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BIFURCATION OF LIMIT CYCLES AT A
NILPOTENT CRITICAL POINT IN A SEPTIC

LYAPUNOV SYSTEM∗

Yusen Wu1,†, Ming Zhang2 and Jinxiu Mao3

Abstract In this paper, we characterize local behavior of an isolated nilpo-
tent critical point for a class of septic polynomial differential systems, including
center conditions and bifurcation of limit cycles. With the help of computer
algebra system-MATHEMATICA 12.0, the first 15 quasi-Lyapunov constants
are deduced. As a result, necessary and sufficient conditions of such system
having a center are obtained. We prove that there exist 16 small amplitude
limit cycles created from the third-order nilpotent critical point. And then we
give a lower bound of cyclicity of third-order nilpotent critical point for septic
Lyapunov systems.
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1. Introduction

The phenomenon of limit cycles was first discovered and introduced by Poincaré.
Later, he developed a breakthrough qualitative method called Poincaré Map, to
determine the existence of limit cycles. Until now, this method is still the most
basic and classic tool for investigating stability and bifurcation of periodic orbit-
s. Afterward, many quantitative methodologies were put forward to approximate
limit cycles. In recent decades, with the help of computer algebra systems such
as Mathematica, Maple etc., symbolic algorithms and programs have been created
to overcome the computational complexity in the analysis of bifurcation of limit
cycles.

The progress of limit cycle theory is closely related to the celebrated Hilbert’s
16th problem, among 23 mathematical problems proposed by Hilbert at 2nd Inter-
national Congress of Mathematics in 1900. In general, research on Hilbert’s 16th
problem usually proceeds by the investigation of particular classes of polynomial
systems. In this paper, we consider an autonomous planar ordinary differential
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equation having a third-order nilpotent critical point with the form

dx
dt = λy + λx3 − λx2y + x4y(1− 71275λ

378 ) + a12xy
2 + a32x

3y2 + a03y
3 + xy3

+ a23x
2y3 + 5

8y
4 + a14xy

4 + a05y
5 + a15xy

5 + a06y
6 − λy(x2 + y2)3,

dy
dt = −2λx3 + λxy2 + b21x

2y − 2x3y2(1− 71275λ
378 ) + b03y

3 + b23x
2y3 − 1

4y
4

+ b14xy
4 + b05y

5 − 1
6a15y

6 + λx(x2 + y2)3.

(1.1)
Suppose that X and Y are polynomials and that the origin is a monodromic

critical point for

dx
dt = X(x, y),

dy
dt = Y (x, y).

(1.2)

We are concerned with two closely related problems, both of which are significant
elements in work on Hilbert’s 16th problem. The first is the number of limit cycles
bifurcated from a critical point and the rest one is the derivation of necessary and
sufficient conditions for a critical point to be a center. Involving extensive use of
Computer Algebra, much effort has been devoted over the years to the aforemen-
tioned problems. They are intertwined issues: in particular, an understanding of
the center conditions is required to resolve the question of bifurcation. The problem
of distinguishing between a center and a focus is of independent interest.

In some suitable coordinates, the Lyapunov system with the origin as a nilpotent
critical point can be written as

dx
dt = y +

∞∑
i+j=2

aijx
iyj = X(x, y),

dy
dt =

∞∑
i+j=2

bijx
iyj = Y (x, y).

(1.3)

Suppose that the function y = y(x) satisfies X(x, y) = 0, y(0) = 0. Lyapunov
proved (see for instance [3]) that the origin of system (1.3) is a monodromic critical
point (i.e., a center or a focus) if and only if

Y (x, y(x)) = αx2n+1 + o(x2n+1), α < 0,[
∂X
∂x + ∂Y

∂x

]
y=y(x)

= βxn + o(xn),

β2 + 4(n+ 1)α < 0,

(1.4)

where n is a positive integer. The monodromy problem for a general nilpotent
singularity was solved in [4] and the center problem in [28], see also in [30]. As
far as we know, there are essentially three differential ways to obtain Lyapunov
constants for a monodromic nondegenerate singular point, which are normal form
theory [9], the Poincaré return map [6] and Lyapunov functions [29]. These three
ways have been also used to study the center-focus problem of nilpotent critical
points. In [1] the monodromy and stability for nilpotent critical points with the
method of computing the Poincaré return map was investigated. In [8] the local
analytic integrability of nilpotent centers was studied by using Lyapunov functions.
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In [28] Moussu investigated the center-focus problem of nilpotent critical points
with the normal form theory.

