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EXACT PEAKON SOLUTIONS GIVEN BY THE
GENERALIZED HYPERBOLIC FUNCTIONS

FOR SOME NONLINEAR WAVE EQUATIONS∗
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Abstract In 1993, Camassa and Holm drived a shallow water equation and
found that this equation has a peakon solution with the form ϕ(ξ) = ce−|ξ|. In
this paper, we show that three nonlinear wave systems have peakon solutions
which needs to be represented as generalized hyperbolic functions. For the
existence of these solutions, some constraint parameter conditions are derived.
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1. Introduction
In 1993, Camassa and Holm used Hamiltonian methods to derive a new completely
integrable dispersive shallow water equation (see [3, 4]):

ut + 2κux − uxxt + 3uux = 2uxuxx + uuxxx, (1.1)

where u is the fluid velocity in the x−direction (or equivalently the height of the
water’s free surface above a flat bottom), κ is a constant related to the critical
shallow water wave speed, and subscripts denote partial derivatives. Considering
traveling wave solutions with the form u = ϕ(x − ct) = ϕ(ξ) of equation (1.1), we
have the corresponding traveling wave system [8]:

dϕ

dξ
= y,

dy

dξ
=

− 1
2y

2 + 3
2ϕ

2 + (κ− c)ϕ+ g)

ϕ− c
, (1.2)

where g is an integral constant. System (1.7) has the first integral

H(ϕ, y) = (ϕ− c)y2 − (κ− c)ϕ2 − ϕ3 = h. (1.3)

We notice that when ϕ = c, the right hand of the second equation of system (1.2) is
not well-definition. In the (ϕ, y)−phase plan, ϕ = c is call a singular straight line.
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Figure 1. The bifurcations of phase portraits of system (1.2) when g = 0.

Taking g = 0 in system (1.2), for a fixed c > 0, near the parameter value κ = 0,
we have the bifurcations of phase portraits of system (1.2) as shown in Fig.1.

Corresponding to the curve triangle in Fig.1 (b) defined by H(ϕ, y) = 0, by
using (1.3) and the first equation of (1.2) , it follows the exact solution

ϕ(ξ) = ce−|ξ|. (1.4)

The profile (i.e., the graph of ϕ(ξ)) defined by (1.4) is called a peakon (see Fig.1
(d)).

It is well known that the classical Camassa-Holm equation (1.1) has been studied
extensively in the last twenty years because of its many remarkable properties:
infinity of conservation laws and complete integrability, existence of peakon and
multipeakons and compacton solutions (i.e., breaking waves, and meaning solutions
that remain bounded, while its slope becomes unbounded in finite time).

For some nonlinear equations, the following relationships are already known for
a wave profile of ϕ(ξ) with some phase orbits of the corresponding planar dynamical
systems (see Li Jibin, et,al., [9–13]).

(1) For a homoclinic orbit (see Fig.1 (c)), if there exists a segment which com-
pletely lies in a left (or right) small strip neighborhood of a singular straight line,
then this homoclinic orbit defines a pseudo-peakon solution of the system.

(2) For a family of periodic orbits (see Fig.1 (b)), if there exists a segment of
every orbit which completely lies in a left (or right) small strip neighborhood of
a singular straight line, then these periodic orbits determine a family of periodic
peakon solutions of the system. Periodic peakons are two-time-scale smooth classical
solutions. Cusp wave parts are locally smooth. Periodic peakons are not weak
solutions in any reasonable sense.

(3) If there exists a curve triangle (see Fig.1 (b)) connecting saddle points and
surrounding a periodic annulus of a center of the corresponding traveling wave
system in the neighborhood of a singular straight line, for which a segment is an
edge of the triangle, then as a limiting curve of a family of periodic orbits this curve
triangle gives rise to a peakon solution of the system.

In fact, peakon is a limiting solution in the following sense: (i) Under fixed
parameter conditions, peakon (or solitary cusp wave solution) is a limiting solution
of a family of periodic peakon solutions; (ii) with changeable parameters, peakon is
a limiting solution of a family of pseudo-peakons. It should be emphasized that a
peakon solution is a C0-function, i.e., it should be a continuous solution. It is not
a weak solution in the sense of distribution.

