Journal of Applied Analysis and Computation Website:http://jaac-online.com/
Volume 10, Number 2, April 2020, 816-829 DOI:10.11948,/20200003

FURTHER STUDIES ON LIMIT CYCLE
BIFURCATIONS FOR PIECEWISE SMOOTH
NEAR-HAMILTONIAN SYSTEMS WITH
MULTIPLE PARAMETERS*

Maoan Han'?' and Shanshan Liu?

Abstract This paper investigates the limit cycle bifurcations for piecewise
smooth near-Hamiltonian systems with multiple parameters. The formulas for
the second and third term in expansions of the first order Melnikov function
are derived respectively. The main results improve some known conclusions.
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1. Introduction and Main Results

Piecewise smooth systems are frequently encountered in practical applications, such
as control systems and engineering [1,12,21]. In recent years, there are lots of works
on studying the number of limit cycles and their relative positions of nonsmooth dy-
namical systems on the plane and have obtained many meaningful results [4,5,10].
It is well known that the Melnikov method is a useful tool to determine the number
of limit cycles bifurcating from a family of periodic orbits of the unperturbed sys-
tems. The authors in [16] established a formula for the first order Melnikov function
for planar piecewise smooth systems, which plays an important role in estimating
the number of limit cycles, see for instance [13,24]. For high-dimensional piecewise
smooth near-integrable systems, the authors of [20] established the Melnikov func-
tion theory and gave an expression for the first order Melnikov vector function. We
note that the averaging method developed in [7,14,15,18] is another common tech-
nique. For some applications of this method see [2,17,19] for example. It was proved
in [8] that the averaging method is equivalent to the Melnikov function method for
studying the number of limit cycles of planar analytic (or C°°) near-Hamiltonian
systems.

In this paper, we consider a piecewise smooth near-Hamiltonian system with
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multiple parameters of the following form:

Hf (z,y,\) +ept(z,y, )
& —Hi(z,y,\) +eqt(z,y,\)
¥ H (z,y,\) +ep™(z,y,A)
_Hz_ (.’L‘, Y, )‘) + Eq_ (‘T7 Y, )‘)

where H*, p* and ¢ are C* functions, A and ¢ are both sufficiently small real
parameters with 0 < ¢ < A < 1. Suppose system (1.1) satisfies the following
assumptions as in [9, 16, 20]:

(I) There exist an interval J = (a, ) and two points Ax(h) = (0,a(h,A)) and
By (h) = (0,b(h, A)) such that for h € J,

H(Ax(h),A) = H (BA(h),\), a(h,\) > b(h, \).

(IT) The equation H*(z,y,\) = h, x > 0, defines an orbital arc L; starting from
Ax(h) and ending at By(h); the equation H (xz,y,A) = H~ (Ax(h),A), z < 0,
defines an orbital arc L, starting from Bjy(h) and ending at Ax(h), such that
system (1.1)|.—o has a family clockwise oriented periodic orbits L, = L UL, .
(III) The curves L}T,h € J are not tangent to the switch plane x = 0 at points
Ax(h) and By(h). In other words, Hj(A)\,)\) # 0 and H;[(BM)\) # 0 for each
helJ.

Under the conditions (I)-(III), we have the first order Melnikov function of
system (1.1) from [9, 16]

HF(Ax, ) /

= q dr —p dy. 1.2
Hy (Ax,A) JBr AR 2

M(h,\) = / qtde — pTdy +
A\Bx

Sometimes the system we consider has the following form

Ry el @y N 0
&\ _J\ol @y ) +eg @y, n) )70 T
; - A - A
y fli(xvya )+5f3($7y, ) , J)<O,
g1 (x,y,A) +egy (2,9, \)

where the functions f, f, g& and g5 are C™ functions such that the above un-
perturbed system has integrating factors p1 and psp and first integrals H+ and H~
respectively for x > 0 and = < 0, satisfying

,ul.f1+ = qua ngi‘r = 7H$7
pafy = Hy,, p2g; =—H, .

Then the above differential equation is equivalent to a near-Hamiltonian system of
the form (1.1), and the corresponding Melnikov function has the form

HF(Ax,N) _ _
Y /\,UQ(QQ dr — fo dy).