In [32], Takens proved that system (1.3) can be formally transformed into a
generalized Liénard system. Furthermore, in [2] it was proved that the generalized
Liénard system could be simplified even more by a reparametrization of the time.
At the same time, Giacomini, Giné and Llibre in [15, 16] proved that the analytic
nilpotent system with a center can be expressed as limit of non-degenerate system
with a center. Therefore, any nilpotent center can be detected using the same meth-
ods that for a non-degenerate center, for instance the Poincaré-Lyapunov method
can be used to find the nilpotent centers. The ideas of the works [15,16] have been
corrected in the [12], which proved that all the nilpotent centers of planar analytic
differential systems are limit of centers with purely imaginary eigenvalues, and con-
sequently the Poincaré-Liapunov method to detect centers with purely imaginary
eigenvalues can be used to detect nilpotent centers. Han et al. [18] obtained a new
bifurcation theorem concerning the limit cycle bifurcation near the nilpotent cen-
ter. Jiang et al. [21] proved that a centrally symmetric quintic near-Hamiltonian
system can have ten limit cycles by using a homoclinic bifurcation method based on
stability change. Han et al. [19] proved that there are exact three cases: a center,
a cusp or a saddle for polynomial Hamiltonian systems with an isolated nilpotent
critical point. Han and Romanovski [20] studied analytic properties of the Poincaré
return map and generalized focal values of analytic planar systems with a nilpotent
focus or center. Zhang and Chen [33] extended the previous result by analyzing the
global phase portraits of polynomial Hamiltonian systems. Many good results have
also been obtained (see [10,11,17,27] and so on).

There are very few results known for concrete differential systems with mon-
odromic nilpotent critical points. Gasull and Torregrosa in [14] have generalized
the scheme of computation of Lyapunov constants for systems of the form

ẋ = y +
∑

k≥n+1

Fk(x, y),

ẏ = −x2n−1 +
∑
k≥2n

Gk(x, y),
(1.5)

where Fk and Gk are (1, n)-quasi-homogeneous functions of degree k. Chavarriga,
Garćıa, and Giné investigated the integrability of centers perturbed by (p, q)-quasi-
homogeneous polynomials in [7].

For a given family of polynomial differential equations, in general, the number
of Lyapunov constants needed to solve the center-focus problem is also related with
the so-called cyclicity of the point, i.e., the number of limit cycles that appear from
it by small perturbations of the coefficients of the given differential equation inside
the family considered (see [13] for cases where this relation does not exist for the
case of nondegenerate centers). Let N(n) be the maximum possible number of limit
cycles bifurcating from nilpotent critical points for analytic vector fields of degree
n. It was found that N(3) ≥ 2, N(5) ≥ 5, N(7) ≥ 9 in [5], N(3) ≥ 3, N(5) ≥ 5 in [1],
and for a family of Kukles system with 6 parameters N(3) ≥ 3 in [2]. Recently, Liu
and Li proved N(3) ≥ 8 in [26]. Recently, Li and Yu studied a class of symmetric
systems with nilpotent singular points in [22,23].

In particular, Sun and Zhao [31] studied the number of isolated zeros of Abelian
integrals associated to a class of hyper-elliptic Hamiltonian systems of degree seven
with nilpotent singularities and obtained the bounds and sharp bounds. Despite
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all of these efforts, however, more classifications of centers and the number of bi-
furcation of limit cycles with nilpotent critical points seem to be very difficult. In
this paper, employing the inverse integral factor method introduced in [25], see also
in [26], we will prove N(7) ≥ 16. To the best of our knowledge, our result on the
lower bounds of cyclicity of third-order nilpotent critical points for septic systems
is new.

This paper will be organized as follows. In Section 2, we state some preliminary
knowledge given in [25] which is useful throughout the paper. In Section 3, using
the linear recursive formulae in [25] to do direct computation, we obtain the first
15 quasi-Lyapunov constants and the sufficient and necessary conditions of center.
This paper is ended with Section 4 in which the 15-order weak focus conditions and
the result that there exist 16 limit cycles in the neighborhood of the third-order
nilpotent critical point are proved.

2. Preliminary knowledge

When the nilpotent critical point is a focus or a center, it is more difficult to
determine whether it is a center or not, because in a neighborhood of the critical
point, the method of the Poincaré formal series cannot be used in order to compute
Lyapunov constants. Fortunately, Liu and Li [25] found that there always exists
a formal inverse integrating factor for third-order nilpotent critical points, but it
was not true for other order nilpotent critical points. They gave a new definition
of the focal values under the generalized triangle polar coordinates and the method
of commutating Lyapunov constants using the inverse integral factors for the third-
order nilpotent critical point. The idea of this section comes from [25], see also [26].
Next, we will recall related notions and results.

The origin of system (1.2) is a third-order monodromic critical point if and only
if the system is the following form:

dx
dt = y + µx2 +

∞∑
i+2j=3

aijx
iyj = X(x, y),

dy
dt = −2x3 + 2µxy +

∞∑
i+2j=4

bijx
iyj = Y (x, y).

(2.1)

Lemma 2.1. For the system (2.1), one can derive successively the terms of the
following series with non-zero convergence radius:

u(x, y) = x+
∞∑

α+β=2

a′αβx
αyβ ,

v(x, y) = y +
∞∑

α+β=2

b′αβx
αyβ , b′20 = −µ,

ζ(x, y) = 1 +
∞∑

α+β=1

c′αβx
αyβ ,

(2.2)

such that by the transformation

u = u(x, y), v = v(x, y), dt = ζ(x, y)dτ, (2.3)
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system (2.1) is reduced to the following Liénard equations

du
dτ = v + 2µu2 +

∞∑
k=1

Aku
4k +

∞∑
k=1

Bku
4k+2 +

∞∑
k=1

Cku
2k+1 = U(u, v),

dv
dτ = −2(1 + µ2)u3 = V (u, v).

