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EFFECT OF MEDIA-INDUCED
MODIFICATION OF TRAVEL RATES ON

DISEASE TRANSMISSION IN A MULTIPLE
PATCH SETTING∗

Wei Yang1, Chengjun Sun2,† and Julien Arino3

Abstract A general SIS epidemic model is formulated that incorporates
media-induced modification of travel rates. Basic local properties of solu-
tions to the model are established. In particular, it is shown that the basic
reproduction number does not involve parameters related to the effect of media
on travel. The general model is subsequently specialised to two-patch mod-
els, with two different scenarios regarding patch population size. Qualitative
analyses show that the basic reproduction number acts as a sharp threshold
between disease persistence and extinction. The concept of uniform weak per-
sistence is used to prove the existence of an endemic equilibrium and disease
uniform strong persistence under a certain condition. Numerical investigations
are carried out to gain insight into the analytically tractable and intractable
cases, highlighting the importance of considering not only the basic reproduc-
tion number but also other measures of disease severity.

Keywords Epidemiology, metapopulations, media coverage, nonlinear travel
rates, population sizes.
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1. Introduction

Communication in mass media has been sometimes employed as a tool in the effort
to control and mitigate epidemics of emerging and re-emerging diseases [9, 34, 38].
Media inform the public of cases of infection during an epidemic and accordingly
influence perceptions of the threat of infectious diseases [9, 18, 49]. Media cov-
erage during the 2002-2003 severe acute respiratory syndrome (SARS) [11], the
2009 H1N1 influenza [27] and 2019 novel coronavirus disease (COVID-19) outbreak-
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s [10, 12, 13, 19] delivered preventive health information, alerted the public to take
precautionary measures (e.g., wearing masks, washing hands frequently, avoiding
crowds) in relation to a disease outbreak. It has been shown to elicit individuals’
positive behavior change [9, 18, 22, 43]. This in turn reduces the frequency of po-
tentially infecting contacts and helps lower the probability of disease transmission
among the well-informed population.

The impact of media alerts on the propagation of communicable diseases has
gained much attention and been studied extensively [9, 18, 22, 34, 38, 43, 49]. Re-
cently, a number of mathematical models have been proposed to tackle this issue.
However, existing modelling approaches focus on the effect of media-induced social
distancing on disease transmission. For instance, [15,16,30,31,44,47] and references
therein incorporated an effect of media coverage into epidemic models by adding
a term that directly affects contact rates. Instead of employing different incidence
function to describe media effect, [14, 21, 32, 37, 45, 48] suggested adding a mass
media compartment, reflecting the involvement of mass media in an epidemic. All
mathematical models cited above assume that space is homogeneous and confine
the population to a single location or population.

However, infectious diseases usually spread heterogeneously in space and time;
integrating spatial heterogeneity into epidemic models provides a more accurate
description of reality [2, 4, 7, 8, 28, 35]. To explore the impact of media coverage in
a heterogeneous environment, [24] formulated and studied a spatio-temporal SIS
reaction-diffusion model, while [23,40] took individual travel into account, and pro-
posed epidemiological models in a multiple patch setting. (A patch here refers to a
geographical location; it can be a city, a region or a country.)

Media coverage of an epidemic can affect individuals’ travel intentions, resulting
in a reduction of the volume of travel. The influence of media-induced modifica-
tions of travel rates between patches on the dynamics of disease propagation has
not been the object of much attention. A disease outbreak generally does not result
in complete interruption of travel between patches, but people tend to avoid areas
where incidence of the disease is high; travellers are especially affected by disease-
induced panic. One may naturally imagine that the reporting on a disease outbreak
by media may amplify the degree of this sort of fear or panic and consequently lead
to a drop of the number of travellers. During the 2002-2003 SARS outbreak, the
World Health Organization (WHO) issued a recommendation advising visitors to
China to consider postponing or cancelling their trips [11]; they issued a similar
recommendation regarding travel to Toronto. Most overseas tourist groups to Bei-
jing scheduled for April and May of 2003 were cancelled; in April, the city’s foreign
tourist arrivals dropped 59.9% compared with the same period in 2002 [11]. During
the 2009 H1N1 pandemic, it was, for instance, observed that air traffic to Mexico
was affected in the early stages of the epidemic [27].

On the modelling side, in mathematical epidemiology there are very few models
with nonlinear movement rates, only ones with variable rates. Wang and Zhao [46]
considered a two-patch epidemic model with the coefficients of movement rates being
periodic. Dhirasakdanon et al. [17] formulated a general n-patch SEIRS host model,
in which individuals may alter their travel rates in terms of the disease status of the
host population, and established a sharp threshold to separate disease persistence
from the extinction of small disease outbreaks.

In the same spirit, a metapopulation model for the spread of infection within and
between patches is considered here to incorporate the adjustment of travel rates to
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media alerts and to study its resulting effect on the spatial and temporal spread of
an infectious disease. A general SIS (susceptible-infective-susceptible) metapopula-
tion model in a |P| patch setting is developed, integrating nonlinear media-induced
modification of travel rates. Two scenarios in perspective of population size in a
two patch setting are considered: in the first scenario, the population levels in both
patches are high and they both possess proportional incidence of infection; in the
second scenario, motivated by the work of Arino and McCluskey [5], Arino and
Portet [6], Fromont et al. [20] and Zhao and Wang [46], the population in one patch
is large and incidence is modelled using using proportional incidence, while in the
other patch the population is small and mass action incidence is used. The following
questions are addressed:

Q1. Does media-induced modification of travel rates affect the epidemiology of a
disease outbreak?

Q2. Is there any differentiation in effect of media-induced modification of travel
rates for systems with different population sizes?

Q3. Does the population size of coupled patches play a role in facilitating the
spread of an infectious disease?