In [11], we shown that under different parameter conditions, one nonlinear wave
equation can have different exact one-peakon solutions and different nonlinear wave
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equations can have different explicit exact one-peakon solutions. Namely, there are
various exact explicit one-peakon solutions, which are different from the one-peakon
solution ϕ(x, t) = ce−|x−ct|.

In this paper, for three nonlinear wave equations, we derive some new exact
peakon solutions which need to be given by generalized hyperbolic functions, i.e.,
so called the Arai q-deformed function (see [1, 2]) defined by sinhq(ξ) = 1

2 (e
ξ −

qe−ξ), coshq(ξ) = 1
2 (e

ξ + qe−ξ), tanhq(ξ) =
sinhq(ξ)
coshq(ξ)

, · · · , 0 < q < ∞. Notice that
now we have

cosh2q(ξ)− sinh2q(ξ) = q,
d

dξ
coshq(ξ) = sinhq(ξ),

d

dξ
sinhq(ξ) = coshq(ξ).

In next three sections, we consider the following three nonlinear wave equations,
respectively.

(i) The multicomponent Korteweg-de Vries equation with dispersion posed by
Kupershmidt in 1985 [7]:

ut = −uxxx + 6uux + 2vT vx + CT vxx,

vt = (2uv)x − uxxC,

(1.5)

where v = (v1, v2, · · · , vn)T and C = (c1, c2, · · · , cn)T is a constant (column) vector.
System (1.5) is a bi-Hamiltonian system with an infinite number of conservation
laws.

(ii) The nonlinear Schrödinger equation with fourth-order dispersion and cubic-
quintic nonlinearity as follows:

iEz−
β2
2
Ett+γ1|E|2E = i

β3
6
Ettt+

β4
24
Etttt−γ2|E|4E+ iα1(|E|2E)t+ iα2E(|E|2)t.

(1.6)
This equation governs wave dynamics of optical fiber system (see [14]).

(iii) The rotation-two-component Camassa-Holm system (see [5, 6]):

ut−uxxt−Aux+3uux−σ(2uxuxx+uuxxx)+µuxxx+(1−2ΩA)ρρx−2Ωρ(uρ)x=0,

ρt + (ρu)x = 0.

(1.7)
We need to use the following conclusion.

Proposition 1.1. Let X(ϕ) = A+Bϕ+Cϕ2. Assume that A > 0,∆ = B2−4AC >

0. Considering the integral ξ =
∫ ϕ
ϕM

dϕ

ϕ
√
X(ϕ)

, i.e., the solutions of the differential

equation dϕ
dξ = ϕ

√
X(ϕ), we have

(1) When X(ϕM ) = 0,

ϕ(ξ) = 2A√
∆cosh(

√
Aξ)−B , if ϕ(0) = −B+

√
∆

2C ,

ϕ(ξ) = − 2A√
∆cosh(

√
Aξ)+B

, if ϕ(0) = −B+
√
∆

2C .

(1.8)

(2) When X(ϕM ) ̸= 0,

ϕ(ξ) =
2A

P coshq(
√
Aξ)−B

, (1.9)
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where P = 1
ϕM

(
2
√
AX(ϕM ) +BϕM + 2A

)
, q = ∆

P 2 .

The main result of this paper is the following theorem.

Theorem 1.1. (i) Considering the traveling wave solutions defined by (2.1), the
multicomponent Korteweg-de Vries equation (1.5) has peakon solution given
by (2.6).

(ii) Considering the traveling wave solutions defined by (3.1), the nonlinear Schrödi-
nger equation (1.6) has the peakon and anti-peakon solutions given by (3.8)
and (3.9).

(iii) Considering the traveling wave solutions defined by (*), the rotation-two-
component Camassa-Holm system (1.7) has the peakon and anti-peakon so-
lutions given by (4.6) and (4.8).

The proof of the conclusions of this theorem can be seen in sections 2,3 and 4.

