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STABILITY AND HOPF BIFURCATION
ANALYSIS ON A SPRUCE-BUDWORM

MODEL WITH DELAY

Lijun Zhang1 and Jianming Zhang2,†

Abstract In this paper, the dynamics of a spruce-budworm model with delay
is investigated. We show that there exists Hopf bifurcation at the positive
equilibrium as the delay increases. Some sufficient conditions for the existence
of Hopf bifurcation are obtained by investigating the associated characteristic
equation. By using the theory of normal form and center manifold, explicit
expression for determining the direction of Hopf bifurcations and the stability
of bifurcating periodic solutions are presented.
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1. Introduction

The outbreaks of insect pests have significant impacts on the forest ecosystems.
Eastern spruce budworm is a destructive insect living in the spruce and fir forest of
North America. Every 35-40 years there is an outbreak of these insects, resulting in
serious defoliation. Fortunately, trees are hardly killed on account of defoliation, but
they need 7 to 10 years to replace their foliage. However, the periodical outbreaks of
these insects lasting for about 10 years cause billions of dollars loss to forest industry.
Therefore, how to control the growth of budworm and protect spruce and fir forest
is of great importance. Birds preying on budworms always have a flexible diet,
that is, they search for other food resources when the density of budworm under a
certain threshold. C.S. Holling [6] believed that the switching functional response of
predators facilitate the budworm outbreaks. To understand the dynamics of spruce
budworm population, Ludwing et al [9] proposed a model separating the timescales
of slow spruce regrowth versus the fast population dynamics of budworm larve
and their predators. For the food limited dynamics of budworms in the absence of
predators the so-called logistic model is applied for the budworm population density
N(t)

dN

dt
= rN

(
1− N

K

)
, (1.1)
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where r and K are the intrinsic rate and the carrying capacity of the population,
respectively. May [11] further reduced the model proposed in [9] to the following
two differential equations

dN
dt = rN

(
1− N

KS

)
− β PN2

η2S2+N2 ,

dS
dt = ρS

(
1− S

Smax

)
− δN,

(1.2)

where the variablesN and S are the spruce budworm population density and average
leaf area per tree, respectively. Refer to [11] for the biological meaning of other
parameters. Following [11], Rasmusse et al [14] studied a relaxation oscillation of
this system by using singular perturbation theory. Liu et al [8] and Muratori [12]
pointed out that the existence of such relaxation implies that the coexistence of
predators and prey periodically alternated. Taking into account time delay, Wang
and Han [18] proposed a system with distributed delay based on system (1.2). By
using geometric singular perturbation theory, they illustrated the existence of the
relaxation oscillation and transition of the solution trajectory. Motivated by [18]
and taking into the consideration the fact that spruce leaf needs some time to grow,
we apply the following system

dN
dt = rN

(
1− N

KS

)
− β PN2

η2S2+N2 ,

dS
dt = ρS

(
1− S(t−τ)

Smax

)
− δN,

(1.3)

to describe the dynamics of interactions between a predator and a prey specie with a
delay in the prey population S(t) at time t. A number of nonlinear model equations
with time delay [2–4,17,18] have been investigated in recent decades.

Let z = ρ
PβN , y = Kρ

PβS, t̄ = ρt, τ̄ = ρτ . Dropping the bar for conciseness, then

(1.3) can be rewritten as

dz

dt
= f(z, y),

dy

dt
= y

(
1− y(t− τ)

m
− z

y
Q

)
, (1.4)

where γ = r
ρ , α = η

K , m = KρSmax

Pβ , Q = Kδ
ρ and f(z, y) = γz

(
1− z

y

)
− γz2

α2y2+z2 . It

has been shown in [14] that system (1.4) has exactly one equilibrium when α2 ≥ 1
27

and can has one, two or three equilibrium points when 0 < α2 < 1
27 . In this paper,

we will analysis the effect of delay τ on the stability of the positive equilibrium of the
system and investigate the Hopf bifurcation by normal form and center manifold
theory. Here we will focus on the influence of time delay on bifurcations when
α2 ≥ 1

27 , however the case when 0 < α2 < 1
27 will be considered in the future.