Analytical analyses are conducted to derive a critical threshold of disease persis-
tence and extinction, and to determine sufficient conditions under which an infec-
tious disease is uniformly weakly and strongly persistent, respectively. Numerical
simulations are subsequently performed to complement and further extend analyt-
ical results.

2. Modelling

2.1. Assumptions

Consider the transmission of a disease conferring no immunity against reinfection
that can be modelled using an SIS epidemic model (e.g., common cold or staphy-
lococcus aureus). Set this in a metapopulation setting, i.e., assume that there is
a set of locations called patches, with the dynamics in each patch described by an
SIS model and movement of individuals between the patches; for more details on
metapopulation models, see [2] and the references therein. The population in each
patch is classified into two categories: individuals who are susceptible to the disease
(S) and those who are infected with the disease and infectious to others (I). The
simple SIS formalism allows to capture the main characteristics of disease propa-
gation without the burden of additional equations and parameters. Further, this
allows to focus on the effect of modification of travel rates between patches led by
media coverage, since the dynamics of a classical SIS metapopulation model without
media effects, or with effect of media-induced social distancing is well understood.

Let P be the set of patches. Individuals in patch p ∈ P move to patch q ∈ P at
the per capita rate mqp ≥ 0, with mqp = 0 if movement from p to q is not possible.
For simplicity of notation, we assume that for all p ∈ P,

mpp = −
∑

q∈P\{p}

mqp.
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Before proceeding further, let us briefly discuss the model used in each patch in
the absence of mobility. We make the following assumptions for the dynamics in
patch p ∈ P.

H1. Birth occurs at the rate bp with all births in the susceptible compartment;
death rate occurs at the per capita rate dp.

H2. Recovery occurs at the per capita rate γp. There is no immunity, so upon
recovery, individuals are immediately susceptible to the disease again.

H3. Disease transmission from infectious to susceptible individuals is described
by a standard (proportional) incidence function βpSpIp/Np where βp is the
effective contact rate in patch p.

The model in each patch, in the absence of movement between patches, then has
the flow diagram showed in Figure 1.

Sp Ip

βp
SpIp
Np

γpIp

bp

dpSp dpIp

Figure 1. Flow diagram of the SIS model in an isolated patch p ∈ P.

Media coverage may exert negative effects over the travel of individuals between
patches. The following assumptions are made regarding these effects.

H4. Both susceptible and infectious individuals travel.

H5. Knowledge of the presence of disease leads to modification of the rate of travel
between patches for all susceptible individuals. If mpq ≥ 0 is the rate of travel
from patch q ∈ P to patch p ∈ P, then the revised travel rate for individuals
takes the form (

1− σpIp
αp + σpIp

)
mpq, (2.1)

where αp > 0 describes the insensitivity of response to knowledge of cases and
σp ∈ [0, 1] is the fraction of cases known in location p.

2.2. General model

For all p ∈ P, the general SIS metapopulation model with media-induced change of
travel rates takes the form

S′p = bp + γpIp − βp
SpIp
Np
− dpSp +

∑
q∈P

(
1− σqIq

αq + σqIq

)
mpqSq, (2.2a)

I ′p = βp
SpIp
Np
− (γp + dp)Ip +

∑
q∈P

(
1− σqIq

αq + σqIq

)
mpqIq (2.2b)

with non-negative initial conditions Sp(0) > 0, Ip(0) ≥ 0 for all p ∈ P and∑
p∈P Ip(0) > 0.
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S1

I1

S2

I2

(
1− σ2I2

α2+σ2I2

)
m21S1

(
1− σ1I1

α1+σ1I1

)
m12S2(

1− σ2I2
α2+σ2I2

)
m21I1

(
1− σ1I1

α1+σ1I1

)
m12I2

Figure 2. Flow diagram of the movement component of the SIS model, in the special case of two
patches. Flows within patches are not shown for legibility.

3. Mathematical analysis of the general model

3.1. Preliminaries

The vector field of (2.2) is locally Lipschitz so solutions with the prescribed initial
conditions uniquely exist. Furthermore, (2.2) is well posed in the following sense.

Theorem 3.1. Consider (2.2) with the initial conditions Sp(0) > 0, Ip(0) ≥ 0 for

all p ∈ P and
∑
p∈P Ip(0) > 0. Then the positive orthant R2|P|

+ is invariant under
the flow of (2.2), with Sp remaining positive and Ip staying non-negative for all
p ∈ P. The total population converges to an equilibrium as t → ∞ and solutions
are bounded.

Proof. Under the stated initial conditions Sp(0) > 0, Ip(0) ≥ 0 for all p ∈ P
and

∑
p∈P Ip(0) > 0, suppose, without loss of generality, that I1 becomes zero

at some time t1 before another Ip becomes zero, p ∈ P \ {1}. Then from (2.2b),

I ′1(t1) =
∑
q∈P\{1}

(
1− σqIq

αq+σqIq

)
mpqIq ≥ 0; thus I1(t) is a non-decreasing function

of t at t1. Hence, I1 stays non-negative. Similar reasoning holds for all other
Ip, p ∈ P. Again, without loss of generality, now suppose that at some time t2,
S1(t2) = 0 before any other Sp goes to zero, p ∈ P \ {1}. Then at t2, from (2.2b),

S′1(t2) = b1 + γ1I1 +
∑
q∈P\{1}

(
1− σqIq

αq+σqIq

)
mpqSq > 0. Thus, there is no time t2

such that S1(t2) = 0, considering the contradiction of S1(t−2 ) < 0. Hence, S1 stays
positive for all t > 0 when the initial condition Sp(0) > 0. By the similar argument,
we obtain the positivity of all Sp, p ∈ P.

