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1. Introduction

Spectral theory of ordinary differential operators with an eigenparameter contained
in the boundary conditions has been discussed for a long time. The feature of
such problems is that the eigenparameter appears both in the differential equa-
tion and boundary conditions. Due to its wide applications in mechanics and
mathematical physics, such as electric circuits, mechanical vibrations, acoustic
scattering theory etc, [8, 10, 11, 17], more and more researchers have been paid
attention to such problems. Moreover, many excellent results of such problem-
s for second-order or fourth-order differential operators have been obtained, such
as self-adjointness, asymptotical formula of the eigenvalues and eigenfunctions, os-
cillation of the eigenfunction, inverse spectral problems and so on, see, for exam-
ple [1, 2, 4–6, 12, 18–21, 25, 27, 33, 35, 36]. However, little is known for the case of
third-order differential operators.

The characterization of self-adjoint boundary conditions is an important part in
the differential operators theory. Such problems have been well established for reg-
ular or singular differential operators, see [3,24,31,32] and references cited therein.
Wang etc characterized the self-adjoint domain of even order differential operators
by using real parameter solutions [31] and gave the classification of boundary condi-
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tions, that is, separated, coupled and mixed [30]. Similar results have been obtained
by Hao etc for the case of odd differential operators [15].

Third-order differential equations appear in many physical phenomenons, for
example, the deflection of a curved beam varying cross section, three-layer beam
and so on [13]. Hao etc in [23] proved that there is no strict separated boundary
conditions for self-adjoint third-order differential operators, that is to say, there only
mixed and coupled boundary conditions exist for third-order self-adjoint differential
operators. Uğurlu investigated a class of third-order differential operators with
mixed boundary conditions, and gave the dependence of eigenvalues on the data,
and then generalized these results to differential operators with interface conditions
[28,29]. There are also many literatures focusing on other issues for the third-order
equation, see, for instance, [16,22,26,34].

In the present paper, we study third-order symmetric differential equation

`y :=
1

w
{−i[q0(q0y

′)′]′ − (p0y
′)′ + i[q1y

′ + (q1y)′] + p1y} = λy, on [a, b], (1.1)

with boundary conditions

L1y := (α1λ+ α̃1)y(a)− (α2λ+ α̃2)y[2](a) = 0, (1.2)

L2y := (β1λ+ β̃1)y(b) + (β2λ+ β̃2)y[2](b) = 0 (1.3)

and
L3y := (sinβ + i)y[1](a) + (i sinβ + 1)y[1](b) = 0, (1.4)

where λ is the spectral parameter, q0, q1, p0, p1, w satisfy the following conditions

q−10 , q−20 , p0, q1, p1, w ∈ L1([a, b],R), q0 > 0, w > 0. (1.5)

αk, α̃k, βk, β̃k(k = 1, 2) are arbitrary real numbers and satisfying

ρ1 = α̃1α2 − α1α̃2 > 0, ρ2 = β̃1β2 − β1β̃2 > 0. (1.6)

Here we consider a third-order differential equation with mixed boundary con-
ditions (1.1)-(1.4), where two boundary conditions are of separated, affinely depen-
dent on the eigenparameter and the rest one is of coupled. By using the classical
analysis techniques and spectral theory of linear operator, we define a new linear
operator T associated with the problem (1.1)-(1.4) in an appropriate Hilbert space
H such that the eigenvalues of the problem (1.1)-(1.4) coincide with those of T.
The paper is organized as follows: In Section 2, we investigate some basic notations
and preliminaries. In Section 3, we introduce a new Hilbert space and construct an
operator T associated with the problem (1.1)-(1.4), and discuss the self-adjointness,
the properties of eigenvalues of this operator. The Green function and the resolvent
operator are discussed in Section 4.

2. Notations and preliminaries

Let the quasi-derivatives of y be defined as [14]

y[0] = y, y[1] = −1 + i√
2
q0y
′, y[2] = iq0(q0y

′)′ + p0y
′ − iq1y
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and Hw = L2
w[a, b] be the weighted Hilbert space consisting of functions y which

satisfy
∫ b
a
|y|2wdx <∞ under the inner product 〈y, z〉w =

∫ b
a
yzwdx.

Denote by Lmax the maximal operator with the domain

Dmax = {y ∈ L2
w[a, b] | y[0], y[1], y[2] ∈ AC[a, b], `y ∈ L2

w[a, b]},

and the rule
Lmaxy = `y, y ∈ Dmax.