(2.4)

In addition, the origin of system (2.1) is a center if and only if for all k, Ck = 0.

Definition 2.1. Write that B0 = 2µ.

1. If µ 6= 0, then the origin of system (2.1) is called a three-order nilpotent
critical point of 0-class.

2. If µ = 0, and there exists a positive integer s, such that B0 = B1 = · · · =
Bs−1 = 0, but Bs 6= 0, then the origin of system (2.1) is called a three-order
nilpotent critical point of s-class.

3. If µ = 0 and for all positive integer s, Bs = 0, then the origin of system (2.1)
is called a three-order nilpotent critical point of ∞-class.

Theorem 2.1. For any positive integer s and a given real number sequence

{c0β}, β ≥ 3, (2.5)

one can construct successively the terms with the coefficients cαβ satisfying α 6= 0
of the formal series

M(x, y) = y2 +

∞∑
α+β=3

cαβx
αyβ =

∞∑
k=2

Mk(x, y), (2.6)

such that(
∂X

∂x
+
∂Y

∂y

)
M − (s+ 1)

(
∂M

∂x
X +

∂M

∂y
Y

)
=

∞∑
m=3

ωm(s, µ)xm, (2.7)

where for all k, Mk(x, y) is a k-homogeneous polynomial of x, y and sµ = 0.

It is easy to see that (2.7) is linear with respect to the function M , so we can
easily find the following recursive formulae for the calculation of cαβ and ωm(s, µ).

Theorem 2.2. For α ≥ 1, α + β ≥ 3 in (2.6) and (2.7), cαβ can be uniquely
determined by the recursive formula

cαβ =
1

(s+ 1)α
(Aα−1,β+1 +Bα−1,β+1). (2.8)

For m ≥ 1, ωm(s, µ) can be uniquely determined by the recursive formula

ωm(s, µ) = Am,0 +Bm,0, (2.9)

where

Aαβ =
α+β−1∑
k+j=2

[k − (s+ 1)(α− k + 1)]akjcα−k+1,β−j ,

Bαβ =
α+β−1∑
k+j=2

[j − (s+ 1)(β − j + 1)]bkjcα−k,β−j+1.

(2.10)
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Notice that in (2.10), we set

c00 = c10 = c01 = 0,

c20 = c11 = 0, c02 = 1,

cαβ = 0, if α < 0 or β < 0.

(2.11)

If the origin of system (2.1) is s-class or ∞-class, then, by choosing {cαβ}, such
that

ω2k+1(s, µ) = 0, k = 1, 2, · · · , (2.12)

we can obtain a solution group of {cαβ} of (2.12), thus, we have

µm =
ω2m+4(s, µ)

2m− 4s− 1
. (2.13)

Clearly, the recursive formulae by Theorem 2.2 is linear with respect to all cαβ .
Therefore, it is convenient to realize the computations of quasi-Lyapunov constants
by using computer algebraic system like MATHEMATICA.

3. Quasi-Lyapunov constants and center conditions

According to Theorem 2.1, for system (1.1), we can find a positive integer s and a
formal series M(x, y) = x4+y2+o(r4), such that (2.7) holds. Applying the recursive
formulae presented in Theorem 2.2 to carry out calculations in MATHEMATICA,
we have

ω3 = ω4 = ω5 = 0,

ω6 =
1

3λ
(−1 + 4s)(b21 + 3λ),

ω7 = 3(s+ 1)c03,

ω8 = − 2

5λ
(−3 + 4s)(a12 + 3b03),

ω9 = 0,

ω10 = − 2

7λ
(−5 + 4s)(a32 + b23),

ω11 =
15

16λ
(s+ 1)(4λc05 − 1),

ω12 =
4

15λ
(−7 + 4s)(−a14 + a23 − 5b05 + 2b14),

ω13 = 0,

ω14 =
40

77λ2
(−9 + 4s)(a23 + 2b14)(λ− b03), (3.1)

ω15 =
5

32λ2
(s+ 1)(7a03 − 8a06λ− 14λc04 + 28λ2c07),

ω16 =
2

7371λ2
(−11 + 4s)(a23 + 2b14)(−756 + 252a32 + 142739λ),

ω17 = 0,
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ω18 = − 8

6237λ2
(−13 + 4s)(a23 + 2b14)(−189 + 378b05 − 189b14 + 35741λ),

ω19 =
15

1024λ3
[−84a203(1 + s) + 84a05λ(1 + s) + 96a03a06λ(1 + s)

+ 49a23λ+ 98b14λ− 14a23sλ− 28b14sλ+ 168a03λc04(1 + s)

− 192a06λ
2c04(1 + s)− 252λ2c06(1 + s) + 336λ3c09(1 + s)],

ω20 =
2

125307λ2
(−15 + 4s)(a23 + 2b14)(−945 + 2646a03 + 232516λ),

ω21 =
1

84λ2
(s− 4)(a23 + 2b14)(−7− 48a06 + 28a15).