M(h, A =/ pigy do — fif dy) + —2———=
( ) A, B, 1( ? 2 ) Hy (AM/\) ByAx
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In system (1.1), the functions H*, p* and ¢* depend on another small parameter
A leading to the dependence of the function M on A. Then for A > 0 small

M(h,A\) = Mo(h) + AMy(h) + N2 Ma(h) + O(N?). (1.3)

The function M (h,\) can be used to study not only Poincaré bifurcation (bifurca-
tion of limit cycles from a period annulus) but also Hopf bifurcation and homoclinic
and heteroclinic bifurcations. The formulas of Mj(h) and Ms(h) were obtained
n [11] for smooth case. If H~(Ax(h),A) = h, the author [22] gave the formulas of
M;(h) and Ms(h), which has some applications, see for example [3,23].

Our main task in this paper is to remove the condition H~(Ax(h),\) = h and
give expressions of M7 (h) and Ms(h) under the conditions (I)—(III). For the purpose,
assume the functions H*, p* and ¢& have the following form for A > 0 small

(

(z,9,\) p?( )+/\p1( ,y)+/\ P (x,y)+0(/\3), (1.4)
(@, y,N) =q5 (2, 9) + Mgy (2, ) + Ng5 (2, ) + O(A?).

)

H, (4)
HOy (A)

Mo(h)Z/TBqum— o dy + /B,andﬂf—pady, (1.5)

where A = A)\|)\:0 = (O,a(h,())), B = B)\|)\:0 = (O,b(h,O))

For convenience, we introduce some notations below. Denote

r(0,b(h, /\))gi

HJ(A)M)‘)
Hy (Ax,A)
(1) = (Hyl, (A) o (h,0) + Hi, (A) ) Hoy(A) — (Hoy () 9o (h,0) (1
+ H, (4)) By, (A),

UE ) =Hiy () (20) (10) + 2812, (4) 2 1.0) + 3, () 50, 0)

+ 2H3 (A).

Y (r) =r(0,a(h, /\))g

g(h, A) =(H™(Ax,A)x,  G(h,A) =

The main results are as follows.

Theorem 1.1. Under the conditions (I)-(1II), we have

My (h) =— . H{ (pd, + ad,)dt + Y (pg)Ia=o + /AAB qi dv — pfdy

+ G(h’ 0) [_ /B/Z(Hl_ - g(h7 0))(1959: + q()_y)dt - T(p5)|,\:o

+/A ¢, dz — py dy| + Gx(h,0) /A qo dx — py dy, (1.7)
BA BA
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where
g(h,0) = (A) (h 0) + Hy (A),
(A> )
G(h,0) = . X Gx(h,0) = (Ho_y(A))z.

Theorem 1.2. Under the conditions (I)-(III), suppose further that there ezist a
region U and C* functions ﬁ(jf(sc, y) and (joi(x,y) defined on U such that

—Hf (py, +quy) Hy,py + Hquo , (zy) €U

We have
M) == [ gtait+ [ afde—pfdy+ A0
+ G(h,0) [ /ﬂ%‘(x,y)dw /E\Aqul' —pydy — A (h)
V(x,y,h) 1 -, -
+ /EZ g(h,O) (d)(lﬁ, y) + W)dt + = 2 /Agk(ha O)(p()x + QOy)dt
+ G (h,0) [— /A(Hf — 9(h,0))(po, + o)t — (g )r=0
BA

_ _ 1 _ _
+ /A q, dr —pydy| + §Gxx(h70) /A qo dx — pg dy, (1.8)
BA BA

where

[(Hpy)e + (Hi @5 )y] + Hy (0, + 65,) + Hi (01, + i),

Y (p5)alr=o0 + Y(p1)|r=o0,

11
¢(2,y) =p1o + a1y + 5P00 + 504

U(z,y,h) =Hg, (Pogy + Goyy)(—Hi + 9(h,0)) = (pos + doy) (Hoy, (—H1
+9(h,0)) + Hg, Hy,),

ot (z,y) =

=N =

A (R) =5 T a0 + 5

a2 2
gr(h,0) :Hg;y(A)(%) (h,0) + 2H;, (A) gA (h,0) + H (A) gv (h,0)
+ 2H3(A),
Gan(h.0) (Hl(A)) [0 (1) Fig (4) — 7 () gy (4) Hy (4) — 2( i (4)

+ Hoy (A )g)\(h 0))o(n)|.

In the next two sections, we provide proofs of the above theorems and present
an example showing an application of our main results, respectively.
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2. Proof of main results

Enlightened by the idea in [22], we first present a preliminary lemma, which will be
used in deducing the expressions of M (h) and My (h).

