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1. Introduction

In this paper, we consider the nonlinear Schrödinger equation with fourth-order
dispersion and cubic-quintic nonlinearity as follows:

iEz−
β2

2
Ett+γ1|E|2E = i

β3

6
Ettt+

β4

24
Etttt−γ2|E|4E+ iα1(|E|2E)t+ iα2E(|E|2)t.

(1.1)
This equation govern wave dynamics of optical fiber system (see [8]). The authors
of [8] derived analytic soliton solutions ( bright and dark soliton and other soli-
ton solutions ) of equation (1.1), by using an algebraic method with an auxiliary
equation.

As far as we are concerned, the dynamical behavior of traveling wave solutions
of equation (1.1) has not been studied in the literature. In this paper, we investigate
the bifurcations of phase portraits of traveling system and the dynamical behavior
of traveling wave solutions for equation (1.1) by applying the method of dynamical
systems (see [2–7,9–13] ).

Following [8], we let

E(z, t) = φ(ξ) exp(iθ), ξ = pz − t, θ = kz − ct. (1.2)
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Substituting (1.2) into equation (1.1), separating the real and imaginary parts, and
reducing the fourth order derivative term φ(4), we obtain

[β4(6p− 6β2c− 3β3c
2 + β4c

3)− (β3 − β4c)(12β2 + 12β3c− 6β4c
2)]φ′′

+ β4(18α1 + 12α2)[2φ(φ′)2 + φ2φ′′]− (β3 − β4c)[(24k − 12β2c
2 − 4β3c

3 + β4c
4)φ

− 24(γ1 − α1c)φ
3 − 24γ2φ

5] = 0. (1.3)

Assume that A = β4(18α1 + 12α2) 6= 0. We write

a = − 1

A

[
β4(6p− 6β2c− 3β3c

2 + β4c
3)− (β3 − β4c)(12β2 + 12β3c− 6β4c

2)
]
,

r =
1

A
(β3 − β4c)(24k − 12β2c

2 − 4β3c
3 + β4c

4),

q = −24

A
(β3 − β4c)(γ1 − α1c), p = −24γ2

A
(β3 − β4c).

Equation (1.3) becomes

(a− φ2)φ′′ = 2φ(φ′)2 − rφ− qφ3 − pφ5. (1.4)

Equation (1.4) is equivalent to the following integrable system

dφ

dξ
= y,

dy

dξ
=

2φy2 − rφ− qφ3 − pφ5

a− φ2
(1.5)

with the first integral

H(φ, y) = (a− φ2)2y2 + arφ2 +
1

2
(aq − r)φ4 +

1

3
(ap− q)φ6 − 1

4
pφ8 = h. (1.6)

When a > 0, system (1.5) is a singular traveling wave system with the singular
straight lines φ = ∓

√
a (see [2]).

The main result of this paper is the following conclusion.

Theorem 1.1. Suppose that in equation (1.1), the parameters satisfy the condition
A = β4(18α1 + 12α2) 6= 0 and in system (1.5), the the parameters satisfy the
conditions a > 0,∆1 = q2 − 6pr > 0. Then, we have the following results.

(i) When p > 0, q < 0, r > 0, as the parameter a is varied, system (1.5) has the
bifurcations of phase portraits shown in Fig. 1(a)–(g). When p < 0, q > 0, r < 0,
as the parameter a is varied, system (1.5) has the bifurcations of phase portraits
shown in Fig. 2(a)–(g).

(ii) Under different parameter conditions, corresponding to the level curves de-
fined by H(φ, y) = hs with different types, system (1.5) has periodic wave solutions,
kink wave solutions, periodic peakon solutions, and peakon solutions with exact para-
metric representations given by (3.4)–(3.23).

(iii) Equation (1.1) has 20 exact traveling wave solutions E(z, t) = φ(pz −
t) exp(i(kz − ct)) = φ(ξ) exp(i(kz − ct)), where φ(ξ) is given by (3.4)–(3.23).

