemmas 2.1 and 2.2, we have the following result.

Lemma 3.4. A(h) has at most two zeros (counting multiplicities) on (0, 1
20 ) for λ ∈

(−2,− 1
3 ), and at most one zero (counting multiplicity) for λ ∈ (−∞,−2]

⋃
[− 1

3 ,+∞).

Let

κ(h) =
λI1(h) + I2(h)

I0(h)
. (3.5)

Then,

A(h) = I0(h)(η + κ(h)).

The asymptotic expansions (2.8) and (2.9) yield the values of κ(h) at the end of
annulus,

κ( 1
20 ) = lim

h→ 1
20

λI1(h) + I2(h)

I0(h)
=
λ

6
+

1

11
,

κ(0) = lim
h→0

λI1(h) + I2(h)

I0(h)
= 0.

(3.6)

Lemma 3.4 together with the endpoint values (3.6) implies the following proposition.

Proposition 3.1. The ratio κ(h) is monotonic for λ ∈ (−∞,−2]
⋃

[− 1
3 ,+∞).

More precisely, κ(h) is degreasing on (0, 1
20 ) when λ ∈ (−∞,−2], and increasing on

(0, 1
20 ) when λ ∈ [− 1

3 ,+∞).

Lemma 3.5. If κ′(h) has zeros, they must be simple. Moreover, κ′(h) has 2n + 1
simple zeros on (0, 1

20 ) for any λ ∈ (− 12
11 ,−

1
3 ), and 2n simple zeros on (0, 1

20 ) for
any λ ∈ (−2,− 12

11 ).

Proof. Firstly, we give a short proof for the first assertion by using an argument
of contradiction. Let h∗ be a zero of κ′(h) with l multiplicities, l ≥ 2. Then there
must exist an η such that η+κ(h) has a zero at h = h∗ with l+1 (≥ 3) multiplicities.
Because J0(h) > 0, the relationship between A(h) and η + κ(h) implies that A(h)
has a zero at h = h∗ with l + 1 (≥ 3) multiplicities. This contradicts Lemma 3.4.

With the expansion of Ii(h) near h = 1
20 , given in (2.8), a direct computation

shows that

κ′( 1
20 ) = lim

h→ 1
20

κ′(h) = lim
h→ 1

20

(λI ′1(h) + I ′2(h))I0(h)− (λI1(h) + I2(h))I ′0(h)

I2
0 (h)

= sign
[
−Ã0(12 + 11λ)

]
∞.
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In particular, when λ = − 12
11 , a further computation shows κ′( 1

20 ) = −∞. Moreover,
using the expansions of Ii(h) and I ′i(h) near h = 0 in (2.9), we can prove that

κ′(0) = lim
h→0

κ′(h) = lim
h→0

[λI ′1(h) + I ′2(h)]I0(h)− [λI1(h) + I2(h)]I ′0(h)

I2
0 (h)

=
3λ+ 1

2
.

Because Ã0 < 0, it is obvious that κ′(h) has different signs at the two endpoints of
the interval (0, 1

20 ) if λ ∈ (− 12
11 ,−

1
3 ), and has the same sign at the two endpoints of

(0, 1
20 ) if λ ∈ (−2,− 12

11 ]. This completes the proof.

Proposition 3.2. (i) κ′(h) has a unique simple zero on (0, 1
20 ) for any

λ ∈ (− 12
11 ,−

1
3 ), namely, κ(h) decreases from κ(0) to a minimum value κ(h?) at

h = h? and then increases to κ( 1
20 ) for any λ ∈ (− 12

11 ,−
1
3 ).

(ii)

κ(0) =


> κ

( 1

20

)
for λ ∈

(
− 12

11
,− 6

11

)
,

= κ
( 1

20

)
for λ = − 6

11
,

< κ
( 1

20

)
for λ ∈

(
− 6

11
,−1

3

)
.

Proof. By Lemma 3.5, for a fixed λ ∈ (− 12
11 ,−

1
3 ), if κ′(h) has three or more

than three simple zeros on (0, 1
20 ), then there must exist an η such that η + κ(h)

has at least three zeros. This implies that A(h) can have at least three zeros,
which contradicts Lemma 3.4. Therefore, κ′(h) has a unique zero on (0, 1

20 ) for any
λ ∈ (− 12

11 ,−
1
3 ). The signs of κ′(0) and κ′( 1

20 ) when λ ∈ (− 12
11 ,−

1
3 ) determine the

property of κ(h). The proof of part (ii) directly follows the endpoint values in (3.6).