2. The exact peakon solutions of the multicompo-
nent Korteweg-de Vries equation (1.5)

To investigate the traveling wave solutions of system (1.4), let

u(x, t) = ϕ(x− ct) = ϕ(ξ), vi(x, t) = vi(x− ct) = vi(ξ), ξ = x− ct. (2.1)

Substituting (2.1) into the second equation of system (1.4) and integrating the
obtained equation once, we have

vi =
ciϕξ
c+ 2ϕ

, (vi)ξ =
ciϕξξ(c+ 2ϕ)− 2ciϕ

2
ξ

(c+ 2ϕ)2
, i = 1, 2, · · · , n, (2.2)

where we take the integral constant as zero.
Substituting (2.2) into the first equation of system (1.5) and integrating the

obtained result onece, we obtain the planar dynamical system

dϕ

dξ
= y,

dy

dξ
=

−a2y2 + (c+ 2ϕ)2(3ϕ2 + cϕ+ g)

(c+ 2ϕ)(c+ 2ϕ− a2)
, (2.3)

which has the first integral

H1(ϕ, y) =
(c+ 2ϕ− a2)y2

c+ 2ϕ
− (2gϕ+ cϕ2 + 2ϕ3) = h, (2.4)

where h is a constant.
Consider the associated regular system of system (2.3) as follows:

dϕ

dζ
= y(c+ 2ϕ)(c+ 2ϕ− a2),

dy

dζ
= −a2y2 + (c+ 2ϕ)2(3ϕ2 + cϕ+ g), (2.5)

where dξ = (c + 2ϕ)(c + 2ϕ − a2)dζ, for ϕ ̸= ϕs1 = − 1
2c and ϕ ̸= ϕs2 = a2−c

2 .
Systems (2.3) and (2.5) have the same first integral, but in the phase plane, two
systems define different vector fields in the two sides of the singular straight lines.
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(a) Phase portrait when g = gs.
(b) Level curves defined by
H1(ϕ, y) = hs.

(c) Peakon.

Figure 2. The curve triangle defined by H1(ϕ, y) = hs of system (2.2).

Obviously, system (2.5) has the equilibrium points E1(ϕ1, 0), E2(ϕ2, 0) and
Es(ϕs1, 0), where ϕ1,2 = 1

6 (−c ∓
√
∆), when ∆ = c2 − 12g > 0. When Fs =

3a4 − 4ca2 + c2 + 4g > 0, in the singular line ϕ = ϕs2 = a2−c
2 , there exist two

equilibrium points S∓(ϕs2,∓ys), where ys = a
2

√
Fs. Clearly, when ∆ < 0, we have

Fs > 0. The point Es
(
− 1

2c, 0
)

is a double equilibrium point of system (2.5).
For the first integral given by (2.4), we write that

h1 = H1(ϕ1, 0) =
1

54
(−∆

3
2 − c+ 18cg), h2 = H1(ϕ2, 0) =

1

54
(∆

3
2 − c+ 18cg)

and
hs = H1(ϕs2,∓ys) = −1

4
(a2 − c)(a4 − ca2 + 4g).

For a fixed pair (a2, c) with c > 0, when g = gs = 1
4ca

2 − 3
16a

4, we have h2 = hs.
Taking g = gs, we obtain the phase portrait of system (2.3) shown in Fig.2 (a). The
level curves defined by H1(ϕ, y) = hs are shown in Fig.2 (b).

We know from (2.4) that y2 = (h+2gϕ+cϕ2+2ϕ3)(c+2ϕ)
(c+2ϕ−a2) . By using the first equation

of (2.3), we have

√
2ξ =

∫ ϕ

ϕ0

(ϕs2 − ϕ)dϕ√(
1
2h+ gϕ+ 1

2cϕ
2 + ϕ3

)
(ϕs2 − ϕ)(ϕ− ϕs1)

.

When h = hs, for the curve triangle, this integral becomes
√
2ξ =

∫ ϕs2

ϕ
dϕ

(ϕ1−ϕ)
√
ϕ−ϕs1

.

Thus, we obtan the following peakon solution (see Fig.2 (c)) with the parametric
representation:

ϕ(ξ) = ϕs1 + (ϕ1 − ϕs1)
(
eω1|ξ|+q0e

−ω1|ξ|

eω1|ξ|−q0e−ω1|ξ|

)2
≡ ϕs1 +

ϕ1−ϕs1

tanh2
q0

(ω1|ξ|) = ϕs1 + (ϕ1 − ϕs1)ctnh2
q0(ω1|ξ|),

(2.6)

where q0 =
√
ϕs2−ϕs1−

√
ϕ1−ϕs1√

ϕs2−ϕs1+
√
ϕ1−ϕs1)