The proof of the theorem 1.1 will be seen in next two sections.
This paper is organized as follows. In section 2, we consider the bifurcations of

phase portraits of system (1.5). In section 3 we give all possible exact solutions of
φ(ξ), under different parameter conditions.
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2. Bifurcations of phase portraits of system (1.5)
when there exist five equilibrium points on the
φ−axis

We consider the following associated regular system of (1.5):

dφ

dζ
= (a− φ2)y,

dy

dζ
= 2φy2 − rφ− qφ3 − pφ5 ≡ 2φy2 − φf(φ), (2.1)

where dξ = (a−φ2)dζ, f(φ) = r+qφ2 +pφ4. System (2.1) has the same level curves
as system (1.5), but systems (1.5) and (2.1) define different vector fields on the two
sides of the singular straight lines φ = φs and φ = −φs, where φs =

√
a.

Obviously, system (2.1) has the equilibrium pointO(0, 0). In addition, let Ej(φj , 0)
be another equilibrium point of system (1.5). Then, we have f(φj) = 0, i.e., φj is
a zero point of f(φ).

When pq < 0, pr > 0 and ∆ = q2 − 4pr > 0, on the φ−axis, system (1.5)
has five equilibrium points O(0, 0), E1∓(∓φ1, 0) and E2∓(∓φ2, 0), where φ1,2 =(
−q∓
√
q2−4pr

2p

) 1
2

. When pr < 0 (or r = 0 , pq < 0 ), system (1.5) has three

equilibrium points.
When Ys = 1

2f(
√
a) > 0, system (2.1) has two equilibrium points S1∓(−φs,∓

√
Ys)

and S2∓(φs,∓
√
Ys) on the two singular lines φ = ∓φs.

Let M(φj , 0) be the coefficient matrix of the linearized system of (2.1) at the
equilibrium point (φj , 0). We have

J(0, 0) = detM(0, 0) = ar, J(φ1,2, 0) = detM(φ1,2, 0) = (a− φ2
1,2)φ1,2f

′(φ1,2),

J(φs,
√
Ys) = −8Ysφ

2
s < 0.

By the theory in the planar dynamical systems and using the above information,
we can determine an equilibrium point is a center or saddle point.

For the first integral H(φ, y) = h defined by (1.6), we write that

h0 = H(0, 0) = 0, hs = H(∓φs,∓
√
Ys) =

a2

12
(pa2 + 2aq + 6r).

h1 = H(φ1, 0) =
φ2

1

24p2

[
−(16arp2 − 2apq2 + 5pqr − q3) + (2apq − 3pr + q2)

√
∆
]
,

h2 = H(φ2, 0) =
φ2

2

24p2

[
(16arp2 − 2apq2 + 5pqr − q3) + (2apq − 3pr + q2)

√
∆
]
.

It is easy to see from the right hand of hs that if ∆1 = q2 − 6pr > 0, then, when
a = 1

p (−q ∓
√

∆1), we have hs = 0.
We next consider more interesting cases. Assume that a > 0, pr > 0,∆1 > 0

and for a fixed parameter group (p, q, r) such that system (2.1) has five equilibrium
points on the φ−axis, then, by varying the parameter a > 0, i.e., by changing the
relative positions between the singular straight lines φ = ∓

√
a and the equilibrium

points Ej∓(∓φj , 0), (j = 1, 2), O(0, 0), on the basis of qualitative analysis, under
different parameter conditions, we have the bifurcations of phase portraits of system
(2.1) shown in Fig. 1(a)–(g) and Fig. 2(a)–(g).
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(a) 0 < a < φ2
1 (b) a = φ2

1

(c) φ2
1 < a < φ2

2 (d) a = φ2
2

(e) a > φ2
2, h2 < hs < h1 (f) a > φ2

2, h2 < h1 = hs

(g) a > φ2
2, h2 < h1 < hs

Figure 1. The bifurcations of phase portraits of system (1.5) when p > 0, q < 0, r > 0 and ∆1 > 0.
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(a) 0 < a < φ2
1 (b) a = φ2

1

(c) φ2
1 < a < φ2

2, hs < 0 (d) φ2
1 < a < φ2

2, hs = 0

(e) φ2
1 < a < φ2

2, hs > 0 (f) a = φ2
2

(g) a > φ2
2

Figure 2. The bifurcations of phase portraits of system (1.5) when p < 0, q > 0, r < 0 and ∆1 > 0.
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3. Some exact traveling wave solutions of equation
(1.1)

In this section, we calculate some possible exact parametric representations of the
orbits defined by H(φ, y) = h of system (1.5) and give some traveling wave solutions
for equation (1.1).