Proposition 3.3. κ′(h) has no zeros on (0, 1
20 ) for any λ ∈ (−2,− 12

11 ], that is, κ(h)

is monotonic (decreasing) on (0, 1
20 ) for any λ ∈ (−2,− 12

11 ).

Proof. By Lemma 3.5, for a fixed λ ∈ (−2,− 12
11 ], if κ′(h) has four or more than

four zeros on (0, 1
20 ), then there must exist an η such that η + κ(h) has at least

three zeros counting multiplicities. This contradicts Lemma 3.4.
Next, we prove that κ′(h) does not have two zeros. Suppose otherwise κ′(h) has

two zeros for λ ∈ (−2,− 12
11 ]. We have known that κ′(0) < 0 and κ′( 1

20 ) < 0, which
implying that κ(h) is decreasing at the endpoints of the interval (0, 1

20 ). Further,
for λ ∈ (−2,− 12

11 ],

0 = κ(0) > κ
( 1

20

)
=
λ

6
+

1

11
,

where λ
6 + 1

11 ∈ (− 8
33 ,−

1
11 ]. This clearly indicates that there must exist an η such

that η + κ(h) has at least three zeros. This contradicts Lemma 3.4. The endpoint
values determine its decreasing, so the proof is complete.

Summarizing Propositions 3.1, 3.2 and 3.3, we have the following theorem.

Theorem 3.1. For system (1.2) with α = β = 1, the Abelian integral A(h) has the
following properties:

(i) When λ ∈ (−∞,− 12
11 ], A(h) has a unique zero on (0, 1

20 ) if and only if η ∈
(−κ(0),−κ( 1

20 )). η = −κ(h) corresponds to A(h) = 0. In particular, when
λ = − 12

11 , κ′( 1
20 ) = 0 and η = −κ( 1

20 ) imply that A(h) has a zero of multiplicity
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two at the endpoint h = 1
20 . So (λ, η) = (− 12

11 , κ( 1
20 )) = (− 12

11 ,
1
11 ) is a double

homoclinic loop bifurcation point, denoted by DL.

(ii) When λ ∈ [− 1
3 ,+∞), A(h) has a unique zero on (0, 1

20 ). if and only if η ∈
(−κ( 1

20 ),−κ(0)). η = −κ(h) corresponds to A(h) = 0. In particular, when
λ = − 1

3 , κ′(0) = 0 and η = −κ(0) = 0 indicate that A(h) has a zero of
multiplicity two at the endpoint h = 0. So (λ, η) = (− 1

3 ,−κ(0)) = (− 1
3 , 0) is

a double Hopf bifurcation point, denoted by DH.

(iii) When λ ∈ (− 12
11 ,−

6
11 ), A(h) has a unique zero on (0, 1

20 ) if and only if η ∈
(−κ(0),−κ( 1

20 )), and A(h) has two zeros on (0, 1
20 ) if and only if

η ∈
(
− κ
( 1

20

)
,−minκ(h)

)
=
(
− κ
( 1

20

)
,−κ(h?)

)
.

In particular, η = −κ( 1
20 ) corresponds to a zero at h = 1

20 and another zero
at h = hl satisfying κ(hl) = κ( 1

20 ).

(iv) When λ ∈ (− 6
11 ,−

1
3 ), A(h) has a unique zero on (0, 1

20 ) if and only if η ∈
(−κ( 1

20 ),−κ(0)) = (−κ( 1
20 ), 0), and A(h) has two zeros on (0, 1

20 ) if and only
if

η ∈
(
− κ(0),−minκ(h)

)
=
(
0,−κ(h?)

)
.

In particular, η = −κ(0) corresponds to a zero at h = 0 and another zero at
h = hr satisfying κ(hr) = κ(0).

(v) When λ = − 6
11 , A(h) has two zeros on (0, 1

20 ) if and only if

η ∈
(
− κ(0),−minκ(h)

)
=
(
− κ
( 1

20

)
,−minκ(h)

)
=
(
0,−κ(h?)

)
.