, ω1 =
√

ϕ1−ϕs1

2 , and tanhq0(ξ), ctnhq0(ξ) are the
Arai q-deformed functions.
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3. The exact peakon solution of the nonlinear
Schrödinger equation (1.6)

Let
E(z, t) = ϕ(ξ) exp(iθ), ξ = pz − t, θ = kz − ct. (3.1)

Substituting (3.1) into equation (1.6) and separating the real and imaginary parts,
reducing the fourth order derivative term ϕ(4), we obtain from [3] that

[β4(6p− 6β2c− 3β3c
2 + β4c

3)− (β3 − β4c)(12β2 + 12β3c− 6β4c
2)]ϕ′′

+β4(18α1 + 12α2)[2ϕ(ϕ
′)2 + ϕ2ϕ′′]

−(β3 − β4c)[(24k − 12β2c
2 − 4β3c

3 + β4c
4)ϕ− 24(γ1 − α1c)ϕ

3 − 24γ2ϕ
5] = 0.

(3.2)
Assume that A = β4(18α1 + 12α2) ̸= 0. We write

a = − 1

A

[
β4(6p− 6β2c− 3β3c

2 + β4c
3)− (β3 − β4c)(12β2 + 12β3c− 6β4c

2)
]
,

r =
1

A
(β3 − β4c)(24k − 12β2c

2 − 4β3c
3 + β4c

4),

q = −24

A
(β3 − β4c)(γ1 − α1c), p = −24γ2

A
(β3 − β4c).

Equation (3.2) is equivalent to the integrable system

dϕ

dξ
= y,

dy

dξ
=

2ϕy2 − rϕ− qϕ3 − pϕ5

a− ϕ2
(3.3)

with the first integral

H2(ϕ, y) = (a− ϕ2)2y2 + arϕ2 +
1

2
(aq − r)ϕ4 +

1

3
(ap− q)ϕ6 − 1

4
pϕ8 = h. (3.4)

When a > 0, system (3.3) is a singular traveling wave system with the singular
straight line ϕs± = ±

√
a (see [1, 2, 4, 7–11,13,14]).

We consider the following associated regular system of equation (3.3):

dϕ

dζ
= (a− ϕ2)y,

dy

dζ
= 2ϕy2 − rϕ− qϕ3 − pϕ5 ≡ 2ϕy2 − ϕf(ϕ), (3.5)

where dξ = (a−ϕ2)dζ, f(ϕ) = r+qϕ2+pϕ4. System (3.5) has the same level curves
as system (3.3), but two systems define different vector fields in the two sides of the
singular straight lines ϕs∓ = ∓

√
a.

Obviously, system (3.5) has the equilibrium pointO(0, 0). In addition, if Ej(ϕj , 0)
is another equilibrium point of system (3.5), then, we have f(ϕj) = 0, i.e., ϕj is a
zero point of f(ϕ).

When pq < 0, pr > 0 and ∆ = q2 − 4pr > 0, in the ϕ−axis, system (3.5)
has five equilibrium points O(0, 0), E1∓(∓ϕ1, 0) and E2∓(∓ϕ2, 0), where ϕ1,2 =(

−q∓
√
q2−4pr

2p

) 1
2

. When pr < 0 (or r = 0 , pq < 0 ), system (3.5) has three
equilibrium points.
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(a) (b) (c) (d)

Figure 3. The curve triangle defined by H2(ϕ, y) = hs of system (3.3). (a) Phase portrait when
−q+

√
∆

2p < a < −q−
√

∆
2p . (b) Level curves defined by H2(ϕ, y) = 0 = hs. (c) Phase portrait when

a > −q+
√

∆
2p . (d) Level curves defined by H2(ϕ, y) = h2 = hs.

When Ys = 1
2f(

√
a) > 0, system (3.5) has two equilibrium points Sa∓(ϕs−,∓

√
Ys)

and Sb∓(ϕs+,∓
√
Ys) on two singular straight lines ϕ = ϕs∓.

For the first integral H2(ϕ, y) = h defined by (3.4), we write that

h0 = H2(0, 0) = 0, hs = H2(ϕs,
√
Ys) =

a2

12
(pa2 + 2aq + 6r),

h1 = H2(ϕ1, 0) =
ϕ21
24p2

[
−(16arp2 − 2apq2 + 5pqr − q3) + (2apq − 3pr + q2)

√
∆
]
,

h2 = H2(ϕ2, 0) =
ϕ22
24p2

[
(16arp2 − 2apq2 + 5pqr − q3) + (2apq − 3pr + q2)

√
∆
]
.