From (2.13) and (3.1), we obtain the first eight quasi-Lyapunov constants of
system (1.1):

λ1 = ω6

1−4s = 1
3λ (b21 + 3λ),

λ2 = ω8

3−4s = 2
5λ (a12 + 3b03),

λ3 = ω10

5−4s = 2
7λ (a32 + b23),

λ4 = ω12

7−4s = 4
15λ (a14 − a23 + 5b05 − 2b14),

λ5 = ω14

9−4s = − 40
77λ2 (2b14 + a23)(λ− b03),

λ6 = ω16

11−4s = − 2
7371λ2 (2b14 + a23)(−756 + 252a32 + 142739λ),

λ7 = ω18

13−4s = − 8
6237λ2 (2b14 + a23)(189− 378b05 + 189b14 − 35741λ),

λ8 = ω18

13−4s = 2
125307λ2 (2b14 + a23)(−945 + 2646a03 + 232516λ).

(3.2)

We see from ω7 = ω9 = ω11 = ω13 = ω15 = ω17 = ω19 = ω21 = 0 that

c03 = 0, c05 = 1
4λ , c07 = −7a03+8a06λ+14λc04

28λ2 ,

c09 = − 1
336λ3(1+s) [−84a203(1 + s) + 84a05λ(1 + s) + 96a03a06λ(1 + s)

+ 49a23λ+ 98b14λ− 14a23sλ− 28b14sλ+ 168a03λc04(1 + s)

− 192a06λ
2c04(1 + s)− 252λ2c06(1 + s)],

s = 4.

(3.3)

Furthermore, taking s = 4, we obtain the following conclusion.

Proposition 3.1. For system (1.1), one can determine successively the terms of
the formal series M(x, y) = x4 + y2 + o(r4), such that(

∂X

∂x
+
∂Y

∂y

)
M − 2

(
∂M

∂x
X +

∂M

∂y
Y

)
=

14∑
m=1

λm[(2m− 5)x2m+4 + o(r32)], (3.4)

where λm is the m-th quasi-Lyapunov constant at the origin of system (1.1), m =
1, 2, · · · , 14.
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Theorem 3.1. For system (1.1), the first 15 quasi-Lyapunov constants at the origin
are given by

λ1 =
1

3λ
(b21 + 3λ),

λ2 =
2

5λ
(a12 + 3b03),

λ3 =
2

7λ
(a32 + b23),

λ4 =
4

15λ
(a14 − a23 + 5b05 − 2b14),

λ5 = − 40

77λ2
(2b14 + a23)(λ− b03),

λ6 = − 2

7371λ2
(2b14 + a23)(−756 + 252a32 + 142739λ),

λ7 = − 8

6237λ2
(2b14 + a23)(189 − 378b05 + 189b14 − 35516λ),

λ8 =
2

125307λ2
(2b14 + a23)(−945 + 2646a03 + 232516λ),

λ9 = − 1

358435λ2
(2b14 + a23)(−34020 + 4116a23 + 1372b14 + 5024095λ),

λ10 =
1

386822709λ3
(2b14 + a23)(−714420 − 593011314λ− 14002632a05λ

+ 90016920a23λ+ 103381799653λ2),

λ11 =
1

13088182338λ3
(2b14 + a23)(1122889635 + 2669835168a06 − 1557403848a15

− 84015792a23 − 74423819736λ+ 100018800a23λ− 4304736163454λ2),

λ12 = − 1

8189802497575573056λ4
(2b14 + a23)(161058273264 − 111993387549309λ

− 369366355822464a06λ+ 215463707563104a15λ+ 29167309199814912λ2

+ 110900918757781152a06λ
2 − 64692202608705672a15λ

2

+ 898784309039302518λ3 − 182814242015394566756λ4),

λ13 =− 1

67335963208188709136256λ5(−46116+13846163λ)
(2b14+a23)

×(−46025300634106752+46534212594321669000λ−51139222926785280a15λ

− 16904896989690444231987λ2 − 5488281440605475568a15λ
2

+ 2321597608028417543158026λ3 + 3063436886264504125824a15λ
3

− 114241737322667668207660110λ4 − 285381993806159335515360a15λ
4

+2443151138824686797146507940λ5+58047178124728082836365120a15λ
5), (3.5)

λ14 =
1

1120993368736094742659333891328λ6(−46116 + 13846163λ)2f(λ)

× (2b14 + a23)(3153440973407341322418041983754601123840

− 5183764525638507229200544728006410110039296λ

+ 1598610133833885584140260905156208687519891312λ2

+ 896886833532969080793248794216868969864683472481λ3

− 918576192072616403257175610954436756895783155287879λ4

+ 346109654092258707734244148141722516845580041319908520λ5

− 68394378045930681837351923460863237024483533700398963074λ6
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+ 7615128586518718845757734511546928216282100011070384370800λ7