In particular, η = −κ(0) = −κ( 1
20 ) = 0 corresponds to the zeros at endpoints,

one at h = 0 and another at h = 1
20 . So (λ, η) = (− 6

11 , 0) is a homoclinic-hopf
bifurcation point, denoted by HL.

(vi) For all λ ∈ (− 12
11 ,−

1
3 ), η = −minκ(h) defines the double limit cycle bifurca-

tion curve C.

The corresponding bifurcation diagram is shown in Figure 3. The Hopf bifurca-
tion line is L1 : η = 0 derived from η = −κ(0), and the homoclinic loop bifurcation
line is L2 : η+ λ

6 + 1
11 = 0 obtained from η = −κ( 1

20 ). The expressions of the degen-
erate bifurcation points DL, DH and HL are defined in (i), (ii) and (v), respectively.
The curve C is defined by the analytic expression: η = −minκ(h) = −κ(h?) in (v),
or A(h) = A′(h). Note that

κ′(h?) =
[
λI ′1(h?) + I ′2(h?)

]
I0(h?)− I ′0(h?)

[
λI1(h?) + I2(h?)

]
= 0

defines a monotonic function λ = II(h?). Thus, η = −κ(II−1(λ)). A direct compu-
tation with the asymptotic property of Ii(h) and I ′i(h) gives

lim
λ→− 12

11

η′(λ) = − lim
h?→ 1

20

κ′(h?) = −1

6
and lim

λ→− 1
3

η′(λ) = − lim
h?→0

κ′(h?) = 0.

Therefore, the double limit cycle curve C is tangent to the line L1 at DH, and
tangent to the line L2 at DL. Table 1 shows the distribution of the number of zeros
of A(h) and the corresponding phase portraits of system (1.2) with α = β = 1 in
different regions Vi, i = 1, 2, . . . , 5. It should be noted that the singular point (1, 0)
is a nilpotent saddle when η+λ+1 = 0 and a degenerated saddle when η+λ+1 6= 0.
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λ

η

L1

L2

C

V1 V2

V4

V3

V5

•DL

•
HL

•
DH

Figure 3. Bifurcation diagram of system (1.2) for α = β = 1 with η =
a0
a2

and λ =
a1
a2

, showing the

Hopf bifurcation line L1, the homoclinic bifurcation line L2, the degenerate bifurcation points DL, DH
and HL, and the curve C characterized by one zero of multiplicity two.

Table 1. Distribution of zeros with phase portraits.

Region V1 V2 V3 V4 V5

Zero 1 0 1 0 2

Portrait

4. The Bifurcation Diagram of M(h)

In this section, we study M(h). We write H∗(x, y) = y
2 + U∗(x), and U∗(x) −

U∗(z) = (x− z)q∗(x, z) = 0, where

q∗(x, z) = 9x4 + 9x3z + 9x2z2 + 9x z3 + 9 z4 − 15x3 − 15x2z

− 15x z2 − 15 z3 − 5x2 − 5x z − 5 z2 + 15x+ 15 z,

which defines the involution z(x) on the period annulus of H∗(x, y). Introducing
the notation I∗i (h) =

∮
Γ∗h
xiydx gives

J0(h) =
5
√

15

9
I∗0 (h),

J1(h) =

√
15

3

[
I∗0 (h)− I∗1 (h)

]
,

J2(h) =

√
15

5

[
I∗2 (h)− 2I∗1 (h) + I∗0 (h)

]
.

We have the following result.
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Lemma 4.1. (i) 2hI∗i (h) =
∮

Γ∗h
S∗i (x)y3dx ≡ Ĩ∗i (h),

(ii) 2hJi(h) =
∮

Γ∗h
S∗∗i (x)y3dx ≡ J̃i(h),

where S∗i (x) = xi + G∗i (x), with G∗i (x) =
xjg∗i (x)

30(x−1)4 in which g∗i (x) is a polynomial

in x; and

S∗∗0 (x) =
5
√

15

9
S∗0 (x),

S∗∗1 (x) =

√
15

3

[
S∗0 (x)− S∗1 (x)

]
,

S∗∗2 (x) =

√
15

5

[
S∗2 (x)− 2S∗1 (x) + S∗0 (x)

]
.

The proof of part (i) is similar to that of proving Lemma 3.1, and the proof of
part (ii) directly follows the relation between I∗i (h) and Ji(h).