Then for arbitrary y, z ∈ Dmax, integration by parts yields Lagrange identity

〈Lmaxy, z〉w − 〈y, Lmaxz〉w = [y, z]|ba,

where

[y, z]|ba = [y, z](b)− [y, z](a),

[y, z](x) = y(x)z[2](x)− y[2](x)z(x) + iy[1](x)z[1](x).

By the definition of quasi-derivatives, we can transfer the equation (1.1) to the
following first-order system

Y′ + QY = λWY, (2.1)

where

Y =


y[0]

y[1]

y[2]

 , W =


0 0 0

0 0 0

−w 0 0

 , Q =


0

√
2

(1+i)q0
0

(1+i)q1√
2q0

−ip0
q20

√
2

(1+i)q0

−p1 (1+i)q1√
2q0

0

 .

Then by (1.5),(2.1), we have the following result.

Theorem 2.1 ( [28]). There exists an unique solution for the equation (1.1) with
initial conditions y[j](c, λ) = cj(λ), where c ∈ [a, b], cj(λ) are entire functions of λ.
Moreover, y[j](., λ) are entire functions of λ, j = 0, 1, 2.

3. Operator theoretic formulation and
self-adjointness

Motivated by Friedman [9], Mukhtarov [20,25] and Fulton [11], we can construct a
new Hilbert space H = L2

w[a, b]
⊕

C2 under a suitable inner product by combining
the parameters in the boundary conditions. With this goal, the inner product is
defined by

〈Y,Z〉 =

∫ b

a

yzwdx+
1

ρ1
y1z1 +

1

ρ2
y2z2, (3.1)

where Y = (y(x), y1, y2)T , Z = (z(x), z1, z2)T ∈ H.
We shall use the following notations:

M1(y) = α1y(a)− α2y
[2](a), M2(y) = β1y(b) + β2y

[2](b),

N1(y) = α̃2y
[2](a)− α̃1y(a), N2(y) = −[β̃1y(b) + β̃2y

[2](b)].
(3.2)
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Define the operator T in the Hilbert space H with domain

D(T) = {Y = (y(x), y1, y2)T ∈ H |
L3y = 0, y1 = M1(y), y2 = M2(y), y ∈ Dmax},

(3.3)

and

Y = (y(x),M1(y),M2(y))T ∈ D(T), TY = (`y,N1(y), N2(y))T . (3.4)

Then we get that the eigenvalue problem of BVP (1.1)-(1.4) is transferred to the
spectra problem of the operator T.

Considering the operator T we have the following properties.

Lemma 3.1. BVP problem (1.1)-(1.4) has the same eigenvalues with the operator
T, and the eigenfunctions of BVP problem (1.1)-(1.4) are the first component of the
corresponding eigenvectors of the operator T.

Proof. For arbitrary Y = (y(x), y1, y2)T ∈ D(T), by (3.3) and (3.4), we have

TY = (`y,N1(y), N2(y))T = λ(y(x),M1(y),M2(y))T .

Comparing this with BVP problem (1.1)-(1.4) yields the conclusions.

Lemma 3.2. D(T) is dense in H.

Proof. Let F = (f(x), f1, f2) ∈ H, F⊥D(T). Since C∞0 ⊕ 0 ⊕ 0 ⊂ D(T) ( 0 ∈ C
), for arbitrary V = {v(x), 0, 0} ∈ C∞0 ⊕ 0⊕ 0, we have

〈F, V 〉 =

∫ b

a

fvwdx = 0.

Because C∞0 is dense in L2
w[a, b], therefore f(x) = 0, that is, F = (0, f1, f2). For

any Y = (y(x), y1, 0) ∈ D(T), we have

〈F, Y 〉 =
1

ρ1
f1y1 = 0

by the inner product in H. Through the arbitrariness of y1, then f1 = 0. Moreover,
for all Z = (z(t), z1, z2) ∈ D(T), we have

〈F,Z〉 =
1

ρ2
f2z2 = 0.

By the arbitrariness of z2, we have f2 = 0. Hence F = (0, 0, 0), and the proof is
completed.

Lemma 3.3. The operator T is symmetric.

Proof. For any U, V ∈ D(T), integration by parts yields

〈TU, V 〉 − 〈U,TV 〉 =[u, v](b)− [u, v](a) +
1

ρ1
N1(u)M1(v)

− 1

ρ1
M1(u)N1(v) +

1

ρ2
N2(u)M2(v)− 1

ρ2
M2(u)N2(v).