It is easy to see from the right hand of hs that if ∆1 = q2 − 6pr > 0, then, hs = 0,
when a = 1

p (−q ∓
√
∆1).

We next assume that a > 0, pr > 0,∆1 > 0 such that system (3.5) has five
equilibrium points in the ϕ−axis, for a fixed parameter group (p, q, r). Then, when
p < 0, q > 0, r < 0,∆1 > 0, and −q+

√
∆

2p < a < −q−
√
∆

2p , hs = 0, we have the phase
portrait of system (3.3) as Fig.3 (a). The level curves defined by H2(ϕ, y) = 0 are
shown in Fig.3 (b).

When p > 0, q < 0, r > 0,∆1 > 0, and a > −q+
√
∆

2p , h2 = hs = 0, we have
the phase portrait of system (3.3) as in Fig.3 (c). The level curves defined by
H2(ϕ, y) = h2 = hs are shown in Fig.3 (d).

To calculate the exact parametric representations of the orbits defined by
H2(ϕ, y) = h of system (3.3), we see from (3.4) that

y2 =
pϕ8 − 4

3 (pa− q)ϕ6 − 2(aq − r)ϕ4 − 4arϕ2 + 4h

4(a− ϕ2)2
≡ pG(ϕ)

4(a− ϕ2)2
.

By using the first equation of (3.3), we have

ξ =

∫ ϕ

ϕ0

2|a− ϕ2|dϕ√
pϕ8 − 4

3 (pa− q)ϕ6 − 2(aq − r)ϕ4 − 4arϕ2 + 4h
≡
∫ ϕ

ϕ0

2|a− ϕ2|dϕ√
pG(ϕ)

.

(3.6)
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Making the transformation ψ = ϕ2, (3.6) becomes

ξ =

∫ ψ

ψ0

|a− ψ|dψ√
ψ
[
pψ4 − 4

3 (pa− q)ψ3 − 2(aq − r)ψ2 − 4arψ + 4h
] ≡ ∫ ψ

ψ0

2|a− ψ|dψ√
pψG̃(ψ)

.

(3.7)
(i) Corresponding to the level curves defined by H(ϕ, y) = hs in Fig.3 (b), there

exist two homoclinic orbits to the origin O(0, 0), which passes through two singular
straight lines ϕ = ∓

√
a and encloses the equilibrium points (∓ϕ1, 0) and (∓ϕ2, 0),

respectively. In addition, there exist two curve triangles enclosing the equilibrium
points (∓ϕ1, 0), respectively. In this case, G(ϕ) = (ϕ2M−ϕ)(ϕ2−a)2ϕ2. For the right
curve triangle, (3.7) becomes

√
|p|ξ =

∫√
a

ψ
dψ

ψ
√
ψM−ψ . Hence, it gives rise to a peakon

and an anti-peakon solutions of system (3.3) having the parametric representations:

ϕ(ξ) = ±ϕM

(
1−

(
eω1|ξ| + q1e

−ω1|ξ|

eω1|ξ| − q1e−ω1|ξ|

)2
) 1

2

≡ ±ϕM
√
|q1|cschq1(ω1|ξ|), (3.8)

where q1 =

√
ϕ2
M−a−ϕM√
ϕ2
M−a+ϕM

, ω1 = 1
2

√
|p|ϕM , cschq1(ω1|ξ|) is a generalized hyperbolic

function.
(ii) Corresponding to the level curves defined by H(ϕ, y) = hs in Fig.3 (d),

there exist two heteroclinic orbits connecting the equilibrium points (−ϕ1, 0) and
(ϕ1, 0), and two curve triangles enclosing the equilibrium points (−ϕ2, 0) and (ϕ2, 0),
respectively. Now, we have G(ϕ) = (a− ϕ2)2(ϕ21 − ϕ2)2.

For their boundary curves of the two curve triangles, (3.7) becomes that √
pξ =∫ a

ψ
dψ

(ψ−ψ1)
√
ψ
. We obtain the following peakon and unti-peakon solutions of system

(3.3):

ϕ(ξ) = ±ϕ1
(
eω2|ξ| + q2e

−ω2|ξ|

eω2|ξ| − q2e−ω2|ξ|

)
≡ ±ϕ1ctnhq2(ω2|ξ|), (3.9)

where ω2 = 1
2

√
pϕ1, q2 =

√
a−ϕ1√
a+ϕ1

, and ctnhq2(ω2|ξ|) is a generalized hyperbolic
function.