Lemma 2.1. Suppose that

NE+(h,\) = /A Gtde — prdy, NI(h\) = /A §~de — pdy,
A)\B,\ B)\A/\

where pT and ¢& are O functions in (x,y) and independent of X\. Then

NI () = — /A HE (55 +60)de + T (),
ArBx (2.1)

NI (B A) = — /B (5 (b M)+ )t = TG,

Proof. The first formula in (2.1) was obtained in [22], thus we omit its proof here
and only prove the second one in (2.1). By using Green formula twice, we have

—

NI (h, \) =/ i de—pdy

B)Ax
:/L;ﬁum (j_dx—ﬁ_dy—/AA_B; ¢ de—pdy
- //mt.(mum)(pm " Q;)dxdy " \/AAE) 70wy
— /B/A\ G (z,y)dx + /A_]? p~(0,y)dy, (2.2)

where
y A ~ ~
q (z,y) = / Py (z,y)dy + ¢ (z,y) — ¢ (x,0),
0

with ¢, =p; +q, -

Denote the most left point of the orbit BrA, by Cx(h) = (é(h, \),é(h, \)). For
the sake of simplicity, assume that m\ can be represented as y = y; (z, h, A) and
y = yy (z,h,A) for é(h, ) <z <0 with y; (x,h,\) < ys (2, h,A). Then from (2.2)
we have

b(h,\)

. c(h,\)
NI (h,\) = / (G (e yy (2, B ) — (2,5 (2 1 N)))de + / L Oy
0 a(h,

A direct computation shows that

. c(h,\) b )
N5 (hy N) :/ (d, @1 (0 )2 = Gy (0,3 (., 0) 22 ) da
0

o\ o\
(@, ), (2 N) B, ) — (e, ), (2, ). X)) o
(0,60 )2 — 5 (0, a(h, 1) 22 (2.3)

o\ o\
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Obviously,
(G (@,y1 (x,h,A) = 4 (2,95 (2,1, N))) |la=e(n,n) = 0. (2.4)

Further noting that H~ (z,y,A\) = H~(Ax(h),\) along B/AA\A, we can obtain by
(1.6)
ay __H;(I,y, A)_(Hi(A)\v)\))k H}T(xaya A)_g(ha)‘)

ZJ = — 2.
oA Hy (z,y,\) Hy (z,y,\) (25)

for y =y; ory; .
Thus, substituting (2.4) and (2.5) into (2.3) yields that

A c(h,\) L (z,yr (z —

My (h,\) = /O —(cjy‘ (@,y; (2, h, A))HA ( }}jl(; ;lh’(i)}j)x) i)(h .

Hy (z,y5 (%,h,0),A) — g(hvk))d
Hy (z,y;5 (z,h,A),A)

. —i (z H;(x,y,/\) _g(hv/\) T — ~—

/fo iy (a,) LR e - T(),

On the other hand, noting that

—qu_(x,yg(ac,h,)\)) _T(ﬁ_)

dz = H dt (2.6)

along the orbit B/AA\A and that ¢, = p, + ¢, , we have

NI (hy ) = /B iy @) (Hy — g Nt =T ()
_— /A (Hy — g(h \)(ps + 4 )dt — 1),
ByAx

This completes the proof. O

Proof of Theorem 1.1. According to (1.2), (1.4) and (1.6), we have
M(h, \) ://\ (95 + Mgt + Xqf +O(N))dx — (pf + M + X?pg + O(X?))dy
A\ By

+ G(h,\) /A (00 + Mgy +Xq5 +O(N))dx — (py + Apy + A°py
ByAx

+O0(N’))dy
which implies that
My(h,A) =If, + I + M + 20 + O(\?) + G(h,\) (I, + 17 + Mp,
+2X\ I, +O(M\) + Ga(h, N)(I; + M +O(\?)) (2.7)
and
Myx(h, A) =I5\, + 25 + 215 + O(N) + G(h, N (Igyy + 217, + 215 +O0(N))
+ Ga(h, \) (215, + 217 +ON) + Gan(h, N) (I +0(N)), (2.8)
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where
I (h,A) =/ g dx —pfdy, I (h,)) =/ q; dx —p; dy (2.9)
A5 Ba BaAx
for i = 0,1, 2.
It follows from (1.3) and (2.7) that
My (h) = My(h,0) =1 (h,0) + I} (h,0) + G(h,0)(I5,(h,0) + I; (h,0))
+ G (h,0)I (h,0). (2.10)

Further, using Lemma 2.1 we have for i = 0,1, 2

I (h,A) = — //\ HY (pf, + qf)dt + T (o)),
ArBa (2.11)

502 = — /BAA (Hy — g(h, ) (w5 + a5,)dt — Y (p7).