− 538213940418667546086648683021012141640562589718733028670408λ8

+ 28716212046165113391001941415472087053336644154278153158826912λ9

− 1079351287105638131380982282679868880887040622326920461860661600λ10

+ 16345925128767049236704133411427880609802058302259456735121783360λ11),

λ15 =
1

107683234451717662486078882328544768λ6(−46116+13846163λ)2f(λ)2

×(2b14+a23)(−10973170987776883705556991574008508306157278619672095948800

+22897749262682233981992732725949519054731979957836211488931840λ

−24914579986246885664971338317898441946410073685980228105680112128λ2

+16703344722031030463219762182267744951444662212394778188416232450240λ3

−756211305142301954719837948145687812398625698223238433539828816360

3235λ4

+242069950036323319444644553507637267259962860131958718918214176832

3760314λ5

−558209459425573106712981933918883843679241502544509844593888595958

539650464λ6

+920866987294863221177230561699056835597380064578210573099979564626

15180052713λ7

−106511675203037111188897006048014240136319734900122467882776065793

85507453408964λ8

+924433806393526910710340057644352467612106386055522305470062223423

341554286688096λ9

−900813570945239322859566710400741930390411994899130724501084049737

61531224165823312λ10

+120535763388059624480881262588231322282254211698481879178636917151

10140623379349776212λ11

−131633788866496819091010251484151404294789178202456060270100681644

6330822274853871024640λ12

+ 864285950404097088986855730687317460943549196610249338070731046470

94043062918786115404720λ13

− 301466532129644584160462373960013221779506198079878490513324896862

1262451019107171371742400λ14

+ 487591010089300016329868301917556947929491239344630165949485702999

19158025369833334316668800λ15), (3.6)

where

f(λ) = −805291366320− 86424184942767λ+ 48240061827042456λ2

− 4493921545196512590λ3 + 914071210076972833780λ4.
(3.7)

In the above expression of λk, we have already let λ1 = λ2 = · · · = λk−1 =
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0, k = 2, · · · , 15.

From Theorem 3.1, we obtain the following assertion.

Proposition 3.2. The first 15 quasi-Lyapunov constants at the origin of system
(1.1) are zero if and only if the following condition is satisfied:

b21 = −3λ, a12 = −3b03, b23 = −a32, a14 = a23 − 5b05 + 2b14, a23 = −2b14. (3.8)

When the condition in Proposition 3.2 holds, system (1.1) can be brought to

dx
dt = λy + λx3 − λx2y − 3b03xy

2 + a03y
3 + a32x

3y2 + xy3 + 5
8y

4 − 2b14x
2y3

− 5b05xy
4 + (1− 71275λ

378 )x4y + a15xy
5 + a05y

5 + a06y
6 − λy(x2 + y2)3,

dy
dt = −2λx3 − 3λx2y + λxy2 + b03y

3 + b14xy
4 − a32x2y3 + b05y

5

− 2(1− 71275λ
378 )x3y2 − 1

4y
4 − 1

6a15y
6 + λx(x2 + y2)3,

(3.9)
who has an analytic first integral

F (x, y) = 1
2λx

4 + 1
2λy

2 + 1
4a03y

4 + 1
8y

5 + 1
6a05y

6 + 1
7a06y

7 − xy3(b03 + b05y
2)

+ 1
4xy

4 − 1
2x

2y2(b14y
2 + λ) + 1

756x
4y2(378 + 252y − 71275λ)

+ x3( 1
3a32y

3 + λy) + 1
6a15xy

6 − 1
8λ(x2 + y2)4.

(3.10)

Therefore, Proposition 3.2 implies that

Proposition 3.3. The origin of system (3.9) is a center.

We see from Propositions 3.2 and 3.3 that

Theorem 3.2. The origin of system (1.1) is a center if and only if the first 15
quasi-Lyapunov constants are zero, that is, the condition in Proposition 3.2 is sat-
isfied.

4. Multiple bifurcation of limit cycles

In the previous section, we have derived the expressions of the first 15 quasi-
Lyapunov constants of system (1.1). In this section we will prove that when the
third-order nilpotent critical point O(0, 0) is a 15-order weak focus. As a result,
the perturbed system of (1.1) can generate 16 limit cycles enclosing an elementary
node at the origin of perturbation system (1.1).

Under the fact

λ1 =λ2 =λ3 =λ4 =λ5 =λ6 =λ7 =λ8 =λ9 =λ10 =λ11 =λ12 =λ13 =λ14 =0, λ15 6= 0,
(4.1)

we obtain
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Theorem 4.1. The origin of system (1.1) is a 15-order weak focus if and only if

b21 = −3λ, a12 = −3b03,

b23 = −a32, a14 = a23 − 5b05 + 2b14, b03 = λ,

a32 = 1
252 (756− 143639λ), b05 = 1

378 (189 + 189b14 − 35741λ),

a03 = 1
22646 (945− 232516λ), b14 = 1

1372 (34020− 4116a23 − 5064595λ),

a05 = 1
14002632λ (−714420− 593011314λ+ 90016920a23λ+ 103381799653λ2),

a23 = 1
4000752(−21+25λ) (−1122889635− 2669835168a06 + 1557403848a15

+ 74423819736λ+ 4304736163454λ2),

a06 = 1
8009505504λ(−46116+13846163λ) (−161058273264 + 111993387549309λ

− 215463707563104a15λ− 29167309199814912λ2 + 64692202608705672a15λ
2

− 898784309039302518λ3 + 182814242015394566756λ4),

a15 = 1
63504λf(λ) (46025300634106752− 46534212594321669000λ

+ 16904896989690444231987λ2 − 2321597608028417543158026λ3

+ 114241737322667668207660110λ4 − 2443151138824686797146507940λ5),

λ ≈ Ai, i = 1, · · · , 5,

A1 = −0.00162852, A2 = −0.00162852, A3 = 0.00337192,

A4 = 0.00471939, A5 = 0.0332452.