2. Stability of equilibrium and existence of Hopf b-
ifurcations

In this section, we focus on the investigation of local stability and Hopf bifurcation
criteria of the positive equilibrium E(z0, y0) for system (1.4). Letting z1 = z(t)−z0,
z2 = y(t) − y0, we rewrite system (1.4) by Taylor series expression at E(z0, y0) as
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follows:

z
′

1(t) = γr1z1(t) + γr2z2(t) +
∑
i,j≥2

1
i!j!fijz

i
1(t)zj2(t),

z
′

2(t) = −Qz1(t) + x0Qz2(t)− y0
m z2(t− τ),

(2.1)

where x0 = z0
y0

, r1 = −x0 + x0

y0

x2
0−α

2

(α2+x2
0)2

, r2 = x2
0 + 1

y0

2x2
0α

2

(α2+x2
0)2
. The characteristic

equation of the delay system takes the form

J ≡

∣∣∣∣∣∣λ− γr1 −γr2

Q λ−
(
x0Q− y0

m e
−λτ)

∣∣∣∣∣∣ = 0, (2.2)

i.e.
λ2 − (r1γ +Qx0)λ+ r1γQx0 +Qγr2 +

y0

m
(λ− r1γ)e−λτ = 0. (2.3)

When the time delay τ = 0, the characteristic equation (2.3) becomes

λ2 −
(
r1γ +Qx0 −

y0

m

)
λ+ r1γ

(
Qx0 −

y0

m

)
+Qγr2 = 0. (2.4)

Clearly, the roots of (2.4) must have negative real parts when r1γ + x0Q− y0
m < 0

and r1γ
(
x0Q− y0

m

)
+ γr2Q > 0. For τ > 0, let λ = iω(ω > 0) be a root of (2.3),

then we have

− ω2 − i(r1γ +Qx0)ω + r1γx0Q+Qγr2 +
y0

m
(iω − r1γ)e−iωτ = 0. (2.5)

Separating the real and imaginary parts, we get

− ω2 + r1γx0Q+Qγr2 +
y0

m
(ωsinωτ − r1γcosωτ) = 0,

ω(r1γ +Qx0)− y0

m
(ωcosωτ + r1γsinωτ) = 0,

(2.6)

which leads to the following polynomial equation

ω4−[2Qγ(r1x0+r2)+
y2

0

m2
−(r1y+Qx0)2]ω2+Q2γ2(r1x0+r2)2− y2

0

m2
r2
1γ

2 = 0. (2.7)

For the case when

r1γ
(
Qx0 −

y0

m

)
+Qγr2 = Qγ(r1x0 + r2)− r1γ

y0

m
> 0,

we can see easily that equation (2.7) has only one positive root

ω0 =

√
b+
√
b2 − 4c

2
,

where b = 2Qγ(r1x0 + r2) +
y20
m2 − (r1γ+Qx0)2 and c = Q2γ2(r1x0 + r2)2− y20

m2 r
2
1γ

2.
Substituting the value of ω0 in (2.6) yields

τj =
1

ω0

(
arccos

(
ω2

0Qx0 +Qγ2r1(r1x0 + r2)
y0
m (r2

1γ
2 + ω2

0)

)
+ 2jπ

)
, j = 0, 1, 2, · · · .
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Hence the characteristic equation (2.3) has a pair of purely imaginary roots ±iω0

when τ = τj .
Let λ(τ) = r(τ) + iω(τ) be a root of (2.3) such that r(τj) = 0 and ω(τj) =

ω0. Substituting λ(τ) = r(τ) + iω(τ) into (2.3) and differentiating the resulting
expression with respect to τ , we get

2λ
dλ

dτ
− (r1γ +Qx0)

dλ

dτ
+
y0

m
e−λτ

dλ

dτ
+
y0

m
(λ− r1γ)e−λτ (−λ− τ dλ

dτ
) = 0.

Consequently, it holds(
dλ

dτ

)−1

=
(2λ− (r1γ +Qx0)) eλτ + y0

m (1− (λ− r1γ)τ)
y0
mλ(λ− r1γ)

. (2.8)

Inserting τ = τj into (2.8) and careful computing, one has

Re

(
dλ

dτ

)−1
∣∣∣∣∣
τ=τj

=
m2
√
b2 − 4c

y2
0(ω2

0 + r2
1γ

2)
> 0, (2.9)

which implies that the transversality condition holds, so Hopf bifurcation occurs at
τ = τ0.

3. Direction and stability of Hopf bifurcations

In the previous section, we have obtained the conditions which guarantee that
spruce-budworm model with delay (1.3) undergo Hopf bifurcation at some criti-
cal values of τ . We now apply the center manifold theory and normal form method
proposed by Hassard et al [5] to study the stability of the bifurcated periodic solu-
tions and the direction of these Hopf bifurcations.