Thus substituting (2.9) and (2.11) into (2.10) and then taking A = 0 give the
conclusion of Theorem 1.1. O

In order to deduce the formula for Ms(h), we first prove the following helpful
lemmas.

Lemma 2.2. Assume
r == [ i o = - [ 6 + g
A)\BA BAA)\

where p* and p* are given in Lemma 2.1. Further suppose that there exist a region
U and C* functions p*(x,y) and G+ (z,y) defined on U such that

—HF (5F +4F) = Hpt + Hy g™y (z,y) €U (2.12)
Then
Iy (h,0) = - /A[(Hfﬁ)x (HFG) -2 [ HF(BF + )+ TG ) reon
AB AB
I5 (h,0) = - /BAKH;ﬁ-)z (Hp )+ /§Z o(h.0) G5+ )dt (2.13)

=2 | Hy (py +4d,)dt =Y )|r=o-
BA

Proof. The first formula in (2.13) can be found in [22], thus we just prove the
second one. From (1.4) and (2.12), I~ (h, A) can be written in an equivalent way as

I~ (hA) = — /BAA Hy (b7 + dy )t
AN

=— //\ Hy (py +d,)dt —2X [ Hy (p; + G, )dt + O(N?)
BXA)\ B)\A)\

= [ (Har s Hoya ) -2n [ Hy G+ gy i+ O0%)
BAA)\ ByAx

://\ (Hyp~ + H, ¢ )dt — )\//\ (Hy,p~ + Hy,q )dt
B)\AA BXA)\

-2\ [ Hy (p; +q,)dt+ O(\?).
BAA)\
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Thus, we obtain

- /A(Hl;ﬁ_ + Hy, g™ )dt
\—o V/BA

15 (h,0) = [ /B/A\ (H-p + Hy_cj_)dt]
AN >\

—2 [ Hy (p; +4; ). (2.14)
BA

By (2.12) and using Lemma 2.1 we have

| [ _qda-pay
B)Ax A

_ /A (Hy — g(h, ) (B + @ )dt — T(5).
B)Ax
(2.15)

/A (Ho =+ Hyg)di
By Ax A

Taking A = 0in (2.15) and substituting the result into (2.14) give the second formula
of (2.13). This ends the proof. O

Lemma 2.3. Let

J(h, ) = /A a(h \) (05, + 3, ),
BxAx

where g is given in (1.6). Then

<

I, 0) = / 930 0)(po, + ag, )t + /EZ (I(%())i

+9(h,0)) = (Po, + doy) (Hoy, (—Hy +g(h,0)) + Hg, Hy,)]dt.  (2.16)

[Hoy (Powy + Q0yy) (—Hy

Proof. By the definition of the orbit B/AA\>\7 we can rewrite J(h, \) as

o
TN = [ gln P
BrAx H

Y

c(h,\)
:/ g(h, \)(J1(z, hy A) — Jo(z, b, X)) dez,
0

where

Pox (T, y; (2,0, N)) + g0, (2,9, (7,7, N))

Ji(z, h, ) = — —
(@ ) Hy (x,y; (z,h,A),\)

L i=1,2.

From (2.5) we can obtain

1
(Hy (z,y; (x,h,A), A)
0y; . _

X A\ Hy (m,y;(w,h,)\),)\) - (p&p(%yf(xa hv)‘)) +Q@($7yf($ahv>\)))
Jy;

X (Hy_ (z,y; (z,h, A)J\)a + Hy, (2, y; (2, h’)‘)’/\)ﬂ

Ji)\(.’L‘, h, )\) =

[0 (5 (1 ) + i3y (57 (2,1, )
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T | P 0 )+ i . )
x (= Hy (w,y; (x,h,X), A) + g(h, \)) H, (z,y; (z,h, X), \)
— (Pow (@, 45 (2, 0 N) + gy (55 (2,0, M) (Hoyy (2,957 (2,1, A), )
x (—Hy (2, y; (2,7, M), A) + g(h, N) + Hyy (z,y; (2,7, A),A)