We see from (1.6) that

y2 =
pφ8 − 4

3 (pa− q)φ6 − 2(aq − r)φ4 − 4arφ2 + 4h

4(a− φ2)2
≡ pG(φ)

4(a− φ2)2
. (3.1)

By using the first equation of (1.5), we have

ξ =

∫ φ

φ0

2|a− φ2|dφ√
pφ8 − 4

3 (pa− q)φ6 − 2(aq − r)φ4 − 4arφ2 + 4h
≡
∫ φ

φ0

2|a− φ2|dφ√
pG(φ)

.

(3.2)
Making the transformation ψ = φ2, (3.2) becomes

ξ =

∫ ψ

ψ0

|a− ψ|dψ√
ψ
[
pψ4 − 4

3 (pa− q)ψ3 − 2(aq − r)ψ2 − 4arψ + 4h
] ≡ ∫ ψ

ψ0

2|a− ψ|dψ√
pψG̃(ψ)

.

(3.3)
Obviously, for a general h, we can not obtain the exact parametric representations
for the level curves defined by (1.6) since ψG̃(ψ) is a fifth polynomial and the right
hand of (3.3) is a hyperelliptic integral. Only in some special cases, we can get the
exact parametric representations.

3.1. Assume that p > 0, q < 0, r > 0 and ∆1 > 0 (see Fig.
1(a)–(g)).

When f(
√
a) > 0, the level curves defined by H(φ, y) = hs in Fig. 1 can be shown

in Fig. 3 (a)-(d).

(a) 0 < a < φ2
1 (b) a = φ2

1 (c) a > φ2
2, hs < h1

(d) a > φ2
2, h2 < h1 =

hs

Figure 3. The level curves defined by H(φ, y) = hs of system (1.5).

(i) Corresponding to the level curves defined by H(φ, y) = hs in Fig. 3 (a),
there exists an oval orbit passing through two singular straight lines φ = ∓φs and
intersecting the φ−axis at points (∓φM , 0). In addition, there are two open orbits
passing through the φ−axis at points (∓φL, 0). In this case, we have G(φ) =
(φL − φ2)(φM − φ2)(a − φ2)2. Thus, for the oval orbit, (3.3) reduces to

√
p ξ =
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ψ
dψ√

ψL−ψ)(ψM−ψ)ψ
, where ψL = φ2

L and ψM = φ2
M . It follows the parametric

representation of a periodic solution of equation (1.1):

φ(ξ) =

(
φ2
L −

φ2
L − φ2

M

dn2(Ω1ξ, k)

) 1
2

, ξ ∈ [−T1, T1],

φ(ξ) = −
(
φ2
L −

φ2
L − φ2

M

dn2(Ω1ξ, k)

) 1
2

, ξ ∈ [T1, 3T1],

(3.4)

where Ω1 = 1
2φL
√
p, k2 =

φ2
M

φ2
L
, T1 = K(k)

Ω1
, and K(k) is the complete elliptic integral

of the first kind, dn(·, k), sn(·, k), cn(·, k) are Jacobian elliptic functions (see [1]).
Notice that the area of the oval in Fig. 3 (a) is partitioned into three parts

by the two singular straight lines φ = ∓
√
a. The right arch is the limit curve of

the family of periodic orbits of system (1.5) enclosing the equilibrium point (φ1, 0),
which gives rise to a lower periodic peakon solution (see Fig. 4 (b)) of equation
(1.1) with the parametric representation

φ(ξ) =

(
φ2
L −

φ2
L − φ2

M

dn2(Ω1ξ, k)

) 1
2

, ξ ∈ [−ξ01, ξ01), (3.5)

where ξ01 = dn−1

(√
φ2
L−φ2

M

φ2
L−a

, k

)
. The left arch is the limit curve of the family of

periodic orbits of system (1.5) enclosing the equilibrium point (−φ1, 0), which gives
rise to a upper periodic peakon solution (see Fig. 4 (a)) of equation (1.1) with the
parametric representation

φ(ξ) = −
(
φ2
L −

φ2
L − φ2

M

dn2(Ω1ξ, k)

) 1
2

, ξ ∈ [−ξ01, ξ01], (3.6)

The middle two curves are the limit curves of the family of periodic orbits of system
(1.5) enclosing the equilibrium point O(0, 0), they give rise to a sawtooth cusp wave
solution (see Fig. 4 (c)) of equation (1.1).