(4.2)

Proof. By setting

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = λ7 = λ8 = λ9 = λ10 = λ11 = λ12 = λ13 = 0,
(4.3)

we obtain the relations of b21, a12, b23, a14, b03, a32, b05, a03, b14, a05, a23, a06, a15.
Solving the equation λ14 = 0, we get the following 11 solutions

λ1 ≈ −0.00162852, λ2 ≈ −0.00162852, λ3 ≈ 0.00337192, λ4 ≈ 0.00471939,

λ5 ≈ 0.0332452, λ6 ≈ 0.000296049− 0.0160406i, λ7 ≈ 0.000296049 + 0.0160406,

λ8 ≈ 0.00178134− 0.00228599i, λ9 ≈ 0.00178134 + 0.00228599i,

λ10 ≈ 0.0106331 + 0.001286i, λ11 ≈ 0.0106331− 0.001286i,
(4.4)

Notice that λ ∈ R, we choose λ ≈ Ai i = 1, · · · , 5 and a simple calculation gives

Resultant[λ14, λ15, λ] ≈ 3.569182365662753× 101628 6= 0. (4.5)

Thus λ15 6= 0, the origin of system (1.1) is a 15-order weak focus.
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We next study the perturbed system of (1.1) as follows:

dx

dt
=δ(ε)x+ λ(ε)y + λ(ε)x3 − λ(ε)x2y + x4y

(
1− 71275λ(ε)

378

)
+ a12(ε)xy2

+ a32(ε)x3y2 + a03(ε)y3 + xy3 + a23(ε)x2y3 +
5

8
y4 + a14(ε)xy4 + a05(ε)y5

+ a15(ε)xy5 + a06(ε)y6 − λ(ε)y(x2 + y2)3,

dy

dt
=− 2λ(ε)x3 + λ(ε)xy2 + b21(ε)x2y − 2x3y2

(
1− 71275λ(ε)

378

)
+ b03(ε)y3

+ b23(ε)x2y3 − 1

4
y4 + b14(ε)xy4 + b05(ε)y5 − 1

6
a15(ε)y6 + λ(ε)x(x2 + y2)3,

(4.6)
Remember that λ ≈ Ai, i = 1, · · · , 5 are the simple zeros of λ14 = 0. Therefore,
when one of four conditions in (4.2) holds, we have:

If λ ≈ A1, then

∂(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, λ12, λ13, λ14)

∂(b21, a12, b23, a14, b03, a32, b05, a03, b14, a05, a23, a06, a15, λ)
≈ 1.16971×1072; (4.7)

If λ ≈ A2, then

∂(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, λ12, λ13, λ14)

∂(b21, a12, b23, a14, b03, a32, b05, a03, b14, a05, a23, a06, a15, λ)
≈ −3.11372× 1080;

(4.8)
If λ ≈ A3, then

∂(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, λ12, λ13, λ14)

∂(b21, a12, b23, a14, b03, a32, b05, a03, b14, a05, a23, a06, a15, λ)
≈ 5.2377× 1077; (4.9)

If λ ≈ A4, then

∂(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, λ12, λ13, λ14)

∂(b21, a12, b23, a14, b03, a32, b05, a03, b14, a05, a23, a06, a15, λ)
≈ −1.01994× 1055;

(4.10)
If λ ≈ A5, then

∂(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, λ12, λ13, λ14)

∂(b21, a12, b23, a14, b03, a32, b05, a03, b14, a05, a23, a06, a15, λ)
≈ 9.41132× 1033.

(4.11)
In fact, if we denote

J =
∂(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, λ12, λ13, λ14)

∂(b21, a12, b23, a14, b03, a32, b05, a03, b14, a05, a23, a06, a15, λ)
, (4.12)

then
Resultant[λ14, J, λ] ≈ 2.032752172806839× 104741 6= 0, (4.13)

it is to see that J 6= 0 when λ ≈ Ai, i = 1, · · · , 5.
From the statement mentioned above, Theorem 2.1 follows that

Theorem 4.2. If the origin of system (1.1) is a 15-order weak focus, for 0 < δ � 1,
making a small perturbation to the coefficients of system (1.1), then, for system
(4.6), in a small neighborhood of the origin, there exist exactly 15 small amplitude
limit cycles enclosing the origin O(0, 0), which is an elementary node.
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Now, we consider another perturbation which was called to be double bifurca-
tion, according to theorem 9 in [24], considering the perturbed system

dx

dt
=x(x2−ε2)λ+

[
1+x(−λx+x3

(
1− 71275

378

)
−λx5)

]
y+f1(x, y)y2 =X̃(x, y),

dy

dt
=[4δε− 2ε2λ]y − (x2 − ε2)

[
2x

(
λ− λ

2
x4
)
− b21y

]
+ f2(x, y)y2 = Ỹ (x, y).