Let Np(t) = Sp(t) + Ip(t) denote the total population of patch p ∈ P at time t
and N(t) =

∑
p∈P Np(t) be the total population in the system. Adding up the equa-

tions in (2.2) gives N ′ =
∑
p∈P bp −

∑
p∈P dpNp. It follows that lim inft→∞N(t) ≥

(
∑
p∈P bp)/maxp∈P{dp} and lim supt→∞N(t) ≤ (

∑
p∈P bp)/minp∈P{dp}. Now
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that the positive orthant R2|P|
+ is invariant under (2.2) and the total population

is bounded, the individual components Sp and Ip are also bounded.

Moreover, the closed subset of R2|P|
+ ,

Γ =

(Sp, Ip) ∈ R2|P|
+ :

∑
p∈P bp

maxp∈P{dp}
≤
∑
p∈P

(Sp + Ip) ≤
∑
p∈P bp

minp∈P{dp}


is also positively invariant under the flow of (2.2).

3.2. Disease-free equilibrium

System (2.2) always has a unique disease-free equilibrium (DFE). To compute it,
set Ip = 0 for all p ∈ P (which we write I = 0) and rewrite the remaining equations
(2.2a) in vector form:

S′ = b− dS +MS, (3.1)

where S = (S1, . . . , S|P|)
T , b = (b1, . . . , b|P|)

T , d = diag(d1, . . . , d|P|) and

M =



−
∑

p∈P\{1}
mp1 m12 · · · m1|P|

m21 −
∑

p∈P\{2}
mp2 · · · m2|P|

...
...

. . .
...

m|P|1 m|P|2 · · · −
∑

p∈P\{|P|}
mp|P|


. (3.2)

Consider equilibria of (3.1). We have

S? = (d−M)−1b,

provided that d −M is invertible. Since dp > 0 for all p ∈ P, by [3, Proposition
3(3)], d − M is invertible and (d − M)−1 > 0. From [3, Proposition 3(4)], if,
additionally, M is irreducible, in other words, if the digraph of patches is strongly
connected, then it is not required for the death rates dp to all be positive in order
for (d−M)−1 � 0, i.e., be entry-wise positive.

Irreducibility of the movement digraph is a reasonable assumption to make, and
we assume from now on it holds. We therefore have the DFE

E
(2.2)
0 := (S?, I?) =

(
(d−M)−1b,0

)
, (3.3)

with S? � 0.

3.3. Basic reproduction number

The stability of the disease-free equilibrium E
(2.2)
0 is considered in terms of the

general basic reproduction number R(2.2)
0 , i.e., the basic reproduction number for
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the whole system. We follow the next generation matrix method for deterministic
compartmental models [42]. Let

F =


β1
S1I1
N1
...

β|P|
S|P|I|P|

N|P|


and

V =


(d1 + γ1)I1 −

∑
q∈P

(
1− σqIq

αq+σqIq

)
m1qIq

...

(d|P| + γ|P|)I|P| −
∑
q∈P

(
1− σqIq

αq+σqIq

)
m|P|qIq


be, respectively, the vectors of new infections and all other flows within the infected
compartments (the latter with a negative sign). Taking partial derivatives of F and

V with respect to I and evaluating at E
(2.2)
0 gives F = diag(β1, . . . , β|P|) and

V = diag(d1 + γ1, . . . , d|P| + γ|P|)−M,

where F is non-negative and V is an M -matrix. Then FV −1 is non-negative.
From [42, Theorem 2], we have the following result.

Lemma 3.1. Let R(2.2)
0 := ρ(FV −1), where ρ(·) is the spectral radius. For system

(2.2), the disease-free equilibrium E
(2.2)
0 is locally asymptotically stable if R(2.2)

0 < 1

and unstable if R(2.2)
0 > 1.

Note that neither αq nor σq appear in R(2.2)
0 . Thus, media coverage does not

change the basic reproduction number R(2.2)
0 . This is to be expected: computation

of R(2.2)
0 takes place where I = 0; when disease is absent, there is no change in

travel rates and system (2.2) is reduced to a regular SIS metapopulation model.
This is similar to what was observed, for example, in [40].

4. Mathematical analysis of the two-patch model

We now consider the case of only two patches, i.e, where P = {1, 2}, which we
assume from now on. This allows us to investigate global properties of the model
more in detail. It also provides a much easier framework for performing numerical
simulations. In this case, model (2.2) takes the form

S′1 =b1+γ1I1−β1
S1I1
N1
−d1S1−m21

(
1− σ2I2

α2+σ2I2

)
S1 +m12

(
1− σ1I1

α1 + σ1I1

)
S2,

(4.1a)

I ′1 = β1
S1I1
N1
− (γ1 + d1)I1 −m21

(
1− σ2I2

α2 + σ2I2

)
I1 +m12

(
1− σ1I1

α1 + σ1I1

)
I2,

(4.1b)

S′2 =b2+γ2I2−β2
S2I2
N2
−d2S2−m12

(
1− σ1I1

α1+σ1I1

)
S2 +m21

(
1− σ2I2

α2 + σ2I2

)
S1,

(4.1c)
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I ′2 = β2
S2I2
N2
− (γ2 + d2)I2 −m12

(
1− σ1I1

α1 + σ1I1

)
I2 +m21

(
1− σ2I2

α2 + σ2I2

)
I1

(4.1d)

with non-negative initial conditions

Sp(0) > 0, Ip(0) ≥ 0,
∑
p∈P

Ip(0) > 0 (4.2)

for p ∈ P. All results established in Section 3 hold for system (4.1), of course. In

particular, we have that, at the disease-free equilibrium E
(4.1)
0 ,

S?0 =

d1 +m21 −m12

−m21 d2 +m12

−1b1
b2



=


(d2 +m12)b1 +m12b2
d1m12 + d2m21 + d1d2

m21b1 + (d1 +m21)b2
d1m12 + d2m21 + d1d2

 . (4.3)