(3.5)
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By the boundary conditions (1.2)-(1.4) we have

u[2](a)v(a)− u(a)v[2](a) =
1

ρ1
M1(u)N1(v)− 1

ρ1
N1(u)M1(v), (3.6)

u[2](b)v(b)− u(b)v[2](b) =
1

ρ2
N2(u)M2(v)− 1

ρ2
M2(u)N2(v), (3.7)

u[1](b)v[1](b)− u[1](a)v[1](a) = 0. (3.8)

Inserting (3.6)-(3.8) into (3.5), we have

〈TU, V 〉 − 〈U,TV 〉 = 0.

Therefore, the operator T is symmetric.

Theorem 3.1. T is a selfadjoint operator in H.

Proof. Since T is symmetric, it suffices to prove that for any Y = (y(x), y1, y2) ∈
D(T) and some Z ∈ D(T∗), U ∈ H satisfying 〈TY, Z〉 = 〈Y, U〉, then Z ∈ D(T)
and TZ = U , where Z = (z(x), z1, z2), U = (u(x), u1, u2), i.e.,
(i) z[j](x) ∈ AC[a, b], j = 0, 1, 2, `z ∈ Hw;
(ii) z1 = α1z(a)− α2z

[2](a), z2 = β1z(b) + β2z
[2](b);

(iii) L3z = 0;
(iv) u(x) = `z;

(v) u1 = α̃2z
[2](a)− α̃1z(a), u2 = −[β̃1z(b) + β̃2z

[2](b)].
Assume that for any V = {v(x), 0, 0} ∈ C∞0 ⊕ 0⊕ 0 ∈ D(T) satisfying∫ b

a

(`v)zwdx =

∫ b

a

vuwdx,

that is, 〈`v, z〉w = 〈v, u〉w. By the classical differential operator theory [7], we have
(i) and (iv) hold. By (3.1), (3.4) and (iv) we get that for all Y = (y(x), y1, y2) ∈
D(T), 〈TY, Z〉 = 〈Y,U〉 turns to

〈`y, z〉w − 〈y, `z〉w =
1

ρ1
[M1(y)u1 −N1(y)z1] +

1

ρ2
[M2(y)u2 −N2(y)z2].

In light of
〈`y, z〉w = 〈y, `z〉w + [y, z]ba,

hence
1

ρ1
[M1(y)u1 −N1(y)z1] +

1

ρ2
[M2(y)u2 −N2(y)z2] = [y, z]ba. (3.9)

Using Naimark Patching Lemma, there exists a Y = (y(x), y1, y2) ∈ D(T) such that

y(b) = y[1](b) = y[2](b) = 0, y(a) = α2, y
[1](a) = 0, y[2](a) = α1.

Substituting this into (3.9) yields z1 = α1z(a)− α2z
[2](a). Similarly, there exists a

Y = (y(x), y1, y2) ∈ D(T) such that

y(a) = y[1](a) = y[2](a) = 0, y(b) = β2, g
[1](b) = 0, y[2](b) = −β1.

Then by (3.9), we have z2 = β1z(b) + β2z
[2](b). Therefore, (ii) holds. Using similar

methods, one can prove (v) is true.
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Choosing Y = (y(x), y1, y2) ∈ D(T) such that

y(a) = y[2](a) = y(b) = y[2](b) = 0, y[1](a) = i sinβ − 1, y[1](b) = sinβ − i.

Then by (3.9), (iii) holds. Hence, the operator T is selfadjoint.
By the self-adjointness of the operator T, we have the following conclusions.

Corollary 3.1. The eigenvalues of T are real-valued.

Corollary 3.2. Let λ1 and λ2 be two different eigenvalues of
T, Y1 = (y1(x), y11, y12) and Y2 = (y2(x), y21, y22) be the corresponding eigenfunc-
tions respectively, then y1(x) and y2(x) are orthogonal in the sense of∫ b

a

y1y2wdx+
1

ρ1
M1(y1)M1(y2) +

1

ρ2
M2(y1)M2(y2) = 0.

Let

Aλ =


α1λ+ α̃1 0 −(α2λ+ α̃2)

0 i+ sinβ 0

0 0 0

 ,

Bλ =


0 0 0

0 1 + i sinβ 0

β1λ+ β̃1 0 −(β2λ+ β̃2)

 .