(4.14)

where

f1(x, y) = a12x+ a32x
3 + a03y + xy + a23x

2y + 5
8y

2 + a14xy
2 + a05y

3 + a15xy
3

+a06y
4 − λy(3x4 + 3x2y2 + y4),

f2(x, y)=λx−2x3
(
1− 71275λ

378

)
+b03y + b23x

2y − 1
4y

2 + b14xy
2 + b05y

3 − 1
6a15y

4

+λx(3x4 + 3x2y2 + y4).

(4.15)
The following theorem can be obtained directly.

Theorem 4.3. If the origin of system (1.1) is a 15-order weak focus, making a
double perturbation to the system (1.1), then, in a small neighborhood of the origin,
there exist exactly 16 small amplitude limit cycles enclosing the origin O(0, 0) with
the scheme 14 ⊃ (1

⋃
1).

By double perturbation, the nilpotent origin can be broken into two element
focus and a element saddle. If the origin of system (1.1) is a 15-order weak focus,
there can exist 14 limit cycles enclosing the origin. At the same time, there are two
limit cycle enclosing the two element focus respectively. The scheme 14 ⊃ (1

⋃
1)

can be drawn as in Figure 1.

Figure 1. The scheme 14 ⊃ (1
⋃

1) of limit cycle.

Appendix A

Detailed recursive MATHEMATICA code to compute the quasi-Lyapunov constants
at the origin of system (1.1):

c[0, 0] = 0, c[1, 0] = 0, c[0, 1] = 0, c[2, 0] = 0, c[1, 1] = 0, c[0, 2] = 1;
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when k < 0, or j < 0, c[k, j] = 0; else

c[k, j] =
−1

1512k(1 + s)λ
(−3024λc[−8 + k, 2 + j]− 1512jλc[−8 + k, 2 + j]

− 3024sλc[−8 + k, 2 + j]− 1512jsλc[−8 + k, 2 + j]− 9072λc[−6 + k, j]

− 4536jλc[−6 + k, j] + 1512kλc[−6 + k, j]− 9072sλc[−6 + k, j]

− 4536jsλc[−6 + k, j] + 1512ksλc[−6 + k, j]− 9072λc[−4 + k,−2 + j]

− 4536jλc[−4 + k,−2 + j] + 4536kλc[−4 + k,−2 + j]

− 9072sλc[−4 + k,−2 + j]− 4536jsλc[−4 + k,−2 + j]

+ 4536ksλc[−4 + k,−2 + j] + 6048c[−4 + k, j] + 3024jc[−4 + k, j]

− 1512kc[−4 + k, j] + 6048sc[−4 + k, j] + 3024jsc[−4 + k, j]

− 1512ksc[−4 + k, j]− 1147600λc[−4 + k, j]− 573800jλc[−4 + k, j]

+ 286900kλc[−4 + k, j]− 1147600sλc[−4 + k, j]− 573800jsλc[−4 + k, j]

+ 286900ksλc[−4 + k, j] + 6048λc[−4 + k, 2 + j] + 3024jλc[−4 + k, 2 + j]

+ 6048sλc[−4 + k, 2 + j] + 3024jsλc[−4 + k, 2 + j]

+ 9072a32c[−3 + k,−1 + j] + 6048b23c[−3 + k,−1 + j]

− 1512b23jc[−3 + k,−1 + j]− 1512a32kc[−3 + k,−1 + j]

+ 4536a32sc[−3 + k,−1 + j] + 1512b23sc[−3 + k,−1 + j]

− 1512b23jsc[−3 + k,−1 + j]− 1512a32ksc[−3 + k,−1 + j]

− 1512b21jc[−3 + k, 1 + j]− 1512b21sc[−3 + k, 1 + j]

− 1512b21jsc[−3+k, 1 + j]+9072λc[−3 + k, 1 + j]−1512kλc[−3 + k, 1 + j]

+ 4536sλc[−3+k, 1+j]−1512ksλc[−3+k, 1+j]−3024λc[−2+k,−4+j]

− 1512jλc[−2+k,−4+j]+4536kλc[−2+k,−4+j]−3024sλc[−2+k,−4+j]

− 1512jsλc[−2 + k,−4 + j] + 4536ksλc[−2 + k,−4 + j]

+ 6048a23c[−2 + k,−2 + j] + 9072b14c[−2 + k,−2 + j]

− 1512b14jc[−2 + k,−2 + j]− 1512a23kc[−2 + k,−2 + j]

+ 3024a23sc[−2 + k,−2 + j] + 3024b14sc[−2 + k,−2 + j]

− 1512b14jsc[−2+k,−2+j]−1512a23ksc[−2+k,−2+j]−3024λc[−2+k, j]

− 1512jλc[−2 + k, j] + 1512kλc[−2 + k, j]− 3024sλc[−2 + k, j]

− 1512jsλc[−2 + k, j] + 1512ksλc[−2 + k, j] + 504a15c[−1 + k,−4 + j]

+ 252a15jc[−1 + k,−4 + j]− 1512a15kc[−1 + k,−4 + j]