Also, when computing the basic reproduction number, F = diag(β1, β2) and

V =

d1 + γ1 +m21 −m12

−m21 d2 + γ2 +m12

 =:

 v11 −m12

−m21 v22


that give the basic reproduction number

R(4.1)
0 =

β1v22 + β2v11 +
√

(β2v11 − β1v22)2 + 4β1β2m12m21

2(v11v22 −m12m21)
. (4.4)

Note that parameters σP and αP do not appear in R(4.1)
0 , so the introduction of

media effect on travel does not change the basic reproduction number. When media
coverage does not affect travel rates, i.e., σP = 0 and or αP →∞, the disease-free

equilibrium E
(4.1)
0 is globally asymptotically stable if R(4.1)

0 < 1 [36, Subsection 3.2

and Table 1], and the endemic equilibrium (EE) E
(4.1)
∗ is globally asymptotically

stable if R(4.1)
0 > 1 [36, Theorem 3.1]. From (4.1b) and (4.1d),

(I1 + I2)′ =

(
β1
S1

N1
− γ1 − d1

)
I1 +

(
β2
S2

N2
− γ2 − d2

)
I2 (4.5a)

≤ (β1 − γ1 − d1)I1 + (β2 − γ2 − d2)I2, (4.5b)

yielding the following result. (Recall that here, P = {1, 2}.)

Theorem 4.1. The disease-free equilibrium E
(4.1)
0 is globally asymptotically stable

if
∏
p∈P

(βp − γp − dp) ≥ 0 and
∑
p∈P

(βp − γp − dp) ≤ 0.

Are conditions in Theorem 4.1 stronger than R(4.1)
0 < 1? The answer is positive,

as established in the following result.
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Theorem 4.2. The basic reproduction number R(4.1)
0 < 1 whenever conditions of

Theorem 4.1 hold.

Proof. One may compute

FV −1 =
1

v11v22 −m12m21

 β1v22 β1m12

β2m21 β2v11

 .

By the Gershgorin circle theorem,∣∣∣λ1 −
β1v22

v11v22 −m12m21

∣∣∣ < β2m21

v11v22 −m12m21

⇒|λ1| <
β1v22 + β2m21

v11v22 −m12m21
,

and ∣∣∣λ2 −
β2v11

v11v22 −m12m21

∣∣∣ < β1m12

v11v22 −m12m21

⇒|λ2| <
β2v11 + β1m12

v11v22 −m12m21
,

where λ1, λ2 are the eigenvalues of FV −1.
Since

v11 := d1 + γ1 +m21, β1 < d1 + γ1,

v22 := d2 + γ2 +m12, β2 < d2 + γ2,

then

β1v22 + β2m21 < (d1 + γ1)(d2 + γ2 +m12) + (d2 + γ2)m21

= v11v22 −m12m21

⇒ |λ1| < 1.

Similarly, one finds that |λ2| < 1. Therefore, R(4.1)
0 = ρ(FV −1) < 1.

Next, we discuss for system (4.1) the questions of uniform strong persistence
and existence of endemic equilibrium. A system being persistent means that no
components within the system approach zero. For example, there is no extinction
for any populations that make up a biological system. The definition of uniform
strong persistence below comes from [1].

Definition 4.1. A system of differential equations, dX/dt = F (X, t), X(0) = X0,
where X(t) = (x1(t), x2(t), . . . , xn(t))T , is said to be uniformly strongly persis-
tent if for any positive initial condition X0 > 0, there exists δ > 0 such that
lim inft→∞ xi(t) > δ for i = 1, 2, . . . , n.

An infectious disease is endemic if system (4.1) is uniformly strongly persistent.
In other words, the numbers of susceptible and infectious individuals remain above
a certain positive level. The following lemma is summarized from [50].

Lemma 4.1. Let φt : X → X be a semiflow and X0 ⊂ X an open set. Define
∂X0 = X \X0, and M∂ = {x ∈ ∂X0 : φtx ∈ ∂X0, t ≥ 0}. Assume that
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(C1) φtX0 ⊂ X0 and φt has a global attractor A;
(C2) there exists a finite sequence M = {M1, · · ·,Mk} of disjoint, compact, and
isolated invariant sets in ∂X0 such that

(a) Ω(M∂) := ∪x∈M∂
ω(x) ⊂ ∪ki=1Mi;

(b) no subset of M forms a cycle in ∂X0;
(c) Mi is isolated in X;
(d) W s(Mi) ∩ X0 = ∅, where W s(Mi) = {x ∈ X0 : ω(x) ⊂ Mi}, for each

1 ≤ i ≤ k.
Then φt is uniformly strongly persistent with respect to (X0, ∂X0), i.e., there exists
δ > 0, such that lim inft→+∞ d(φtx, ∂X0) ≥ δ for x ∈ X0.

Using Definition 4.1 and Lemma 4.1, we obtain the following result.

Theorem 4.3. System (4.1) with initial conditions (4.2) is uniformly strongly

persistent and admits an endemic equilibrium (EE) E
(4.1)
∗ := (S∗1 , I

∗
1 , S

∗
2 , I
∗
2 ) if

R(4.1)
0 > 1.

Proof. Choose X = R4
+, X0 = {(S1, I1, S2, I2) ∈ X, I1 + I2 > 0}, and ∂X0 =

X \ X0 = {(S1, I1, S2, I2) ∈ X, I1 = I2 = 0}. Let φt be the semiflow induced by
the non-negative solutions of (4.1) and M∂ ∈ ∂X0 for (4.1). Lemma 3.1 implies

φtX0 ⊂ X0 whenR(4.1)
0 > 1. Section 3 has established that φt is ultimately bounded

in X0. As a consequence, there always exists a global attractor for φt. It is obvious

that E
(4.1)
0 is the unique boundary equilibrium on ∂X0, which implies E

(4.1)
0 is the

unique ω-limit set on ∂X0. Therefore, we have M = {M1} and M1 = E
(4.1)
0 . Then

∪x∈M∂
ω(x) = M1 ∈ M, no subset of M forms a cycle in ∂X0 and M1 is isolated.