Similarly, we assume that η = a0

a2
and λ = a1

a2
if a2 6= 0, and introduce

J1(h) = J1(h) +
1

λ
J2(h) =

∮
Γ∗h

[
q1(x) +

1

λ
q2(x)

]
ydx. (4.1)

Then, M(h) = ηJ0(h) + λJ1(h). By Lemma 4.1, we have

Lemma 4.2.

2hJ1(h) =

∮
Γ∗h

[
S∗1 (x) +

1

λ
S∗2 (x)

]
y3dx

4
= J̃1(h).

Let

L∗i (x) =
( S∗∗i

(U∗)′

)
(x)−

( S∗∗i
(U∗)′

)
(z(x)),

L∗1(x) =
(S∗∗1 + 1

λS
∗∗
2

(U∗)′

)
(x)−

(S∗∗1 + 1
λS
∗∗
2

(U∗)′

)
(z(x)).

Then,
d

dx
L∗i (x) =

d

dx

( S∗∗i
(U∗)′

)
(x)− d

dz

[( S∗∗i
(U∗)′

)
(z(x))

]dz
dx
,

d

dx
L∗i (x) =

∂

∂x
(L∗i (x)) +

∂

∂z
(L∗i (x))

dz

dx
,

where dz
dx = − q

∗
x(x,z)
q∗z (x,z) . Thus, we obtain

W [L∗0](x) =

√
15(x− z)Q∗1(x, z)

27xz (3x+ 2)
3

(x− 1)
5

(3 z + 2)
3

(z − 1)
5 ,

W [L∗0(x), L∗1(x)] =

∣∣∣∣∣ L∗0(x) L∗1(x)
(L∗0)′(x) (L∗1)′(x)

∣∣∣∣∣
=

(x− z)3
Q∗2(x, z)

81x2z2 (z − 1)
10

(3 z + 2)
5

(x− 1)
10

(3x+ 2)
5
P∗(x, z)

,

W [L∗0(x),L∗1(x)] =

∣∣∣∣∣ L∗0(x) L∗1(x)
(L∗0)′(x) (L∗1)′(x)

∣∣∣∣∣
=

(x− z)3
Q∗3(x, z)

405x2z2(z − 1)10(2 + 3z)5(x− 1)10(2 + 3x)5P 3
∗ (x, z)

,
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where

P∗(x, z) = 9x3 + 18x2z + 27xz2 + 36 z3 − 15x2 − 30xz − 45 z2 − 5x− 10 z + 15,

Q∗1(x, z) and Q∗2(x, z) are two-variate polynomials of degree 13 and 26, respectively.
Q∗3(x, z) = γ∗12(x, z)λ − γ∗11(x, z), in which γ∗11(x, z) and γ∗12(x, z) are two-variate
polynomials of degree 27 and 26, respectively, and Q∗3(x, z) is of degree 27.

Computing the resultant of P∗ and q∗ with respect to z, and applying Stur-
m’s Theorem, we can show that P∗ and q∗ have no common zeros for x ∈ (0, 1).
Therefore, P∗ does not vanish, and so W [L∗0, L

∗
1] and W [L∗0,L∗1] are well defined.

Similarly, Q∗1(x, z) does not vanish by Sturm’s theorem, therefore W [L∗0] does not
vanish for x ∈ (0, 1).

Using the similar method in proving Lemma 3.3, we can show that γ21 does not
vanish, and further we can prove that Q∗2(x, z) and γ∗12 do not vanish for x ∈ (0, 1).
Therefore, W [L∗0, L

∗
1] does not vanish and the function

λ(x, z) =
γ∗11(x, z)

γ∗12(x, z)
(4.2)

is well defined by γ∗12(x, z)λ− γ∗11(x, z) = 0.
We have the following result.

Lemma 4.3. λ(x, z) is monotonic for x ∈ (0, 1), and λ(x, z) ∈ (−1, 0).

Proof. A direct computation shows that

λ′(x, z) =
∂λ(x, z)

∂x
+
∂λ(x, z)

∂z

dz

dx
=
γ∗21(x, z)

γ∗22(x, z)
.