+ 504a15sc[−1 + k,−4 + j] + 252a15jsc[−1 + k,−4 + j]

− 1512a15ksc[−1+k,−4+j]+3024a14c[−1+k,−3+j]

+ 12096b05c[−1+k,−3+j]− 1512b05jc[−1 + k,−3 + j]

− 1512a14kc[−1 + k,−3 + j] + 1512a14sc[−1 + k,−3 + j]

+ 4536b05sc[−1 + k,−3 + j]− 1512b05jsc[−1 + k,−3 + j]

− 1512a14ksc[−1 + k,−3 + j] + 756c[−1 + k,−2 + j]

+ 378jc[−1 + k,−2 + j]− 1512kc[−1 + k,−2 + j] + 756sc[−1 + k,−2 + j]

+ 378jsc[−1+k,−2+j]−1512ksc[−1+k,−2+j]+3024a12c[−1+k,−1+j]

+ 6048b03c[−1 + k,−1 + j]− 1512b03jc[−1 + k,−1 + j]
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− 1512a12kc[−1 + k,−1 + j] + 1512a12sc[−1 + k,−1 + j]

+ 1512b03sc[−1 + k,−1 + j]− 1512b03jsc[−1 + k,−1 + j]

− 1512a12ksc[−1 + k,−1 + j] + 1512kλc[k,−6 + j] + 1512ksλc[k,−6 + j]

− 1512a06kc[k,−5 + j]− 1512a06ksc[k,−5 + j]− 1512a05kc[k,−4 + j]

− 1512a05ksc[k,−4 + j]− 945kc[k,−3 + j]− 945ksc[k,−3 + j]

− 1512a03kc[k,−2 + j]− 1512a03ksc[k,−2 + j]),

ωm =− 1

1512λ
(1512λc[−7 +m, 1] + 1512sλc[−7 +m, 1] + 3024λc[−5 +m,−1]

− 1512mλc[−5 +m,−1] + 3024sλc[−5 +m,−1]− 1512msλc[−5 +m,−1]

− 4536mλc[−3 +m,−3]− 4536msλc[−3 +m,−3]− 1512c[−3 +m,−1]

+ 1512mc[−3 +m,−1]− 1512sc[−3 +m,−1] + 1512msc[−3 +m,−1]

+ 286900λc[−3+m,−1]−286900mλc[−3+m,−1]+286900sλc[−3+m,−1]

− 286900msλc[−3 +m,−1]− 3024λc[−3 +m, 1]− 3024sλc[−3 +m, 1]

− 7560a32c[−2 +m,−2]− 7560b23c[−2 +m,−2] + 1512a32mc[−2 +m,−2]

− 3024a32sc[−2+m,−2]−3024b23sc[−2+m,−2]+1512a32msc[−2+m,−2]

− 1512b21c[−2 +m, 0]− 7560λc[−2 +m, 0] + 1512mλc[−2 +m, 0]

− 3024sλc[−2 +m, 0] + 1512msλc[−2 +m, 0]− 3024λc[−1 +m,−5]

− 4536mλc[−1 +m,−5]− 3024sλc[−1 +m,−5]− 4536msλc[−1 +m,−5]

− 4536a23c[−1+m,−3]−10584b14c[−1+m,−3]+1512a23mc[−1+m,−3]

− 1512a23sc[−1+m,−3]−4536b14sc[−1+m,−3]+1512a23msc[−1+m,−3]

− 1512mλc[−1 +m,−1]− 1512msλc[−1 +m,−1] + 1260a15c[m,−5]

+ 1512a15mc[m,−5] + 1260a15sc[m,−5] + 1512a15msc[m,−5]

− 1512a14c[m,−4]− 13608b05c[m,−4] + 1512a14mc[m,−4]

− 6048b05sc[m,−4] + 1512a14msc[m,−4] + 1134c[m,−3]

+ 1512mc[m,−3] + 1134sc[m,−3] + 1512msc[m,−3]− 1512a12c[m,−2]

− 7560b03c[m,−2] + 1512a12mc[m,−2]− 3024b03sc[m,−2]

+ 1512a12msc[m,−2]− 1512λc[1 +m,−7]− 1512mλc[1 +m,−7]

− 1512sλc[1 +m,−7]− 1512msλc[1 +m,−7] + 1512a06c[1 +m,−6]

+ 1512a06mc[1 +m,−6]+1512a06sc[1 +m,−6]+1512a06msc[1+m,−6]

+ 1512a05c[1 +m,−5] + 1512a05mc[1 +m,−5] + 1512a05sc[1 +m,−5]

+ 1512a05msc[1 +m,−5] + 945c[1 +m,−4] + 945mc[1 +m,−4]

+ 945sc[1 +m,−4] + 945msc[1 +m,−4] + 1512a03c[1 +m,−3]

+ 1512a03mc[1 +m,−3]+1512a03sc[1+m,−3]+1512a03msc[1+m,−3]

+ 1512λc[1 +m,−1] + 1512mλc[1 +m,−1]

+ 1512sλc[1 +m,−1] + 1512msλc[1 +m,−1]),

λm =
ω2m+4

2m− 4s− 1
.
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