The instability of E
(4.1)
0 when R(4.1)

0 > 1 leads to the satisfaction of condition
(d) in Lemma 4.1. The existence of an endemic equilibrium in X = R4

+ follows
from [50, Theorem 1.3.7]. The proof is complete.

We now turn to the concept of uniform weak persistence.

Definition 4.2. The disease in system (4.1) is said to be uniformly weakly persistent
if there exists some δ > 0 such that

lim sup
t→∞

(
I1(t)

N1(t)
+
I2(t)

N2(t)

)
≥ ε, (4.6)

for all non-negative solutions of (4.1) with initial conditions (4.2).

Obviously, uniform strong persistence implies uniform weak persistence.

Theorem 4.4. System (4.1) with initial conditions (4.2) is uniformly weakly per-

sistent if R(4.1)
0 > 1.

5. Mobility between patches with large and small
populations

In this section, we consider the interconnection through travel of two patches with
very different population sizes, large and small. When the population size is s-
mall, it is assumed that each infectious individual may potentially meet almost all
susceptible individuals in the population, so that the incidence function for disease
transmission is of mass action type. In the case of a large population, each infectious
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individual can only contact a proportion of the susceptible individuals, leading to
the use of a proportional incidence function. Without loss of generality, we assume
that patch 1 is populous and patch 2 is underpopulated. Then system (2.2) becomes
the following system of ODE.

S′1 =b1+γ1I1−β1
S1I1
N1
−d1S1−m21

(
1− σ2I2

α2 + σ2I2

)
S1+m12

(
1− σ1I1

α1+σ1I1

)
S2,

(5.1a)

I ′1 = β1
S1I1
N1
− (γ1 + d1)I1 −m21

(
1− σ2I2

α2 + σ2I2

)
I1 +m12

(
1− σ1I1

α1 + σ1I1

)
I2,

(5.1b)

S′2 =b2+γ2I2−β2S2I2−d2S2−m12

(
1− v σ1I1

α1+σ1I1

)
S2 +m21

(
1− σ2I2

α2+σ2I2

)
S1,

(5.1c)

I ′2 = β2S2I2 − (γ2 + d2)I2 −m12

(
1− σ1I1

α1 + σ1I1

)
I2 +m21

(
1− σ2I2

α2 + σ2I2

)
I1.

(5.1d)

5.1. DFE and basic reproduction number

System (5.1) has the same disease-free equilibrium as system (4.1). However, the

basic reproduction number R(5.1)
0 for (5.1) is not identical to R(4.1)

0 for (4.1). More-
over, system (5.1) does not possess any boundary equilibria, and might have an en-

demic equilibrium E
(5.1)
∗ . The condition R(5.1)

0 > 1 is sharp for disease persistence,

and a disease outbreak with low prevalence may eventually dies out if R(5.1)
0 < 1

(see [42, Theorem 2]). Again, R(5.1)
0 can be obtained by the next generation matrix

method [42] as well, and it presents as follows after a straightforward calculation:

R(5.1)
0 =

β1v22 + β2v11S2 +
√

(β2v11S2 − β1v22)2 + 4β1β2v12v21S2

2(v11v22 − v12v21)
,

where S2 is the number of susceptibles in patch 2 at disease-free equilibrium E
(5.1)
0 ,

and vij (i, j = 1, 2) are listed in Section 4.

The parameters α1, α2, σ1 and σ2 do not appear in R(5.1)
0 . This implies that

media coverage cannot determine disease elimination and persistence although it
modifies individuals’ travel rates.

Lemma 5.1. For any non-negative solutions (S1(t), I1(t), S2(t), I2(t)) of system
(5.1), there exists some constant δ such that lim supt→∞N(t) ≤ δ and N(t) ≤
max{δ,N(0)} for all t ≥ 0, where δ ≥ (b1 + b2)/min{d1, d2}.

The proof of Lemma 5.1 is straightforward and is omitted.

5.2. Uniform persistence and existence of endemic equilibri-
um

Theorem 5.1. The disease in system (5.1) is uniformly weakly persistent if

R(5.1)
0 > 1.
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Proof. We introduce the notation S := (S1, S2)T , I := (I1, I2)T , ‖S(t)‖ := S1(t)+
S2(t) and ‖I(t)‖ := I1(t) + I2(t). The proof is completed in three steps. Suppose
the statement is false.

Step 1. There exists some c > 0 such that lim supt→∞ ‖I(t)‖ ≤ c.

Choose an arbitrarily small ε > 0. By Definition 4.2, there exists a solution of
(5.1) such that I1(0) + I2(0) > 0 and S(0) � 0, which means S(0) ∈ (0,∞)2, i.e.,

the vector S(0) has both coordinates positive, but lim supt→∞( I1(t)
N1(t) + I2(t)

N2(t) ) < ε.

Then S(t) � 0 for all t ≥ 0 and ‖I(t)‖ > 0 for all t > 0. Shifting forward in time,
we may assume

I1(t)

N1(t)
+
I2(t)

N2(t)
< ε, ∀t ≥ 0. (5.2)

By Lemma 5.1, there exists some positive constant δ such that lim supt→∞N(t) ≤ δ.
Shifting forward in time and increasing δ, we may assume N(t) ≤ δ for all t ≥ 0.
Then ‖I(t)‖ < εδ for all t ≥ 0, which implies lim supt→∞ ‖I(t)‖ ≤ εδ =: c.

Step 2. There exists some δ1 > 0 such that lim inft→∞ Si(t) ≥ δ1, i = 1, 2.

To prove the statement above, the following differential inequality derived from
(5.1a), (5.1c) and (5.2) is required.