4. The exact peakon solutions of the rotation-two-
component Camassa-Holm system (1.7)

To investigate the traveling wave solutions of system (1.7), by letting
u(x, t) = ϕ(x− ct) = ϕ(ξ), ρ(x, t) = v(x− ct) = v(ξ), (∗)

where c is the wave speed, we see from second equation of system (1.7) that v(ξ) =
β
ϕ−c , where β is an integration constant and β ̸= 0. By the first equation of system
(1.7), we have

(σϕ− c− µ)ϕ′′ = −1

2
σ(ϕ′)2 − (A+ c)ϕ+

3

2
ϕ2 +

(1− 2AΩ+ 2cΩ)β2

2(ϕ− c)2
− 1

2
g,

where 1
2g is the second integration constant. Write α = 1− 2AΩ+ 2cΩ. Then, the

above equation is equivalent to the following two-dimensional system:
dϕ

dξ
= y,

dy

dξ
=

−σy2(ϕ− c)2 + (ϕ− c)2[3ϕ2 − 2(A+ c)ϕ− g] + αβ2

2(ϕ− c)2(σϕ− c− µ)
, (4.1)
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which has the following first integral:

H3(ϕ, y) = y2(σϕ− c− µ)− ϕ3 + (A+ c)ϕ2 + gϕ+
αβ2

(ϕ− c)
= h. (4.2)

Assume that A > 0. Imposing the transformation dξ = (ϕ− c)2(σϕ− c− µ)dζ
for ϕ ̸= c, c+µσ on system (4.1) leads to the following regular system:

dϕ

dζ
=y(ϕ−c)2(σϕ−c−µ), dy

dζ
=−1

2
σy2(ϕ−c)2+1

2

[
(ϕ−c)2(3ϕ2−2(A+c)ϕ−g)+αβ2

]
.

(4.3)
Apparently, two singular lines ϕ = c and ϕ = c+µ

σ are two invariant constant
solutions of system (4.3). Near these two straight lines, the variable “ζ” is a fast
variable while the variable “ξ” is a slow variable in the sense of the geometric singular
perturbation theory.

To see the equilibrium points of system (4.3), write f(ϕ) = (ϕ − c)2(3ϕ2 −
2(A+ c)ϕ− g) + αβ2, f ′(ϕ) = 2(ϕ− c)[6ϕ2 − 3(A+ 2c)ϕ+ c(A+ c)− g], f ′′(ϕ) =
2(18ϕ2−6(A+4c)ϕ+c(4A+7c)−2g. Apparently, f ′(ϕ) has one zero at ϕ = ϕs1 = c.
When ∆ = 9A2 + 12Ac + 12c2 + 24g > 0, f ′(ϕ) has two real zeros, at ϕ = ϕ̃1,2 =
1
12 [3(A + 2c) ∓

√
∆]. Thus, f(c) = αβ2, f ′(c) = 0 and f ′′(c) = 2(c2 − 2cA − g),

f(0) = αβ2 − gc2.
In the ϕ-axis, the equilibrium points Ej(ϕj , 0) of system (4.3) satisfy f(ϕj) = 0.

Obviously, system (4.3) has at most 4 equilibrium points at Ej(ϕj , 0), j = 1, 2, 3, 4.
On the straight line ϕ = c, there is no equilibrium point of system (4.3) because β ̸=
0. On the straight line ϕ = c+µ

σ , there exist two equilibrium points, S∓
(
c+µ
σ ,∓Ys

)
of system (4.3), with Ys =

√
f( c+µ

σ )

σ( c+µ
σ −c)2 , if σf( c+µσ ) > 0.

Next, we assume that α > 0. In this case, f(c) = αβ2 > 0.
(i) Case of g ≥ 0. In this case, one always has ∆ > 0. It can be easily shown

that, when 0 < c < A+
√
A2 + g, one has f ′′(c) < 0, and when A+

√
A2 + g < c,

one has f ′′(c) > 0. The condition f ′′(c) < 0 implies ϕ̃1 < c < ϕ̃2. The condition
f ′′(c) > 0 implies ϕ̃1 < ϕ̃2 < c.