Then the boundary conditions (1.2)-(1.4) of the BVP (1.1)-(1.4) can be rewritten
in the following matrix form

AλY(a) +BλY(b) = 0, (3.10)

where Y(x) = (y(x), y[1](x), y[2](x))T .
Let φ1(x, λ), φ2(x, λ), φ3(x, λ) be the solutions of equation (1.1) satisfying

φ
[0]
1 (a, λ) φ

[0]
2 (a, λ) φ

[0]
3 (a, λ)

φ
[1]
1 (a, λ) φ

[1]
2 (a, λ) φ

[1]
3 (a, λ)

φ
[2]
1 (a, λ) φ

[2]
2 (a, λ) φ

[2]
3 (a, λ)

 =


1 0 0

0 1 0

0 0 1

 (3.11)

and

Φ(x, λ) =


φ
[0]
1 (x, λ) φ

[0]
2 (x, λ) φ

[0]
3 (x, λ)

φ
[1]
1 (x, λ) φ

[1]
2 (x, λ) φ

[1]
3 (x, λ)

φ
[2]
1 (x, λ) φ

[2]
2 (x, λ) φ

[2]
3 (x, λ)

 . (3.12)

Lemma 3.4. A complex number λ is an eigenvalue of the problem (1.1)-(1.4)
if and only if

∆(λ) = det[Aλ +BλΦ(b, λ)] = 0.
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Proof. Suppose λ0 is an eigenvalue of the problem (1.1)-(1.4) and v0(x) is the
corresponding eigenfunction. Then we have

v0(x) = c1φ1(x, λ0) + c2φ2(x, λ0) + c3φ3(x, λ0), x ∈ [a, b],

where at least one of coefficients ci (i = 1, 2, 3) is not zero. Inserting v0(x) into
(1.2)-(1.4) yields

(Aλ +BλΦ(b, λ0))(c1, c2, c3)T = 0 (3.13)

by (3.11) and (3.12). Since c1, c2, c3 are not all zero, det(Aλ +BλΦ(b, λ0)) = 0.
On the contrary, if det(Aλ + BλΦ(b, λ0)) = 0, then the system of the linear

equations (3.13) for the constants ci (i = 1, 2, 3) has non-zero solution (c′1, c
′
2, c
′
3).

Let
v(x) = c′1φ1(x, λ0) + c′2φ2(x, λ0) + c′3φ3(x, λ0), x ∈ [a, b],

then v(x) is the non-trivial solution of equation Tv = λv satisfying the conditions
(1.2)-(1.4) which implies λ0 is an eigenvalue of the problem (1.1)-(1.4).

Theorem 3.2. The eigenvalues of T are discrete and have no finite point of accu-
mulation. Moreover, the multiplicity of each eigenvalue at most 3.

Proof. The zeros of ∆(λ) are the eigenvalues of operator T by Lemma 3.4, and
all the eigenvalues of T are real by the self-adjointness of T, that is to say, for any
λ ∈ C with its imaginary part not vanishing, then ∆(λ) 6= 0. Therefore, by the
distribution of zeros of entire functions, the first part holds. The second conclusion
follows from the fact that there at most 3 linearly independent solutions exist for
the equation (1.1).

4. Green’s function

In this section, we discuss the Green’s function of BVP (1.1)-(1.4) when λ is not an
eigenvalue of the problem (1.1)-(1.4). To this end, consider the following operator
equation

(T− λI)Y = F, F = (f(x), f1, f2) ∈ H. (4.1)

By the definition of the operator T, the equation (4.1) can be transferred to the
following inhomogeneous boundary value problems

− i[q0(q0y
′)′]′ − (p0y

′)′ + i[q1y
′ + (q1y)′] + (p1 − λw)y = fw, (4.2)

L1(y) := (α1λ+ α̃1)y(a)− (α2λ+ α̃2)y[2](a) = −f1, (4.3)

L2(y) := (β1λ+ β̃1)y(b) + (β2λ+ β̃2)y[2](b) = −f2, (4.4)

L3(y) := (sinβ + i)y[1](a) + (i sinβ + 1)y[1](b) = 0. (4.5)

Let φ1(x, λ), φ2(x, λ), φ3(x, λ) be the solutions of homogeneous equation (1.1)
satisfying the initial conditions

Φ(a, λ) =


φ
[0]
1 (a, λ) φ

[0]
2 (a, λ) φ

[0]
3 (a, λ)