(ii) Corresponding to the level curves defined by H(φ, y) = hs in Fig. 3 (b),
there exists an oval orbit tangent to two singular straight lines φ = ∓

√
a at the

points (∓φ1, 0). In addition, there are two open orbits passing through the φ−axis
at the points (∓φL, 0). In this case, we have G(φ) = (φL − φ2)(φ1 − φ2)3. Thus,

for the oval orbit, (10) reduces to
√
p ξ =

∫ ψ1

ψ
dψ√

ψL−ψ)(ψ1−ψ)ψ
, where ψL = φ2

L and

ψ1 = φ2
1. It follows the parametric representation of a periodic solution of equation

(1.1):

φ(ξ) =
(
φ2
L −

φ2
L−φ

2
1

dn2(Ω2ξ,k)

) 1
2

, ξ ∈ [−T2, T2],

φ(ξ) = −
(
φ2
L −

φ2
L−φ

2
1

dn2(Ω2ξ,k)

) 1
2

, ξ ∈ [T2, 3T2],

(3.7)

where Ω2 = 1
2φL
√
p, k2 =

φ2
1

φ2
L
, T2 = K(k)

Ω2
. k2 =

φ2
1

φ2
L
.

(iii) Corresponding to the level curves defined byH(φ, y) = hs in Fig. 3 (c), there
exist a closed orbit intersecting the φ−axsis at two points (∓φl, 0) and two arches
enclosing the equilibrium points (∓φ2, 0) and intersecting the φ−axis at the points
(∓φm, 0), respectively. In this case, we have G(φ) = (a− φ2)2(φ2 − φ2

m)(φ2 − φ2
l ).
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(a) Upper periodic peakon. (b) Lower periodic peakon.

(c) Sawtooth cusp wave. (d) Peakon.

Figure 4. The wave profiles given by the functions φ(ξ) of system (1.5)

For the periodic orbit, (3.3) becomes
√
p ξ =

∫ ψl

ψ
dψ√

(ψm−ψ)(ψl−ψ)ψ
where ψm =

φ2
m and ψl = φ2

l . Hence, we obtain the following periodic solution of equation (1.1):

φ(ξ) =

(
φ2
m −

φ2
m − φ2

l

dn2(Ω3ξ, k)

) 1
2

, ξ ∈ [−T3, T3],

φ(ξ) = −
(
φ2
m −

φ2
m − φ2

l

dn2(Ω3ξ, k)

) 1
2

, ξ ∈ [T3, 3T3],

(3.8)

where Ω3 = 1
2φm
√
p, k2 =

φ2
l

φ2
m
, T3 = K(k)

Ω3
.

For the right arch orbit, (3.3) becomes
√
p ξ =

∫ ψ
ψm

dψ√
(ψ−ψm)(ψ−ψl)ψ

. It gives the

following lower periodic peakon solution:

φ(ξ) =
(
φ2
m + (φ2

m − φ2
l )tn

2(Ω3ξ, k)
) 1

2 , ξ ∈ (−ξ02, ξ02), (3.9)

where ξ02 = tn−1
(√

a−φ2
m

φ2
m−φ2

l
, k
)
.
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For the left arch orbit, we have

φ(ξ) = −
(
φ2
m + (φ2

m − φ2
l )tn

2(Ω3ξ, k)
) 1

2 , ξ ∈ (−ξ02, ξ02). (3.10)

It gives rise to an upper periodic peakon solution.
(iv) Corresponding to the level curves defined by H(φ, y) = hs in Fig. 3 (d),

there exist two heteroclinic orbits connecting the equilibrium points (−φ1, 0) and
(φ1, 0), and two curve triangles enclosing the equilibrium points (−φ2, 0) and (φ2, 0),
respectively. Now, we have G(φ) = (a− φ2)2(φ2

1 − φ2)2. For the heteroclinic orbits,

(3.3) has the form
√
p ξ =

∫ ψ
0

dψ
(ψ1−ψ)