X Hy (2,7 (2,02, 1) (2.17)

Since
(1 (2, 2y A) = 3 (2,75 A)) o=z (n,2) = 0,
we have
(Ji(z, hy A) = Jo(, hy ) |z=a(h,n) = 0. (2.18)
Hence, by (2.18) together with some calculations, we obtain from (2.17)

Ta(h,A) = /OE(W L](h, A) (po_z(:z, yi @k, N)) + g, (2,91 (2,1, V)

Hy (z,yy (,h,A), A)

_ Poa(® 5 (3,0, X)) + oy (@95 (2. 1 N) ) |
Hy (2,5 (€, h,A), A) N

- - g(h7>\) — _
— gr(h, M) (po, + ¢ dt+/ i Pow, + Qo)
N e U B = e

(= Hy +9(h, ) H, = (P, + d0y) (Hyy (—Hy + g(hy X))

+ H,\ H,)]d. (2.19)
Taking A = 0 in (2.19) and combining (1.4) and (2.6) give (2.16). O
Proof of Theorem 1.2. By (1.3) and (2.8) we obtain

Ma(h) = 5 Max(h,0) =5 I, (1, 0) + Iy (1, 0) + I3 (1,0) + G, 0) (53 (1, 0)

+ Il}(h 0) + I3 (1,0)) + Ga(R, 0) (I (h, 0) + I (h,0))
+ G)\/\(h 0)I, (h,0). (2.20)

Using Lemma 2.2 and (2.11), one can see

I (h,0) = — /AB[(H1 Po )e + (Hi Gg)y)dt — 2 . Hi (pg, + ‘](Ty)dt + T(P5 ) Ia=0
+ (T(pg))alr=o;

I (h,0) = — /B (75 + (T )+ /E\A 9(h,0) (P, + @5, )t

2 /EZ Hy (5 + 0,1t — Y07 o — (X35 )alaco + Ja (1 0),
(2.21)

where J(h, \) is defined in Lemma 2.3.
Substituting (2.9), (2.11) and (2.21) into (2.20) and combining (2.16) we can de-
rive the expression (1.8) of My (h). This completes the proof. O
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3. Application

Consider the following piecewise smooth system

Y+ A1 —2)* +e(pg (z,y) + Ap{ (2,9)) o0
#) _J\ e+ 2w —2) +elgg (@.y) + Mg (2,9)) ) ’ (3.1)
y YA+ 2y) + 227 +e(py (z,y) + Aoy (@y) )

—r+ g(qa ({E, y) + )\Qf (SL’, y))

where 0 < e K A K 1, p%, pf, qOi and qli are polynomials of degree 2 with the form

2
Py (z,y) = Y afa'y’, pilz,y) Z bEa'y,

i+75=0 H‘J 0
E cwx 7, q1 x,y) E d”x Y.
i+75=0 i+5=0

Let A = 0. Then system (3.1) becomes

y +epg (z,y)

. z >0,
7 Yy +epg (7,9) 2 <0
— +eqq (2,y) -

which has been investigated in Liu and Han [16]. By Proposition 3.1 in [16], system
(3.2) has at most 2 limit cycles bifurcating from the unperturbed period annulus
by using the first order Melnikov function.

Notice that for ¢ = 0 system (3.1) has Hamiltonian functions H* and H~
respectively, where

1
HJF('Tvya A) :§($2 =+ y2) + >‘(1 - x)an T > Oa
(3.3)
1
H™(2,9,0) =5 (2" +y%) + My + %) +2X°y @ <0.

By (3.3) we have
Ax(h) = (0, =X+ VA2 +2h), Ba(h) = (0,—A — /A2 + 2h). (3.4)
In this case, one has
H™(Ax(h),\) = H (Bx(h),\) =h+2hA#h

as A # 0. Hence, the formula of M;(h) and Msy(h) given in the paper [22] cannot
be used to study system (3.1).

Taking # = v/2hsinf,y = V2hcosf, we obtain the expression of My (h) for
system (3.1) from (1.5)

/ V2 V2R sin 6, V/2h cos ) cos 6 + pd (V2R sin 8, V/2h cos 6) sin 6)df

\ﬁ(qo (V2R sin 0, v/2h cos 6) cos 0+ py (V2R sin 0, v/2h cos 6) sin 6)d6
zf(A + BVh+ Ch),
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where
A :2\/5(&3_0 - 0’60)7
B =n(afy + ayy + cg1 + 1),
4 _ _ _
C :g\/i(_a02 - 2a20 - Cll + agz + 2@;0 + Cfl).
Apparently, the function My(h) has at most 2 isolated positive zeros for h > 0, as

it was in [16].