Rescale time by t → t
τ to normalize the delay and let τ = τ∗ + µ, µ ∈ R

and τ∗ ∈ {τj}, then µ = 0 is the Hopf bifurcation value and system (2.1) can be
rewritten as the following functional differential equation

ẋ(t) = Lµ(xt) + F (µ, xt), (3.1)

where xt(θ) = x(t+ θ) ∈ C = C([−1, 0],R2), and Lµ : C→ R2, F : R×C→ R2 are
given by

Lµ(φ) = (τ∗ + µ)

 γr1ϕ1(0) + γr2ϕ2(0)

1
mϕ1(0) +Qx0ϕ2(0)− y0

mϕ2(−1)

 (3.2)

and

F (µ, φ) = (τ∗ + µ)


∑

i+j≥2

1
i!j!Fi,jϕ

i
1(0)ϕj1(0)

0

 . (3.3)

By the Reisz representation theorem, there exists a function η(θ, µ) of bounded
variation for θ ∈ [−1, 0] such that

Lµφ =

∫ 0

−1

dη(θ, µ)φ(θ), for φ ∈ C. (3.4)
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In fact, we can choose

η(θ, µ) = (τ∗ + µ)

 γr1 γr2

−Q Qx0

 δ(θ)− (τ∗ + µ)

 0 0

0 −y0m

 δ(θ + 1), (3.5)

where

δ(θ) =

 0, θ 6= 0,

1, θ = 0.

For φ ∈ C1([−1, 0],R2), define

A(µ)φ =


dφ
dθ , θ ∈ [−1, 0),∫ 0

−1
[dη(s, µ)]φ(s), θ = 0,

(3.6)

and

R(µ)φ =

0, θ ∈ [−1, 0),

F (µ, φ), θ = 0.
(3.7)

Then (3.1) can be rewritten as

ẋ(t) = A(µ)xt +R(µ)xt. (3.8)

For ψ ∈ C1([0, 1], (R2)∗), define

A∗ψ(s) =

−
dψ
ds , s ∈ (0, 1],∫ 0

−1
[dηT (t, 0)]ψ(−t), s = 0.

(3.9)

and the adjoint bilinear form on C∗ × C as follows:

< ψ(s), φ(θ) >= ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

ξ

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (3.10)

where η(θ) = η(θ, 0). Then A∗ and A(0) are adjoint operators, and ±iτ∗ω0 are
eigenvalues of A(0). It is clear that they are also eigenvalues of A∗ .

Suppose that q(θ) = q(0)eiω0τ
∗θ is an eigenvector of A(0) corresponding to iω0τ

∗,
where q(0) = (q1, q2)T . From (3.4), (3.5) and (3.6), we get

τ∗

 iω0 − γr1 −γr2

Q iω0 −
(
Qx0 − y0

m e
−iω0τ

∗)
 q1

q2

 =

 0

0

 . (3.11)

By direct computation, we get

q1 = 1, q2 = iω0−γr1
γr2

.
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It is easy to verify that q∗ = D(q∗1 , q
∗
2)e−iω0τ

∗θ is an eigenvector of A∗ corresponding
to −iω0τ

∗ which satisfies < q∗, q >= 1, < q∗, q̄ >= 0. Here q∗1 = 1, q∗2 = γr1−iω0

Q
and

D =
Qγr2

Qγr2 − (ω2
0 + γ2r2

1)− τ∗e−iω0τ∗(ω2
0 + γ2r2

1)(Qx0 − y0
m e

−iω0τ∗)
.

Using the same notations as in literature [5, 16, 20], we now compute the coor-
dinates to describe the center manifold C0 at µ = 0. Let xt be the solution of (3.1)
with µ = 0 and z(t) =< q∗, xt >,

W (t, θ) = xt − z(t)q(θ)− z̄(t)q̄(θ) = xt(θ)− 2Re{z(t)q(θ)}.

On the center manifold C0, we have

W (t, θ) = W (z(t), z̄(t), θ),

where

W (z(t), z̄(t), θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · , (3.12)

z(t) and z̄(t) are local coordinates of center manifold C0 in the direction of q and
q∗, respectively. According the center manifold theory, we see that W (0, 0, θ) = 0
and W

′
(0, 0, θ) = 0.