√
ψ
. It gives rise to the following kink and

anti-kink solutions of equation (1.1):

φ(ξ) = ±φ1 tanh

(
1

2

√
pφ1ξ

)
. (3.11)

For two boundary curves of the two curve triangles, (3.3) becomes that
√
pξ =∫ a

ψ
dψ

(ψ−ψ1)
√
ψ
. We obtain the following peakon (see Fig.4 (d)) and unti-peakon solu-

tions of equation (1.1):

φ(ξ) = ±φ1

(
eω0|ξ| + q0e

−ω0|ξ|

eω0|ξ| − q0e−ω0|ξ|

)
≡ ±φ1ctnhq0(ω0|ξ|), (3.12)

where ω0 = 1
2

√
pφ1, q0 =

√
a−φ1√
a+φ1

, and ctnhq0(ω0|ξ|) is a generalized hyperbolic

function.

3.2. Assume that p < 0, q > 0, r < 0 and ∆1 > 0 (see Fig.
2(a)–(g)).

When f(
√
a) > 0, the level curves defined by H(φ, y) = hs in Fig. 2 can be shown

in Fig. 5 (a)–(e).
(i) Corresponding to the level curves defined by H(φ, y) = hs in Fig. 5 (a),

there exist two oval orbits contacting to the singular straight lines φ = ∓
√
a and

intersecting the φ−axis at the points (∓φM , 0), respectively. In this case, we have

G(φ) = (φ2 − a)3(φ2
M − φ2). Now, (1.1) becomes

√
|p| ξ =

∫ ψM

ψ
dψ√

(ψM−ψ)(ψ−a)ψ
. It

implies the two periodic solutions of equation (1.1):

φ(ξ) = ∓
(
φ2
M − (φ2

M − a)sn2(Ω4ξ, k)
) 1

2 , (3.13)

where Ω4 = 1
2

√
|p|φM and k2 =

φ2
M−a
φ2
M

.

(ii) Corresponding to the level curves defined by H(φ, y) = hs in Fig. 5 (b),
there exist two oval orbits passing through the singular straight lines φ = ∓

√
a and

enclosing the equilibrium points (∓φ1, 0) and (∓φ2, 0), respectively. Meanwhile, the
two oval orbits intersect the φ−axis at four points (∓φm, 0) and (∓φM , 0). Now,
we have G(φ) = (φ2

M − φ2)(a − φ2)2(φ2 − φ2
m) and the integral (3.3) has the form√

|p| ξ =
∫ ψM

ψ
dψ√

(ψM−ψ)(ψ−ψm)ψ
. It gives rise to two periodic solutions of equation

(1.1):

φ(ξ) = ∓
(
φ2
M − (φ2

M − φ2
m)sn2(Ω4ξ, k)

) 1
2 , (3.14)
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(a) a = φ2
1. (b) φ2

1 < a < φ2
2, hs < 0. (c) φ2

1 < a < φ2
2, hs = 0.

(d) φ2
1 < a < φ2

2, hs > 0. (e) a = φ2
2

Figure 5. The level curves defined by H(φ, y) = hs of system (1.5).

where Ω4 = 1
2

√
|p|φM , k2 =

φ2
M−φ

2
m

φ2
M

.

Consider the arch in the right side of the singular straight line φ =
√
a which is

the limit curve of a family of periodic orbits enclosing the equilibrium point (φ2, 0).
We see from (3.14) that the arch curve has the following parametric representation:

φ(ξ) =
(
φ2
M − (φ2

M − φ2
m)sn2(Ω4ξ, k)

) 1
2 , ξ ∈ (−ξ03, ξ03), (3.15)

where ξ03 = 1
Ω4

sn−1

(√
φ2
M−a

φ2
M−φ2

m
, k

)
. (3.15) defines an anti-periodic peakon solution

of equation (1.1) (similar to Fig. 3 (b)).
Similarly, corresponding to the arch in the left side of the singular straight line

φ = −
√
a, the the parametric representation

φ(ξ) =
(
φ2
M − (φ2

M − φ2
m)sn2(Ω4ξ, k)

) 1
2 , ξ ∈

(
K(k)

Ω4
− ξ03,

K(k)

Ω4
+ ξ03

)
(3.16)

gives rise to a periodic peakon solution of equation (1.1) (similar to Fig. 3 (a)).