Applying Sturm’s Theorem to the resultant res(γ∗21, q
∗, z), we can prove that γ∗21

does not vanish for x ∈ (0, 1). γ∗22 does not vanish for x ∈ (0, 1), which can be shown
by applying the method used in proving Lemma 3.3. This implies that λ′(x, z) is
well defined and λ′(x, z) 6= 0 for x ∈ (0, 1). Thus, λ(x, z) is monotonic for x ∈ (0, 1),
and so

lim
x→0

= λ(x, z) = 0, lim
x→1

= λ(x, z) = −1.

This completes the proof of Lemma 4.3.
Lemma 4.3 implies that when λ ∈ (−1, 0), W [L∗0,L∗1] has a simple root for

x ∈ (0, 1), and W [L∗0,L∗1] has no roots for x ∈ (0, 1) when λ ∈ (−∞,−1]
⋃

[0,+∞).
By Lemmas 2.1 and 2.2, we have the following lemma.

Lemma 4.4. M(h) has at most two zeros (counting multiplicities) on (− 4
45 , 0) for

λ ∈ (−1, 0), and at most one zero (counting multiplicity) for

λ ∈ (−∞,−1]
⋃

[0,+∞).

Let

ϑ(h) =
λJ1(h) + J2(h)

J0(h)
. (4.3)

Then,

M(h) = J0(h)(η + ϑ(h)).
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The asymptotic expansions (2.10) and (2.11) yield the values of ϑ(h) at the end of
annulus,

ϑ(0) = lim
h→0

λJ1(h) + J2(h)

J0(h)
=

35 + 55λ

99
,

ϑ
(
− 4

45

)
= lim
h→− 4

45

λJ1(h) + J2(h)

J0(h)
=

15λ+ 9

25
.

(4.4)

Lemma 4.4 together with the values at the endpoints implies the following propo-
sition.

Proposition 4.1. The ratio ϑ(h) is monotonic for λ ∈ (−∞,−1]
⋃

[0,+∞). More
precisely, ϑ(h) is increasing on (− 4

45 , 0) for λ ∈ (−∞,−1] and decreasing on
(− 4

45 , 0) for λ ∈ [0,+∞).

Moreover, we have the following result.

Lemma 4.5. If ϑ′(h) has zeros, they must be simple. In fact, it has 2n+ 1 simple
zeros on (− 4

45 , 0) for any λ ∈ (− 7
11 , 0), and 2n simple zeros on (− 4

45 , 0) for any
λ ∈ (−1,− 7

11 ).

Proof. We first give a short proof for the first assertion by using an argument of
contradiction. Let h∗ be a zero of ϑ′(h) with l multiplicities, l ≥ 2. Then there must
exist an η such that η + ϑ(h) has a zero at h = h∗ with l + 1 (≥ 3) multiplicities.
Because J0(h) > 0, the relationship betweenM(h) and η+ϑ(h) implies thatM(h)
has a zero at h = h∗ with l + 1 (≥ 3) multiplicities. This contradicts Lemma 4.4.

With the expansion of Ji(h) near h = 0, given in (2.10), a direct computation
shows that

ϑ′(0) = lim
h→0

ϑ′(h) = lim
h→0

[λJ ′1(h) + J ′2(h)]J0(h)− [λJ1(h) + J2(h)]J ′0(h)

J2
0 (h)

= − sign
[
B00(11λ+ 7)

]
∞.

Further, using the expansions of Ji(h) and J ′i(h) near h = − 4
45 in (2.11), we can

prove that

ϑ′
(
− 108

15625

)
= lim
h→− 4

45

ϑ′(h)

= lim
h→− 4

45

[λJ ′1(h) + J ′2(h)]J0(h)− [λJ1(h) + J2(h)]J ′0(h)

J2
0 (h)

= − 9

40
λ.

Because B00 > 0, it is obvious that ϑ′(h) has different signs at the two endpoints
of the interval (− 4

45 , 0) if λ ∈ (− 7
11 , 0), and has the same sign at the two endpoints

if λ ∈ (−1,− 7
11 ]. This completes the proof.

Proposition 4.2. (i) ϑ′(h) has a unique simple zero on (− 4
45 , 0) for any λ ∈

(− 7
11 , 0), namely, ϑ(h) increases from ϑ(− 4

45 ) to a maximum value ϑ(h∗) at h = h∗

and then decreases to ϑ(0) for any λ ∈ (− 7
11 , 0).