When 0 < c < A +
√
A2 + g, if f(ϕ̃1) < 0, f(ϕ̃2) < 0, system (4.3) has four

simple equilibrium points, Ej(ϕj , 0), satisfying ϕ1 < ϕ̃1 < ϕ2 < c < ϕ3 < ϕ̃2 < ϕ4.

(ii) Case of g < 0 and ∆ > 0. In this case, the requirement of ∆ > 0 is either
A2 + 4g > 0 or A2 + 4g < 0, c > 1

2 (
√
2(4|g| −A2)−A) > 0.

When A2 + 4g > 0 and A −
√
A2 + g < c < A +

√
A2 + g, one has f ′′(c) < 0

and ϕ̃1 < c < ϕ̃2.
If f(ϕ̃1) < 0, f(ϕ̃2) < 0, then system (4.3) has four simple equilibrium points,

Ej(ϕj , 0), j = 1, 2, 3, 4, satisfying ϕ1 < ϕ̃1 < ϕ2 < c < ϕ3 < ϕ̃2 < ϕ4.
Now, for a given wave speed c + µ > 0, assume that one of the following two

conditions holds:
(a1) g > 0, c < A+

√
A2 + g. For given A and g, f(ϕ̃1) < 0, f(ϕ̃2) < 0.

(a2) g < 0, A2 + 4g > 0, A −
√
A2 + g < c < A +

√
A2 + g. For given A and

g, f(ϕ̃1) < 0, f(ϕ̃2) < 0.
Then, system (4.3) has four simple equilibrium points, Ej(ϕj , 0), j = 1, 2, 3, 4,

satisfying ϕ1 < ϕ̃1 < ϕ2 < c < ϕ3 < ϕ̃2 < ϕ4.
Notice that for every j = 1, 2, 3, 4, ϕj does not depend on the parameter σ.
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Figure 4. Phase portraits and curve triangle defined by H3(ϕ, y) = hs of system (4.1). (a) h1 < h2 <

hs = h3 < h4, ϕ4 <
c+µ
σ , σ < 1. (b) h1 < h2 < h3 < h4 = hs, c <

c+µ
σ < ϕ3, σ < 1. (c) In Fig.4 (a), the

level curves defined by H3(ϕ, y) = hs. (d) Peakon solution of system (4.1) corresponding to the curve
triangle in Fig.4 (c).

Now, let hi = H3(ϕi, 0) and hs = H3

(
c+µ
σ ,∓Ys

)
, where H3 is given by (4.2).

In the case of α > 0, suppose that σ ̸= 0. For a fixed c + µ, by increasing σ
from σ < 1 to σ ≥ 1, i.e., letting the singular line ϕ = c+µ

σ move from right to
left in the (ϕ, y)-phase plane, one can obtain different topological phase portraits of
system (4.3). Especially, we have two phase portraits to appear curve triangle shown
in Fig.4 (a) and (b) where the corresponding values of H3(ϕj , 0) and parameter
conditions are given.

We discuss the exact parametric representations of peakon and anti-peakon so-
lutions of system (4.1) corresponding to two curve triangles in Fig.4 (a) and (b).
As can be seen from (4.2), for a fixed integral constant h, one has

y2 =
ϕ4 − (A+ 2c)ϕ3 + (c2 +Ac− g)ϕ2 + (h+ cg)ϕ− (ch+ αβ2)

(ϕ− c)(σϕ− c− µ)

≡ G(ϕ)

(ϕ− c)(σϕ− c− µ)
.

By using the first equation of system (4.1) and taking integration along a branch of
the level curve defined by H3(ϕ, y) = h with initial value ϕ(ξ0) = ϕ0, one obtains

ξ − ξ0 =

∫ ϕ

ϕ0

√
(ϕ− c)(σϕ− c− µ)

G(ϕ)
dϕ. (4.4)

(i) Corresponding to the orbit triangle (see Fig.4 (c)) connecting the equilibrium
points E3(ϕ3, 0) and S∓ of system (4.3) and enclosing the center E4(ϕ4, 0) in Fig.4
(c), which is the level curve defined by H3(ϕ, y) = hs = h3, one has G(ϕ) =
( c+µσ − ϕ)(ϕ − ϕ3)