(iii) Corresponding to the level curves defined byH(φ, y) = hs in Fig. 5 (c), there
exist two homoclinic orbits to the origin O(0, 0), which passing through two singular
straight lines φ = ∓

√
a and enclosing the equilibrium points (∓φ1, 0) and (∓φ2, 0),

respectively. In this case, G(φ) = (φ2
M − φ)(φ2 − a)2φ2. For these two homoclinic

orbits, (3.3) becomes
√
|p|ξ =

∫ ψM

ψ
dψ

ψ
√
ψM−ψ

. Thus, we obtain the following two

solitary wave solutions of equation (1.1):

φ(ξ) = ±φM sech (ω1ξ) , (3.17)
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where ω1 = 1
2

√
|p|φM .

We notice that for two curve triangles enclosing the equilibrium points (∓φ1, 0),

respectively, (3.3) becomes
√
|p| ξ =

∫√a
ψ

dψ
ψ
√
ψM−ψ

. Hence, it gives rise to a peakon

and an anti-peakon solutions of equation (1.1) having the parametric representa-
tions:

φ(ξ) = ±φM

(
1−

(
eω1ξ + q1e

−ω1ξ

eω1ξ − q1e−ω1ξ

)2
) 1

2

≡ ±φM
√
|q1|cschq1(ω1ξ), (3.18)

where q1 =

√
φ2
M−a−φM√
φ2
M−a+φM

and cschq1(ω1|ξ|) is a generalized hyperbolic function.

The two arches enclosing the equilibrium points (∓φ2, 0), respectively, give rise
to two periodic peakon solutions of equation (1.1) having the parametric represen-
tations:

φ(ξ) = ±φM sech (ω1ξ) , ξ ∈ (−ξ04, ξ04), (3.19)

where ξ04 = 2√
|p|φM

sech−1
(√

a
φM

)
.

(iv) Corresponding to the level curves defined by H(φ, y) = hs in Fig. 5 (d),
there exists a closed orbit passing through two singular straight lines φ = ∓

√
a

and enclosing five equilibrium points O(0, 0), (∓φ1, 0) and (∓φ2, 0). Now, we have
G(φ) = (φ2

M − φ)(φ2 − a)2(φ2 + φ2
i ). The formula (3.3) now becomes

√
|p| ξ =∫ ψM

ψ
dψ√

(ψM−ψ)ψ(ψ+ψi)
. It gives rise to the following periodic solution of equation

(1.1):

φ(ξ) = φMcn(Ω5ξ, k), (3.20)

where Ω5 = 1
2

√
|p|(φ2

M + φ2
i ) and k2 =

φ2
M

φ2
M+φ2

i
.

The arch enclosing the equilibrium points (φ2, 0) gives rise to an anti-peakon
solution which have the parametric representation:

φ(ξ) = φMcn(Ω5ξ, k), ξ ∈ (−ξ05, ξ05), (3.21)

where ξ05 = 1
Ω5

cn−1
(

a
φM

, k
)
.

The curve quadrilateral enclosing the equilibrium points O(0, 0) gives rise to a
sawtooth cusp wave solution as follows:

φ(ξ) = φMcn(Ω5ξ, k), ξ ∈
(
−2K(k)

Ω5
+ ξ05,−

3K(k)

Ω5
+ ξ05

)
,

(
ξ05,

K(k)

Ω5
+ ξ05

)
.

(3.22)
(v) Corresponding to the level curves defined by H(φ, y) = hs in Fig. 5 (e),

there exists a closed orbits contacting to two singular straight lines φ = ∓
√
a

and eclosing five equilibrium points O(0, 0), (∓φ1, 0) and (∓φ2, 0). Now, we have
G(φ) = (a−φ2)3(φ2 +φ2

i ). Formula (3.3) becomes that
√
|p|ξ =

∫ a
ψ

dψ√
(a−ψ)ψ(ψ+ψi)

.

It gives rise to the following periodic solution of equation (1.1):

φ(ξ) =
√
acn(Ω6ξ, k), (3.23)

where Ω6 = 1
2

√
|p|(a+ φ2

i ) and k2 = a
a+φ2

i
.
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