For µ = 0 and a solution xt of equation (3.1) on C0 , we have

ż(t) = < q∗, ẋ(t) >=< q∗, Lµ(xt) + F (µ, xt) >

= < q∗, iω0τ
∗xt > + < q∗, F (0,W + 2Re{(z(t)q(θ)}) >

= iω0τ
∗zt + q̄∗(0)F (0,W (z, z̄, 0)) + 2Re{(z(t)q(0)})

def
= iω0τ

∗zt + q̄∗(0)F0(z, z̄). (3.13)

Consider the formal Taylor expansion of F0(z, z̄) as follows

F0(z, z̄) = Fz2
z2

2
+ Fz̄

z̄2

2
+ Fzz̄zz̄ + Fz2z̄

z2z̄

2
+ · · · . (3.14)

We rewrite (3.13) as
ż(t) = iω0τ

∗zt + g(z, z̄), (3.15)

where

g(z, z̄) = q̄∗(0)F0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g12

z2z̄

2
+ · · · . (3.16)

Comparing (3.13) with (3.15) gives

g20 =D̄τ∗(f20 + 2f11q2 + f02q
2
2),

g11 =D̄τ∗(f20 + f11(q2 + q̄2) + f02q2q̄2),

g02 =D̄τ∗(f20 + 2f11q̄2 + f02q̄2),

g12 =D̄τ∗[f20(W
(1)
20 (0) + 2W

(1)
11 (0)) + f11(W

(2)
20 (0) + q̄2W

(1)
20 (0) + 2q2W

(1)
11 (0)

+ 2W
(2)
11 (0)) + f02(q̄2W

(2)
20 (0) + 2q2W

(2)
11 (0))].
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In order to deduce g12, we now compute W20(θ) and W11(θ). We know from
(3.8) that

Ẇ = ẋt − ż(t)q(θ)− ˙̄z(t)q̄(θ) =

AW − gq(θ)− ḡq̄(θ), θ ∈ [−1, 0),

AW − gq(0)− ḡq̄(0) + F (µ, φ), θ = 0.
(3.17)

Differentiating (3.12) with respect to t gives

Ẇ = Wz ż +Wz̄ ˙̄z

= [W20(θ)z +W11(θ)z̄]ż + [W11(θ)z +W02(θ)z̄] ˙̄z + · · ·
= [W20(θ)z +W11(θ)z̄](iω0τ

∗z + g(z, z̄))

+[W11(θ)z +W02(θ)z̄](iω0τ
∗z̄ + ḡ(z, z̄)) + · · · (3.18)

Substituting (3.16) and (3.18) into (3.17) and comparing the coefficients, we have

(2iω0τ
∗ −A)W20(θ) =

−g20q(θ)− ḡ02q̄(θ), θ ∈ [−1, 0),

−g20q(0)− ḡ02q̄(0) + Fz2 , θ = 0,
(3.19)

and

(iω0τ
∗ −A)W11(θ) =

−g11q(θ)− ḡ11q̄(θ), θ ∈ [−1, 0),

−g11q(0)− ḡ11q̄(0) + Fzz̄, θ = 0.
(3.20)

Based on (2.19) and (3.20), for θ ∈ [−1, 0),

W
′

20(θ) = 2iω0τ
∗W20(θ) + g20q(θ) + ḡ02q̄(θ).

It is clear that the solution of above equation is

W20(θ) =
ig20

ω0τ∗
q(θ)eiω0τ

∗θ +
iḡ02

3ω0τ∗
q̄(θ)e−iω0τ

∗θ + E1e
2iω0τ

∗θ. (3.21)

For θ = 0, we see from (3.19) that∫ 0

−1

dθη(0, θ)W20 = 2iω0τ
∗W20(0) + g20q(0) + ḡ02q̄(0)− Fz2 . (3.22)

Substituting (3.21) into (3.22), we have

(
(2iω0τ

∗I −
∫ 0

−1

dθη(θ)e2iω0τ
∗θ

)
E1 = 2τ∗

 f20 + 2f11q2 + f02q
2

0

 , (3.23)