‖S(t)‖
′
≥(b1 + b2)− (β1ε+ d1)S1 − (β2εδ + d2)S2

≥(b1 + b2)−max{β1ε+ d1, β2εδ + d2}‖S(t)‖. (5.3)

Then there exists some t1 > 0 such that ‖S(t)‖ > δ2 for all t ≥ t1, where

0 < δ2 <
b1 + b2

max{β1ε+ d1, β2εδ + d2}
.

Following the fact that there exists c1, c2 > 0 and if lim supt→∞ ‖I(t)‖ ≤ c1(c1 ≥ c),
then lim inft→∞ Si(t)/‖S(t)‖ ≥ c2, i = 1, 2 for all non-negative solutions of system
(5.1) with (S1(0) + S2(0)) > 0, the statement is then proved, where δ1 ≤ c2δ2.

Step 3. Find the contradiction.

Shifting forward in time and from discussions above, we may assume that Si(t) ≥
δ̄1(δ̄1 ≤ δ1), Ii(t) ≤ c̄(c̄ ≥ c) and Ii(t)/Ni(t) ≤ ε̄(ε̄ < ε), i = 1, 2 for all t ≥ 0, where
δ̄, c̄, ε̄ > 0. Then Si(t)/Ni(t) ≥ 1− ε̄. From (5.1b) and (5.1d), we deduce that

I
′

1 ≥ β1(1− ε̄)I1 − (γ1 + d1)I1 +m12

(
1− σ1I1

α1 + σ1I1

)
I2 −m21

(
1− σ2I2

α2 + σ2I2

)
I1,

(5.4a)

I
′

2 ≥ β2δ̄1I2 − (γ2 + d2)I2 +m21

(
1− σ2I2

α2 + σ2I2

)
I1 −m12

(
1− σ1I1

α1 + σ1I1

)
I2.

(5.4b)

By Step 2 and Lemma 5.1, and again shifting forward in time, we may assume
δ̄1 ≤ Si(t) ≤ N(t) ≤ max{δ,N(0)} for all t ≥ 0, i = 1, 2. Define

m̂21(I2) := m21

(
1− σ2I2

α2 + σ2I2

)
,
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m̂12(I1) := m12

(
1− σ1I1

α1 + σ1I1

)
.

Since the functions m̂21(I2) and m̂12(I1) are continuous, then m̂21(I2)→ m̂21(0) =
m21 and m̂12(I1) → m̂12(0) = m12 as ‖I(t)‖ → 0. Therefore, for any η ∈ (0, 1),
we may choose ε > 0 small enough such that for all t ≥ 0 (bear in mind that
‖I(t)‖ < εδ =: c for all t ≥ 0),

(1− η)m̂21(0) ≤ m̂21(I2) ≤ (1 + η)m̂21(0),

(1− η)m̂12(0) ≤ m̂12(I1) ≤ (1 + η)m̂12(0).

From (5.4) we have I′ ≥ AεI where the linear operator Aε is associated with an
irreducible quasi-positive matrix. Moreover, Aε → A as ε→ 0, and A is an operator
in the form

A

 I1

I2

 = A1

 I1

I2

−A2

 I1

I2

 ,

where the positive operator A1 is represented by a diagonal matrix with all diagonal
entries being the capita infection rate βi > 0, and the operator A2 is represented
by a matrix with −m̂ij(0) of off-diagonal entries and γi + di + m̂ij(0) of diagonal
entries for i, j = 1, 2 and i 6= j.

Let s(A) denote the spectral bound of a linear bounded operator A, i.e., the

largest real part of its eigenvalues. Since R(5.1)
0 > 1, then s(A) > 0. The eigenvalues

depend continuously on the operator or the corresponding representing matrix.
Therefore, s(Aε) > 0 for sufficient small ε > 0. By the Perron-Frobenius theory (see
[39, A] or [41, section A.8]), we may choose a vector v� 0 such that A∗εv = s(Aε)v
where ∗ denotes the dual operator. Then 〈I(t),v〉′ ≥ 〈AεI(t),v〉 = 〈I(t), A∗εv〉 =
s(Aε)〈I(t),v〉. Since v � 0, 〈I(t),v〉 > 0, first for t = 0, and then for all t ≥ 0.
Since s(Aε) > 0, then 〈I(t),v〉 → ∞ as t → ∞. Without loss of generality, we
choose v = {v1, v2}T such that v1, v2 ≤ 1, which implies N(t) ≥ 〈I(t),v〉 → ∞ as
t→∞. This contradicts the result in Lemma 5.1. The proof is then complete.

We next study the uniform strong disease persistence (Definition 4.1) and the
existence of an endemic equilibrium of system (5.1).

Lemma 5.2. In system (5.1), Si(t) > 0 (i = 1, 2) for all t > 0, and there exist

constants δ̂i > 0 such that lim inft→∞ Si(t) ≥ δ̂i for all non-negative solutions of
(5.1).

Proof. By (5.1a), (5.1c) and Lemma 5.1,

S
′

1 ≥b1 −
[
β1 + d1 +m21

(
1− σ2I2

α2 + σ2I2

)]
S1,

S
′

2 ≥b2 −
[
max{δ,N(0)}β2 + d2 +m12

(
1− σ1I1

α1 + σ1I1

)]
S2.

By the fluctuation method ( [25], [41, Proposition A.22]),

lim inf
t→∞

S1(t) ≥ b1

β1 + d1 +m21 lim supt→∞

(
1− σ2I2(t)

α2+σ2I2(t)

) ,
lim inf
t→∞

S2(t) ≥ b2

max{δ,N(0)}β2 + d2 +m12 lim supt→∞

(
1− σ1I1(t)

α1+σ1I1(t)

) .
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Lemma 5.1 indicates that lim supt→∞
σiIi(t)

αi+σiIi(t)
is a positive constant, so there exist

constants ξi > 0, independent of Ii(t), such that lim inft→∞ Si(t) ≥ bi
ξi

=: δ̂i (i =

1, 2). This completes the proof.