φ
[1]
1 (a, λ) φ

[1]
2 (a, λ) φ

[1]
3 (a, λ)

φ
[2]
1 (a, λ) φ

[2]
2 (a, λ) φ

[2]
3 (a, λ)

 =


1 0 0

0 1 0

0 0 1

 .
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Then the general solution of the non-homogeneous differential equation (4.2) can
be represented as

y(x, λ) = C1(x, λ)φ1(x, λ) + C2(x, λ)φ1(x, λ) + C3(x, λ)φ3(x, λ), x ∈ [a, b], (4.6)

by the method of variation of constants, where C1(x, λ), C2(x, λ), C3(x, λ) satisfy
the following conditions

C
′

1(x, λ)φ1(x, λ) + C
′

2(x, λ)φ2(x, λ) + C
′

3(x, λ)φ3(x, λ) = 0,

C
′

1(x, λ)φ
′

1(x, λ) + C
′

2(x, λ)φ
′

2(x, λ) + C
′

3(x, λ)φ
′

3(x, λ) = 0,

C
′

1(x, λ)φ
′′

1 (x, λ) + C
′

2(x, λ)φ
′′

2 (x, λ) + C
′

3(x, λ)φ
′′

3 (x, λ) = f(x)w(x).

(4.7)

Since λ is not an eigenvalue, linear system of (4.7) has an unique solution, and
hence

ω(λ) = W (φ1(x, λ), φ2(x, λ), φ3(x, λ))

=

∣∣∣∣∣∣∣∣∣
φ1(x, λ) φ2(x, λ) φ3(x, λ)

φ
′

1(x, λ) φ
′

2(x, λ) φ
′

3(x, λ)

φ
′′

1 (x, λ) φ
′′

2 (x, λ) φ
′′

3 (x, λ)

∣∣∣∣∣∣∣∣∣ 6= 0,

and 
C1(x, λ) =

∫ x

a

f(t)w(t)

ω(λ)
[φ2φ3](t, λ)dt+ C1,

C2(x, λ) =

∫ x

a

f(t)w(t)

ω(λ)
[φ3φ1](t, λ)dt+ C2,

C3(x, λ) =

∫ x

a

f(t)w(t)

ω(λ)
[φ1φ2](t, λ)dt+ C3,

(4.8)

where C1, C2, C3 are arbitrary constants. Inserting C1(x, λ), C2(x, λ), C3(x, λ) into
(4.6), one gets that the general solution of (4.2) has the following representation

y(x, λ) =φ1(x, λ)

∫ x

a

f(t)w(t)

ω(λ)
[φ2φ3](t, λ)dt+ C1φ1(x, λ)

+ φ2(x, λ)

∫ x

a

f(t)w(t)

ω(λ)
[φ3φ1](t, λ)dt+ C2φ2(x, λ)

+ φ3(x, λ)

∫ x

a

f(t)w(t)

ω(λ)
[φ1φ2](t, λ)dt+ C3φ3(x, λ)

=

∫ b

a

K(x, t, λ)f(t)w(t)dt+ C1φ1(x, λ) + C2φ2(x, λ)

+ C3φ3(x, λ), x ∈ [a, b],

(4.9)

where

K(x, t, λ) =


S(x, t, λ)

ω(λ)
, a ≤ t ≤ x ≤ b,

0, a ≤ x ≤ t ≤ b,
(4.10)
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S(x, t, λ) =

∣∣∣∣∣∣∣∣∣
φ1(t, λ) φ2(t, λ) φ3(t, λ)

φ
′

1(t, λ) φ
′

2(t, λ) φ
′

3(t, λ)

φ1(x, λ) φ2(x, λ) φ3(x, λ)

∣∣∣∣∣∣∣∣∣ . (4.11)

Substituting the general solution y = y(x, λ) into (4.3)-(4.5), one gets that

C1L1(φ1(x, λ)) + C2L1(φ2(x, λ)) + C3L1(φ3(x, λ))

=−
∫ b

a

f(t)w(t)L1(K(x, t, λ))dt− f1, (4.12)

C1L2(φ1(x, λ)) + C2L2(φ2(x, λ)) + C3L2(φ3(x, λ))

=−
∫ b

a

f(t)w(t)L2(K(x, t, λ))dt− f2, (4.13)

C1L3(φ1(x, λ)) + C2L3(φ2(x, λ)) + C3L3(φ3(x, λ))

=−
∫ b

a

f(t)w(t)L3(K(x, t, λ))dt. (4.14)

The determinant of coefficients of C1, C2, C3 satisfies∣∣∣∣∣∣∣∣∣
L1(φ1(x, λ)) L1(φ2(x, λ)) L1(φ3(x, λ))

L2(φ1(x, λ)) L2(φ2(x, λ)) L2(φ3(x, λ))

L3(φ1(x, λ)) L3(φ2(x, λ)) L3(φ3(x, λ))

∣∣∣∣∣∣∣∣∣ = det(Aλ +BλΦ(b, λ)) = ∆(λ) 6= 0.