namely,2iω0 − γr1 −γr2

Q 2iω0−x0Q+ y0
m e

−2iω0τ
∗

E1 = 2

f20+2f11q2+f02q
2

0

 . (3.24)
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So we have

E
(1)
1 =

2

M1

∣∣∣∣∣∣ f20 + 2f11q2 + f02q
2 −γr2

0 2iω0 − x0Q+ y0
m e

−2iω0τ
∗

∣∣∣∣∣∣ ,
E

(2)
1 =

2

M1

∣∣∣∣∣∣ 2iω0 − γr1 2f11q2 − γf20 + f02q
2
2

Q 0

∣∣∣∣∣∣ ,
with

M1 =

∣∣∣∣∣∣ 2iω0 − γr1 −γr2

Q 2iω0 − x0Q+ y0
m e

−2iω0τ
∗

∣∣∣∣∣∣ .
Similarly, we have

E
(1)
2 =

2

M2

∣∣∣∣∣∣ f20 + f11(q2 + q̄2) + f02q2q̄2 −γr2

0 iω0 − x0Q+ y0
m e

iω0τ
∗

∣∣∣∣∣∣ ,
E

(2)
2 =

2

M2

∣∣∣∣∣∣ iω0 − γr1 f20 + f11(q2 + q̄2) + f02q2q̄22

Q 0

∣∣∣∣∣∣ ,
where

M2 =

∣∣∣∣∣∣ iω0 − γr1 −γr2

Q iω0 − x0Q+ y0
m e

iω0τ
∗

∣∣∣∣∣∣ .
Thus, g12 is determined by the parameters and delay. The following quantities can
be derived accordingly

C1(0) =
i

2ω0τ∗
(g20g11 − 2|g11|2 −

1

3
|g02|2) +

g12

2
, µ2 = − Re {C1(0)}

Re {λ′(τ∗)}
,

β2 = 2Re {C1(0)} , T2 = −Im(C1(0) + µ2λ
′
(τ∗))

τ∗ω0
.

According to the results in Hassard [5], one knows that the sign of µ2 determines
the direction of the Hopf bifurcation, the sign of β2 determines the stability of the
bifurcating periodic solutions and the sign of T2 determines the monotonicity of the
period of the bifurcating periodic solutions. Thus we have the following conclusions.

Theorem 3.1. The following statements hold for system (1.3).

(1) The Hopf bifurcation is supercritical (subcritical) if µ2 > 0 (µ2 < 0);

(2) The bifurcating periodic solutions are stable (unstable) if β2 < 0 (β2 > 0);

(3) The periodic of bifurcating periodic solutions increase (decrease) if T2 > 0
(T2 < 0).
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4. Numerical Simulations

In this section, we perform some numerical simulations of system (1.4) to testify
the analytical results proved in the previous sections.

Set α2 = 0.075, m = 0.8, γ = 0.6, Q = 1.6. By direct computation, we get
τ0 ≈ 1.5422 and the equilibrium E is (0.039388, 0.731032).

(i) Take τ0 = 1.51. According the previous analysis, the equilibrium should be
stable. Starting from the initial value (z(0), y(0)) = (0.0395335, 0.7351731), we get
Figure 1. The simulation results coincide exactly with the our conclusion.

(ii) Take τ0 = 1.57. According the previous analysis, the equilibrium should
be unstable and there exists a periodic solution bifurcating from the equilibrium.
Starting from the same initial value as (i), we get Figure 2. It implies that the
Hopf bifurcation associated with the critical value τ0 ≈ 1.5422 is supercritical, the
bifurcating periodic solution is stable, and the equilibrium E is unstable. All these
results are consistent with our analysis.
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(a) The graph of z(t).
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(c) The orbit of system (1.4).

Figure 1. Behavior of system (1.4) with τ = 1.51. when τ < τ0 ≈ 1.5422, the positive equilibrium E is
asymptotically stable.
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(a) The graph of z(t).
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(b) The graph of y(t).
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(c) The orbit of system (1.4).

Figure 2. Behavior of system (1.4) with τ = 1.57. when τ > τ0 ≈ 1.5422, the positive equilibrium E is
unstable and there exists a bifurcated periodic solution.

5. Conclusions

In this paper, we have discussed the dynamics of a spruce-budworm model with
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delay, which is based on system (1.2). Firstly, we studied the effects of the discrete
time delay τ on the stability of positive equilibrium of system (1.4). Next, we inves-
tigated the existence of Hopf bifurcation, the bifurcating direction and stability of
the bifurcating periodic solutions by the normal form and center manifold theorems.
Just as we have pointed out in Introduction that system (1.3) possibly has one, two
or three equilibrium for the case when α2 < 1

27 , which implies that it may have more
abundant dynamics. In fact, the dynamics of a system might be impacted by other
factors. It has been shown that Allee effect exists in many natural populations,
such as birds, insects, mammals, marine invertebrates and plants [7, 15, 21]. Allee
effect has attracted a significant amount of attention from both mathematicians
and ecologists in recent decades. Many interesting results on Allee effect have been
obtained in various model equations [1,10,13,19]. The impact of Allee effect on the
system investigated in this paper will be considered in our next work.
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