2(ϕ − ϕl). Hence, taking integrals along the curves E3S+ and
S−E3, it yields from (4.4) that

± ξ√
σ

=

∫ ϕ

ϕ4

dϕ√
(ϕ− c)(ϕ− ϕl)

+ (ϕ3 − c)

∫ ϕ

ϕ4

dϕ

(ϕ− ϕ3)
√
(ϕ− c)(ϕ− ϕl)

. (4.5)

Thus, by Poposition 1.1, one obtains the following exact peakon solution of system
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(1.7) (see Fig.4 (d)):

ϕ(χ)=ϕ3+
2(ϕ3−c)(ϕ3−ϕl)

P̃1 coshq̃a

(√
(ϕ3−c)(ϕ3−ϕl)χ

)
−(2ϕ3−c−ϕl)

, χ ∈ (−∞,−χ03), and (χ03,∞),

ξ(χ) =∓
√
σ
[
(ϕ3−c)χ+ln

(√
(ϕ(χ)−c)(ϕ(χ)−ϕl)+ϕ(χ)− 1

2 (c+ϕl)
)
−ξ01

]
,

(4.6)
where

χ03 =
1√

(ϕ3 − c)(ϕ3 − ϕl)
cosh−1

q̃a

(
1

P̃1

(
2(ϕ3 − c)(ϕ3 − ϕl)

c+µ
σ − ϕ3

+ (2ϕ3 − c− ϕl)

))
,

P̃1=
1

ϕ4

[
2
√
(ϕ3−c)(ϕ3−ϕl)(ϕ4−c)(ϕ4−ϕl)+(2ϕ3−c−ϕ3)ϕ4+2(ϕ3−c)(ϕ3−ϕl)

]
,

q̃a =
(c− ϕl)

2

(P̃1)2
, ξ01 = ln

(√
(ϕ4 − c)(ϕ4 − ϕl) + ϕ4 −

1

2
(c+ ϕl)

)
.

(ii) Corresponding to the orbit triangle (see Fig.4 (b)) connecting the equilibrium
points E4(ϕ4, 0) and S∓ of system (4.3) and enclosing the center E3(ϕ3, 0) in Fig.4
(b), which is the level curve defined by H(ϕ, y) = hs = h4, one has G(ϕ) = (ϕ4 −
ϕ)2(ϕ− c+µ

σ )(ϕ− ϕl).
Then, taking integrals along the curves S+E4 and E4S−, it yields from (4.4)

that

± ξ√
σ

= −
∫ ϕ

ϕ3

dϕ√
(ϕ− c)(ϕ− ϕl)

+ (ϕ4 − c)

∫ ϕ

ϕ3

dϕ

(ϕ4 − ϕ)
√
(ϕ− c)(ϕ− ϕl)

. (4.7)

Thus, by Poposition 1.1, one obtains the following exact anti-peakon solution of
system (1.7):

ϕ(χ)=ϕ4− 2(ϕ4−c)(ϕ4−ϕl)

P̃2 coshq̃b

(√
(ϕ4−c)(ϕ4−ϕl)χ

)
+(2ϕ4−c−ϕl)

, χ ∈ (−∞,−χ04), and (χ04,∞),

ξ(χ)=∓
√
σ
[
(ϕ3 − c)χ−ln

(√
(ϕ(χ)− c)(ϕ(χ)−ϕl) + ϕ(χ)− 1

2 (c+ ϕl)
)
+ ξ02

]
,

(4.8)
where

χ04 =
1√

(ϕ4 − c)(ϕ4 − ϕl)
cosh−1

q̃b

(
1

P̃2

(
2(ϕ4 − c)(ϕ4 − ϕl)

ϕ4 − c+µ
σ

− (2ϕ4 − c− ϕl)

))
,

P̃2=
1

ϕ4

[
2
√
(ϕ4−c)(ϕ4−ϕl)(ϕ3−c)(ϕ3−ϕl)−(2ϕ4−c−ϕ3)ϕ3+2(ϕ4−c)(ϕ4−ϕl)

]
,

q̃b =
(c− ϕl)

2

(P̃2)2
, ξ02 = ln

(√
(ϕ3 − c)(ϕ3 − ϕl) + ϕ3 −

1

2
(c+ ϕl)

)
.
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