(4.15)

Therefore,

C1 =
Γ1(λ) + Θ1(λ)

∆(λ)
, C2 =

Γ2(λ) + Θ2(λ)

∆(λ)
, C3 =

Γ3(λ) + Θ3(λ)

∆(λ)
,

where

Γ1(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

−
∫ b

a

f(t)w(t)L1(K(x, t, λ))dt L1(φ2(x, λ)) L1(φ3(x, λ))

−
∫ b

a

f(t)w(t)L2(K(x, t, λ))dt L2(φ2(x, λ)) L2(φ3(x, λ))

−
∫ b

a

f(t)w(t)L3(K(x, t, λ))dt L3(φ2(x, λ) L3(φ3(x, λ))

∣∣∣∣∣∣∣∣∣∣∣∣
,

Θ1(λ) =

∣∣∣∣∣∣∣∣∣
−f1 L1(φ2(x, λ)) L1(φ3(x, λ))

−f2 L2(φ2(x, λ)) L2(φ3(x, λ))

0 L3(φ2(x, λ)) L3(φ3(x, λ))

∣∣∣∣∣∣∣∣∣ .

Similarly, we can get Γ2(λ),Γ3(λ) and Θ2(λ),Θ3(λ). Hence the general solution has
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the following form

y(x, λ) =

∫ b

a

K(x, t, λ)f(t)w(t)dt

+
1

∆(λ)
(Γ1(λ)φ1(x, λ) + Γ2(λ)φ2(x, λ) + Γ3(λ)φ3(x, λ))

+
1

∆(λ)
(Θ1(λ)φ1(x, λ) + Θ2(λ)φ2(x, λ) + Θ3(λ)φ3(x, λ))

=

∫ b

a

G(x, t, λ)f(t)w(t)dt+
1

∆(λ)
Θ(x, t, λ),

(4.16)

where

G(x, t, λ) = K(x, t, λ)− 1

∆(λ)
K̃(x, t, λ), (4.17)

K̃(x, t, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

L1(φ1(x, λ)) L1(φ2(x, λ)) L1(φ3(x, λ)) L1(K(x, t, λ))

L2(φ1(x, λ)) L2(φ2(x, λ)) L2(φ3(x, λ)) L2(K(x, t, λ))

L3(φ1(x, λ)) L3(φ2(x, λ)) L3(φ3(x, λ)) L3(K(x, t, λ))

φ1(x, λ) φ2(x, λ) φ3(x, λ) 0

∣∣∣∣∣∣∣∣∣∣∣∣
,

Θ(x, t, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

L1(φ1(x, λ)) L1(φ2(x, λ)) L1(φ3(x, λ)) −f1

L2(φ1(x, λ)) L2(φ2(x, λ)) L2(φ3(x, λ)) −f2

L3(φ1(x, λ)) L3(φ2(x, λ)) L3(φ3(x, λ)) 0

φ1(x, λ) φ2(x, λ) φ3(x, λ) 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

In conclusion, for any F = (f(x), f1, f2) ∈ H, there exists an unique Y ∈ D(T),
Y = (y(x),M1(y),M2(y)) satisfying (T− λI)Y = F .

By the definition of H, the components of Y are determined by the first one,
i.e., in order to find Y , we only need to find its first component y(x), and y(x) is
determined by (4.16).

Definition 4.1. The integral kernel G(x, t, λ) in (4.17) is called Green’s function
of the operator T.

Remark 4.1. It is different from the usual boundary value problems, when the
eigenparameter appears in the boundary conditions, the solution y(x) is not only

determined by
∫ b
a
G(x, t, λ)f(t)w(t)dt but also

1

∆(λ)
Θ(x, t, λ).