(ii) ϑ(− 4
45 ) < ϑ(0) for λ ∈ (− 7

11 ,−
8
55 ), ϑ(− 4

45 ) = ϑ(0) for λ = − 8
55 and

ϑ(− 4
45 ) > ϑ(0) for λ ∈ (− 8

55 , 0).

Proof. By Lemma 4.5, for a fixed λ ∈ (− 7
11 , 0), if ϑ′(h) has three or more than

three simple zeros on (− 4
45 , 0), then there must exist an η such that η + ϑ(h) has
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at least three zeros. This implies that M(h) can have at least three zeros, which
contradicts Lemma 4.4. Therefore, ϑ′(h) has a unique zero on (− 4

45 , 0) for any
λ ∈ (− 7

11 , 0). The signs of ϑ′(− 4
45 ) and ϑ′(0) when λ ∈ (− 7

11 , 0) determines the
property of ϑ(h). A direct comparison on the values at the endpoints proves part
(ii).

Proposition 4.3. ϑ′(h) has no zeros on (− 4
45 , 0) for any λ ∈ (−1,− 7

11 ], that is,

ϑ(h) is monotonic (increasing) on (− 4
45 , 0) for any λ ∈ (−1,− 7

11 ].

Proof. By Lemma 4.5, for a fixed λ ∈ (−1,− 7
11 ], if ϑ′(h) has four or more than

four zeros on (− 4
45 , 0), then there must exist an η such that η + ϑ(h) has at least

three zeros counting multiplicities. This contradicts Lemma 4.4.
Next, we prove that ϑ′(h) does not have two zeros. Suppose otherwise ϑ′(h) has

two zeros for λ ∈ (−1,− 7
11 ]. We have known that ϑ′(− 4

45 ) > 0, and ϑ′(0) > 0,
implies that ϑ(h) is increasing at the endpoints of the interval (− 4

45 , 0). Further,
for λ ∈ (−1,− 7

11 ],

3λ

5
+

9

25
= ϑ

(
− 4

45

)
< ϑ(0) =

35

99
+

5λ

9
.

This clearly indicates that there must exist an η such that η + ϑ(h) has at least
three zeros. This contradicts Lemma 4.4, and so the proof is complete.

Similarly, summarizing the results in Propositions 4.1, 4.2 and 4.3, we obtain
the following theorem, as illustrated in the bifurcation diagram given in Figure 4.

λ

η

L2

L1

C

V1 V2

V4

V3

V5

•
DC

•
HC

•DH

Figure 4. Bifurcation diagram of system (1.2) for α = 0 and β = 3
5 with η =

a0
a2

and λ =
a1
a2

, showing

the Hopf bifurcation line L1, the heteroclinic bifurcation line L2, the degenerate bifurcation points DC,
DH and HC, and the curve C characterized by one zero of multiplicity two.

Theorem 4.1. For system (1.2) with α = 0, β = 3
5 , the Abelian integral M(h) has

the following properties:

(i) When λ ∈ (−∞,− 7
11 ], M(h) has a unique zero on (− 4

45 , 0) if and only if η ∈
(−ϑ(0),−ϑ(− 4

45 )) with η = −ϑ(h) corresponding to M(h) = 0. In particular,
when λ = − 7

11 , ϑ′(0) = 0 and η = −ϑ(0) imply that M(h) has a zero of
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multiplicity two at the endpoint h = 0. So (λ, η) = (− 7
11 , ϑ(0)) = (− 7

11 , 0) is
a double heteroclinic cycle bifurcation point, denoted by DC.

(ii) When λ ∈ [0,+∞), M(h) has a unique zero on (− 4
45 , 0) if and only if η ∈

(−ϑ(− 4
45 ),−ϑ(0)) with η = −ϑ(h) corresponding to M(h) = 0. In particular,

when λ = 0, ϑ′(− 4
45 ) = 0 and η = −ϑ(− 4

45 ) yield that M(h) has a zero of
multiplicity two at the endpoint h = − 4

45 . So (λ, η) = (0,−ϑ(− 4
45 )) = (0,− 9

25 )
is a double Hopf bifurcation point, denoted by DH.