Let My = 0 or equivalently

+ -
@pp =Aoo:
T
a1p = — @10 ~ 01 ~ Co1> (3.5)

+ - - + o+ -
Aoy =0gg + 2a9) — 2a9) — €17 + C41-

Proposition 3.1. Assume that (3.5) holds. Under proper perturbations, system
(3.1) can have 3 small limit cycles around the origin for 0 < e < A < 1.

Proof. From (1.6) and (3.3)—(3.4), we obtain

0, b(n A D

da

Y(pg) =p; (0, a(h, A)

oA oA
_2(4agy X3 — 2ad; A% + 6agyhA + ado A — 2ag,h)
VA2 4+ 2h ’
da ob
Y(py) =p- — — Dy h — 3.6
(pO ) pO (Oa a(h7 A))((?)\ p() (07 b( v)‘))a)\ ( )
_ 2(4agy\® — 2ag; A% 4 6agyh A + agyA — 2ag; h)
VA2 4+ 2h ’
1

By simple computations, it follows that

/A qf dx — pidy :/ V2h (g (V2hsin @, v/2h cos 0) cos 0
0

AB
+ pf (V2hsin 0, V2h cos §) sin 6)d6

4 3
:g‘/i(b& +2b3y + df))hE + w(bfy + diy)h + 2V 2hb,,

| H{ (pg, + q5,)dt :/0 V2h(1 — V2hsin 0)2(p, (V2h sin 0, v2h cos 0)

AB
+ qot,(\/ﬁsin 0, V/2h cos )) cos d6

1 8 :
=(5afim + chm)h® — SV2(2epai ) + () + 265;)h.
(3.7)
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Similarly, one has

2m
/A ¢y dr —pydy = V2h(q7 (V2R sin 0, V/2h cos 6) cos 6

BA T
+ pf(\/ﬁ sin 6, V2h cos 0) sin 0)do
4 3
=3 V2(=bg = by — di))h? + m(big + doy)h = 2V 2hby,
[T = a0, + i, i (3.5)
= " V2hcosO(1 + vV2hcosf — L)
7 v 2h cos 6

(po(V2hsin g, v2h cos 6) + qay(\/ﬁsin 0,V2h cos6))db

8
=3 V2(2a5 + €)h + m(—aip + apy — 5 + ).

Then, substituting (3.5)—(3.8) into (1.7) together with some calculations we obtain
for system (3.1)

My(h) =— - Hi (pd, + ady)dt + Y (pg)[a=o + /AAB i dz — pidy

+G(n,0) [— /BAA(Hl_ = 9(h, 0))(pos + doy)dt = T(pg)|r=0

+ G (h,0) /A qo dx — py dy

+ /A q, dx — py dy
BA

BA

=h3 (Vo + Vih3 + Vah + Vsh?),
where

Vo =2v/2(2ag — agy + agy + by — byp),

Vi =n(—aj, — a;rl —app + bi_o + by —co1 — 203_2 —2¢pp + d3_1 +dpy),
4 _ _ _ _
*\/i(QaTl + 4032 —bgy + b(—)g + ngo + 204, + d;rl —dy; — 2byy),

Y2=3
T
2

Vs (_2032 - aﬁ).

It is obvious that M;(h) has at most 3 isolated positive zeros. Next, we prove
that system (3.1) can have 3 limit cycles near the origin.
Let

§= (a(TO?aTl’dTl)? do = (0,0,0),
and fix
2 # 0, ady = ag; + by — bgo,

apg = —aq; + bfo +bio — o1 — 2032 —2¢pp + déﬁ +dgs

dyy = 4cgy — by + by + 2b3) + 2ag, — 2b5.
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Through direct computations we obtain

Vi(do) = 0,i=0,1,2, V5(0p) = —medy # 0,

442 0 0

a(VO7‘/1a‘/2) (50) — O o O

det ———— =2
d(ago, afl, d1+1)

32
=— —.

3

Similar to the proof of Corollary 2.4.1 in [6], one gets that Vg, V4, V2 and V3 can

be taken as free parameters. Hence we can vary 0 near dy such that

which ensures that M;(h) has 3 isolated positive zeros for h > 0. This completes
the proof. O
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