Theorem 4.1. If λ is not an eigenvalue of the operator T, then for any F =
(f(x), f1, f2) ∈ H, there exists an unique solution Y = (y(x),M1(y),M2(y)) of
equation (T− λI)Y = F satisfying

y(x, λ) =

∫ b

a

G(x, t, λ)f(t)w(t)dt+
1

∆(λ)
Θ(x, t, λ).

The operator (T − λI)−1 is defined in the whole space by Theorem 4.1. It
follows from the facts T is symmetric and Closed Graph Theorem that (T− λI)−1
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is bounded. Therefore, λ is a regular point of T provided that it is not an eigenvalue
of T.

Theorem 4.2. The operator T has only point spectrum, that is to say, σ(T) =
σp(T).
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[5] P. Binding and B. Ćurgus, Riesz bases of root vectors of indefinite Sturm-
Liouville problems with eigenparameter dependent boundary conditions II, In-
tegr. Equ. Oper. Theory, 2008, 99, 1–27.

[6] O. Boyko, O. Martynyuk and V. Pivovarchik, Ambarzumian theorem for non-
selfadjoint boundary value problems, Journal of Operator Theory, 2018, 79,
1213–1223.

[7] Z. Cao, Ordinary Differential Operator, Science Press, Beijing, (in Chinese),
2016 .

[8] L. Collatz, Eigenwertaufgaben Mit Technischen Anwendungen. Akad. Verlags-
gesellschaft Geest and Portig. Leipzig, 1963.

[9] B. Friedman, Principles and Techniques of Applied Mathematics, New York,
1956.

[10] W. Feller, The parabolic differential equations and the associated semigroups of
transforms, Ann. of Math., 1952, 55, 468–519.

[11] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter
contained in the boundary conditions, Proceedings of the Royal Society of Ed-
inburgh: Section A Mathematics, 1977, 77, 293–308.



2642 K, Li, Y. Bai, W. Wang & F. Meng

[12] C. Gao, X. Li and R. Ma, Eigenvalues of a linear fourth-order differential op-
erator with squared spectral parameter in a boundary condition, Mediterranean
Journal of Mathematics, 2018,15(3), 107.

[13] M. Gregus, Third Order Linear Differential Equations (Mathematics and its
Applications), Reidel, Dordrecht, 1987.

[14] D. B. Hinton, Deficiency indices of odd-order differential operators, Rocky
Moun. J. Math. 1978, 8, 627–640.

[15] X. Hao, M. Zhang, J. Sun and A. Zettl, Characterization of domains of self-
adjoint ordinary differential operators of any order, even or odd, Electronic
Journal of Qualitative Theory of Differential Equations, 2017, 2017, 1–19.

[16] J. Kim, Oscillatory Properties of Linear Third-Order Differential Equations,
Proceedings of the American Mathematical Society, 1970, 26(2), 286–293.

[17] R. E. Kraft and W. R. Wells, Adjointness properties for differential systems
with eigenvaluedependent boundary conditions, with application to flow-duct
acoustics, J. Acoust. Soc. Am., 1977, 61, 913–22.

[18] K. Li, J. Sun, X. Hao and Q. Bao, Spectral analysis for discontinuous non-
self-adjoint singular Dirac operators with eigenparameter dependent boundary
condition, J. Math. Anal. Appl., 2017, 453, 304–316.

[19] K. Li, M. Zhang, J. Cai and Z. Zheng, Completeness theorem for eigenpa-
rameter dependent dissipative Dirac operator with general transfer conditions,
Journal of Function Spaces, 2020, 2020, 1–8.

[20] O. S. Mukhtarov and K. Aydemir, Minimization principle and generalized
Fourier series for discontinuous Sturm-Liouville systems in direct sum spaces,
Journal of Applied Analysis and Computation, 2018, 8(5), 1511–1523.

[21] O. S. Mukhtarov and K. Aydemir, Eigenfunction expansion for Sturm-Liouville
problems with transmission conditions at one interior point, Acta Mathematica
Scientia, 2015, 35(3), 639–649.

[22] R. Ma and Y. Lu, Disconjugacy and extremal solutions of nonlinear third-order
equations, Communications on Pure and Applied Analysis, 2014,13, 1223–1236.

[23] T. Niu, X. L. Hao, J. Sun and K. Li, Canonical forms of self-adjoint bound-
ary conditions for regular differential operators of order three, Operator and
Matrices, 2020,14, 207–220.

[24] M. A. Naimark, Linear Differential Operators, Ungar, New York, 1968.
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