(iii) When λ ∈ (− 7
11 ,−

8
55 ), M(h) has a unique zero on (− 4

45 , 0) if and only if
η ∈ (−ϑ(0),−ϑ(− 4

45 )), and M(h) has two zeros on (− 4
45 , 0) if and only if

η ∈ (−maxϑ(h),−ϑ(0)). In particular, η = −ϑ(0) corresponds to a zero at
h = 0 and another zero at h = h∗∗ satisfying ϑ(h∗∗) = ϑ(0).

(iv) When λ ∈ (− 8
55 , 0), M(h) has a unique zero on (− 4

45 , 0) if and only if η ∈
(−ϑ(− 4

45 ),−ϑ(0)), and M(h) has two zeros on (− 4
45 , 0) if and only if η ∈

(−maxϑ(h), −ϑ(− 4
45 )). In particular, η = −ϑ(− 4

45 ) corresponds to a zero at
h = − 4

45 and another zero at h = h∗∗∗ satisfying ϑ(h∗∗∗) = ϑ(− 4
45 ).

(v) When λ = − 8
55 ,M(h) has two zeros on (− 4

45 , 0) if and only if η ∈ (−maxϑ(h),
−ϑ(− 4

45 )) = (−maxϑ(h),− 3
11 ). In particular, η = −ϑ(− 4

45 ) = −ϑ(0) = − 3
11

corresponds to zeros at endpoints, one at h = − 4
45 and another at h = 0. So

(λ, η) = (− 8
55 ,−

3
11 ) is a heteroclinic-Hopf bifurcation point, denoted by HC.

(vi) For all λ ∈ (− 7
11 , 0), η = −maxϑ(h) defines the double limit cycle bifurcation

curve.

It is seen from Figure 4 that the Hopf bifurcation line is L1 : η + 3
5λ + 9

25 = 0
derived from η = −ϑ(− 4

45 ), and the heteroclinic cycle bifurcation line is L2 : η+ 5
9λ+

35
99 = 0 obtained from η = −ϑ(0). The expressions of the degenerate bifurcation
points DC, DH and HC are given in (i), (ii) and (v), respectively. The curve C
is defined by the analytic expression, η = −maxϑ(h) = −ϑ(h?) in (v), which is
equivalent to M(h?) =M′(h?) and

ϑ′(h?) =
[
λJ ′1(h?) + J ′2(h?)

]
J0(h?)− J ′0(h?)

[
λJ1(h?) + J2(h?))

]
= 0.

Similarly, we can prove that the double limit cycle curve C is tangent to L1 at DH,
and tangent to L2 at DC. Therefore, system (1.2) with α = 0 and β = 3

5 has one
limit cycle in the regions V1 and V3, one limit cycle of multiplicity two on the curve
C, two limit cycles in V5, and no limit cycles in regions V2 and V4.

5. Conclusion and Discussion

In this paper, we have successfully analyzed the hyperelliptic Hamiltonian system-
s (1.2) with three perturbation parameters by using the algebraic criterion and
asymptotic property with the help of combination of Abelian integrals. We ob-
tained complete bifurcation diagrams for two cases: α = β = 1 and α = 0, β = 3

5 .
The method we developed provides an efficient tool to study zero bifurcation dia-
grams of Abelian integrals for a wide class of perturbed Hamiltonian systems. The
method can indeed deal with general polynomial perturbations, in particular for
the systems with the degree of perturbations higher than that of the unperturbed
Hamiltonian systems. As an example, consider the following perturbed Hamiltonian
system,

ẋ = y, ẏ = x(x− 1)3 + ε(a0 + a5x
5 + a7x

7)y.
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We can follow the procedure developed in this paper to obtain the bifurcation
diagram, as shown in Figure 5.

λ

η

L1

L2

C
V1

V2

V4

V3

V5

•DL

•
HL

•
DH

Figure 5. The zero bifurcation diagram of
∮
Γh

(a0 +a5x
5 +a7x

7)ydx with η =
a0
a7

and λ =
a5
a7

, showing

the Hopf bifurcation line L1 : η = 0 and the homoclinic bifurcation line L2 : η + 497λ
29172 + 117

14212 = 0,

and the degenerate bifurcation points HL = (− 4563
9443 , 0), DL = (− 109941

108965 ,
976

108965 ) and DH = (0, 0). Zero
bifurcation in the regions is as follows: one zero in V1 and V3, one zero of multiplicity two on C, two
zeros in V5, and no zeros in V2 and V4.
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