Theorem 5.2. System (5.1) with initial conditions (4.2) is uniformly strongly per-

sistent, and there exists an endemic equilibrium E
(5.1)
∗ := (S∗1 , I

∗
1 , S

∗
2 , I
∗
2 ) of (5.1)

in (0,∞)4 if R(5.1)
0 > 1.

Proof. Let the state space X be as in Theorem 4.3. Define ρ : X → R+ by
ρ(S1, I1, S2, , I2) =

∑ Ii
Ni

where Ni = Si+Ii, and ρ̃ : X → R+ by ρ̃(S1, I1, S2, , I2) =
Ii, i = 1, 2. By Lemma 5.1 and Lemma 5.2, the compactness condition of [41,
Theorem A.34] is satisfied. Notice that every total orbit ω : R→ X of φt, where φt
is the semiflow induced by the non-negative solutions of (5.1), is associated with a
solution of (5.1) that is defined for all t ∈ R and takes value in X. By the fact that
the matrix below is irreducible, 0 m12

(
1− σ1I1

α1 + σ1I1

)
m21

(
1− σ2I2

α2 + σ2I2

)
0

 ,

it follows that ρ̃(ω(0)) > 0 whenever ρ(ω(t)) > 0 for all t ∈ R. The claim for
lim inft→∞ Ii(t) ≥ δ̄, a given constant, i = 1, 2 now follows from [41, Theorem A.34]

which requires R(5.1)
0 > 1. For S1 and S2, the statement has been shown in Lemma

5.2. The existence of an endemic equilibrium in (0,∞)4 follows from [50, Theorem
1.3.7]. The proof is then complete.

Note that R(4.1)
0 < R(5.1)

0 . The greater the basic reproduction number is, the
harder the epidemic is to control. This implies that the form of incidence function
does play an important role in determining disease persistence and extinction.

6. Numerical results

To complement the mathematical analysis performed in previous sections, we now
carry out numerical simulations of system (4.1). Choose parameters characteristic
of influenza, as detailed in Table 1. The initial total population in each patch
is assumed to be N1(0) = 80, 000 and N2(0) = 100, 000 with initial infectives
I1(0) = 8000 and I2(0) = 6000.

Table 1. Parameter values used in simulations

b1 β1 m12 d1 γ1 σ1 α1

3 0.08 or 0.6 0.008 or 0.02 1/(75× 365) 1/10 0.2 200

b2 β2 m21 d2 γ2 σ2 α2

1.2 0.06 or 0.4 0.012 or 0.05 1/(70× 365) 1/12 0.3 250
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The effects of media coverage on the prevalence of an epidemic and on the time
the epidemic takes to go extinct are illustrated in Fig. 3. The corresponding system,
with media alert present in patch 1 and absent in patch 2, can be derived by setting
σ1 = 0 and σ2 6= 0 in system (4.1). It appears in Fig. 3(a) that the presence of
media coverage in patch 2 leads to a respective reduction and increase in the time
to extinction of disease in patch 1 and patch 2. And meanwhile, it is shown in Fig.
3(b) that it lowers the magnitude of an epidemic in patch 1 and enhances that in
patch 2.

(a) (b)

Figure 3. (a) Effect of media coverage on the time to extinction of an existing epidemic whenR(4.1)
0 < 1.

(b) Effect of media coverage on the prevalence of an existing epidemic when R(4.1)
0 > 1.

(a) (b)

Figure 4. Equilibrium values of (a) I∗1 and (b) I∗2 , as σ1 and σ2 are varied, with other parameters as

in Table 1 such that R(4.1)
0 > 1.

In Fig. 4, we show the trend of I1 and I2 at the endemic equilibrium as the
fraction of known cases σ1 and σ2, characterizing the strength of media coverage in

patch 2 and patch 1 respectively, are varied in a simulation R(4.1)
0 > 1. Recall from

the derivation of R(4.1)
0 in Section 4 that R(4.1)

0 is independent of media coverage.

For instance, increasing the intensity of media coverage cannot bring R(4.1)
0 down
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(a) (b)

Figure 5. Equilibrium values of (a) I∗1 and (b) I∗2 , as α1 and α2 are varied, with other parameters as

in Table 1 such that R(4.1)
0 > 1.

below unity. It is observed that travel-related media coverage in patch i may respec-
tively exacerbate and reduce the disease burden of patch i and patch j (i, j = 1, 2
and i 6= j). Fig. 5 illustrates the endemic equilibrium values for I1 and I2 as
the insensitivity of response to knowledge of cases covered by media, α1 and α2,
are varied. And it shows that the insensitivity of travel-related media coverage in
patch i may impose positive and negative effects on disease propagation in patch i
and patch j, respectively. The results here can be applied to models with border
screening.

Fig. 6 presents a sensitivity analysis of the value of R(4.1)
0 to the variation of

parameters. Parameters are made to vary in the following ranges: bi ∈ [0.1, 10], βi ∈
[0.0001, 1],mij ∈ [0.00001, 0.1], di ∈ [1/(100×365), 1/(60×365)], γi ∈ [1/17, 1/4], αi ∈
[0.02, 300] and σi ∈ [0.002, 1]. Sample points are chosen within this range using

Latin hypercube sampling. Fig. 6(a) shows the range of values obtained for R(4.1)
0

when 10,000 such sample points are chosen. The red bar shows the median value

of R(4.1)
0 , the box indicates the interquartile range, while the whiskers show the

extent of values not considered to be outlying. Outlying values are not shown here.
In Figs. 6(b) and 6(c), the role of individual parameters is investigated. In or-
der to do so, all parameter values are fixed to the values in Table 1, and each of
bi, βi,mij , di, γi, αi and σi (i, j = 1, 2, i 6= j) is successively made to vary 10,000

times in the ranges indicated above. Obviously, R(4.1)
0 is high, intermediate and low

sensitive to parameters βi, γi and mij , respectively.
Finally, we study in Fig. 7 the effect of population size on the prevalence of

an existing epidemic by comparing the disease dynamics numerically between (4.1)

and (5.1) when R(4.1)
0 ,R(5.1)

0 > 1, which is achieved by setting all correspond-

ing parameters, except β
(5.1)
2 = 3β

(4.1)
2 /N2(0), to be equal in (4.1) and (5.1) with

N1(0) = 80, 000, N2(0) = 5000, I1(0) = 8000, I2(0) = 1000. It shows that small pop-
ulation incurring frequent contacts of individuals may increase disease prevalence
within the patch, but have little effect on that of the destination patch.
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(a)

(b) (c)

Figure 6. (a) Sensitivity of R(4.1)
0 to variations of parameters, for 10,000 sample points in the parameter

region indicated in the text. Sensitivity of R(4.1)
0 to variations of individual parameters. In the absence

of variation of any other parameters, (b) R(4.1)
0 < 1 and (c) R(4.1)

0 > 1.

Figure 7. Effect of population size on the prevalence of an existing epidemic when R(4.1)
0 ,R(5.1)

0 > 1.
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7. Discussion

This paper introduces an SIS metapopulation model accounting for media-induced
modification (reduction) of travel rates. After brief consideration of local properties
of solutions to the general model, the model is specialised to two patches and two
scenarios are taken into consideration.

The systems under consideration, (2.2), (4.1) and (5.1), are in essence different
from previous models of media effect on disease transmission ( [9, 14–16, 21–24,
30–32, 37, 38, 40, 43–45, 47, 48] and references therein). Global stability of system
equilibria is still an open problem. Note that neither the standard comparison
principle [39, Theorem B.1] in proving the global asymptotic stability of disease-
free equilibrium when the basic reproduction number is less than unity, nor the
application of LaSalle Invariance Principle by Li and Shuai [29, Theorem 4.1] in
proving the uniqueness and global asymptotic stability of endemic equilibrium when
the basic reproduction number is greater than unity, are applicable for our model
systems. Indeed, the travel rates between patches in our models are variable.

Consider the uncoupled system without travel and denote R(4.1)/i
0 and R(5.1)/i

0 ,
the basic reproduction numbers for patch i (i = 1, 2) in (4.1) and (5.1), respectively:

R(4.1)/i
0 =

βi
γi + di

, R(5.1)/i
0 =

βiS
i−1
0

γi + di
.

Obviously, R(4.1)/1
0 = R(5.1)/1

0 , R(4.1)/2
0 < R(5.1)/2

0 . Recall that R(4.1)
0 < R(5.1)

0 and
that these quantities do not involve parameters of media coverage. This implies
that the differentiation in population size does change the dynamics and potentially
accelerate disease transmission. It is then inferred that disease can be persistent in
both patches in system (5.1) while it dies down in both patches for system (4.1).

When an epidemic occurs, especially when it is in its early stage, it appears
plausible that S ≈ N . In this case, system (4.1) becomes the following system:

S
′

1 = b1 − β1I1 − d1S1 + γ1I1 −m21

(
1− σ2I2

α2 + σ2I2

)
S1 +m12

(
1− σ1I1

α1 + σ1I1

)
S2,

(7.1a)

I
′

1 = β1I1 − γ1I1 − d1I1 −m21

(
1− σ2I2

α2 + σ2I2

)
I1 +m12

(
1− σ1I1

α1 + σ1I1

)
I2,

(7.1b)

S
′

2 = b2 − β2I2 − d2S2 + γ2I2 −m12

(
1− σ1I1

α1 + σ1I1

)
S2 +m21

(
1− σ2I2

α2 + σ2I2

)
S1,

(7.1c)

I
′

2 = β2I2 − γ2I2 − d2I2 −m12

(
1− σ1I1

α1 + σ1I1

)
I2 +m21

(
1− σ2I2

α2 + σ2I2

)
I1.

(7.1d)

In this case, analysis of (7.1) can start by considering (7.1b) and (7.1d): the (I1, I2)
subsystem is independent of S1 and S2 as given by (7.1a) and (7.1c). The latter are
subordinated to (I1, I2) and can then be determined afterwards. It is found that
(7.1b) and (7.1d) only have a disease-free equilibrium, no endemic equilibrium or
boundary equilibrium. The application of Bendixson-Dulac Theorem [33, Theorem
2, pp. 265], by defining a Dulac function D := 1/(I1I2), shows that the (I1, I2)
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subsystem has no periodic solutions, homoclinic loops or oriented phase polygons
in the first quadrant. Numerical simulations conducted (not shown) on system (7.1)
counter-intuitively illustrate that, under the condition (β1−γ1−d1)(β2−γ2−d2) < 0,
trajectories of (7.1b) and (7.1d) always go to infinity rather than the disease-free
equilibrium. Note that the nonnegativity of S1(t) and S2(t) in (7.1a) and (7.1c)
cannot be guaranteed with S1(0), S2(0) ≥ 0, which may result in the unboundedness
of I1(t) and I2(t). System (7.1) does not make any sense from biological perspective,
which means assuming S ≈ N is not always feasible in model formulation.

The models presented and studied here are toy models. The first limitation
is that they are based on a simple SIS model, whereas a lot of diseases follow an
SLIRS-type progression, where L and R stand for latently infected and recovered
individuals, respectively. The second limitation is that intervention strategies such
as vaccination and treatment are not included in the model. Moreover, the waning
effect of media alert at individual level is not taken into account. Indeed, one may
become less and less concerned about the epidemic after initially experiencing high
anxiety of getting infected with the disease [26]. Work is in progress to formulate a
model addressing such limitations.
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