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EXISTENCE RESULTS OF SOLUTIONS FOR
ANTI-PERIODIC FRACTIONAL LANGEVIN

EQUATION∗

Ahmed Salem

Abstract Recently, Khalili and Yadollahzadeh [9] have investigated the u-
niqueness and existence of solution u(t), t ∈ [0, 1] for a class of nonlocal
boundary conditions to fractional Langevin equation. The authors used the
boundary condition u′(0) = 0 by incorrect method. In the current contri-
bution, we show the correct method for using this condition and study the
existence and uniqueness of solution for the same class of equation in slightly
different form with anti-periodic and nonlocal integral boundary conditions as
well as the boundary condition u′(0) = 0. An exemplar is provided to illustrate
our results.
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1. Introduction

Khalili and Yadollahzadeh [9] have considered a fractional Langevin equation:

cDβ(cDα + λ)u(t) = f(t, u(t), Dαu(t)), t ∈ [0, 1], (1.1)

where Dα denotes the Riemann-Liouville fractional derivative, the symbols cDβ

and cDα are fractional derivatives in the Caputo sense with values of β ∈ (1, 2] and
α ∈ (0, 1] and f : [0, 1] × R × R → R is a given continuous function with nonlocal
boundary conditions:

u(0) = 0, u′(0) = 0, u(1) = γu(η), (1.2)

where 0 < η < 1 and 0 < γηα+1 < 1.
It is known that the Riemann-Liouville fractional integral has the form [10,11]:

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, α > 0,

where Γ(.) denotes the Gamma function, provided that the right-hand-side integral
exists. Based on this definition, the Riemann-Liouville and the Caputo fractional
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derivatives are defined, respectively, as:

Dαf(t) = DnIn−αf(t) =
1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1f(s)ds,

cDαf(t) = In−αDnf(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds,

where n ∈ N and n− 1 < α ≤ n, provided that the integrals exist.
In view of the relations (2.114) and (2.115) in [11], we can derive, for α > 0 and

k ∈ N, the following identities:

DkIαf(t) = Iα−kf(t), α ≥ k,

DkIαf(t) = IαDkf(t) +

k∑
j=1

tα−j

Γ(1 + α− j)
f (k−j)(0), α < k.

In particular, if k = 1, we get:

DIαf(t) = Iα−1f(t), α ≥ 1, (1.3)

DIαf(t) = IαDf(t) +
tα−1

Γ(α)
f(0), α < 1. (1.4)

The authors in [9] considered the linear fractional Langevin equation:

cDβ(cDα + λ)u(t) = h(t), t ∈ [0, 1], (1.5)

and gave its solution as:

u(t) = Iα+βh(t)− λIαu(t) +
tα

Γ(α+ 1)
c0 +

tα+1

Γ(α+ 2)
c1 + c2, (1.6)

and the derivative of solution as:

u′(t) = Iα+β−1h(t)− λIα−1u(t) +
tα−1

Γ(α)
c0 +

tα

Γ(α+ 1)
c1,

where c0, c1 and c2 are constants. It is noting that when α < 1, the second fractional
integral is undefined and so the relation above is incorrect. To avoid this error, we
use the relation (1.4) to rewrite the derivative of solution in the correct form as:

u′(t) = Iα+β−1h(t)− λIαu′(t) +
tα−1

Γ(α)
[c0 − λu(0)] +

tα

Γ(α+ 1)
c1.

Therefore, when applying the boundary condition u′(0) = 0, we have to take u′(t)
is continuous for all t ∈ [0, 1] and c0 = λu(0) = λc2, when α < 1.

When α = 1, the Langevin equation will be converted to the sequential fractional
differential equation which has the solution in the form:

u(t) =
1

Γ(β)

∫ t

0

e−λ(t−s)
(∫ s

0

(s− v)β−1h(v)dv

)
ds

+
c0
λ

(
1− e−λt

)
+
c1
λ2
(
λt− 1 + e−λt

)
+ c2e

−λt, t ∈ [0, 1], (1.7)
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and the derivative of this solution has the form:

u′(t) =
1

Γ(β)

∫ t

0

(t− s)β−1h(s)ds− λ

Γ(β)

∫ t

0

e−λ(t−s)
(∫ s

0

(s− v)β−1h(v)dv

)
ds

+ c0e
−λt +

c1
λ

(
1− e−λt

)
− λc2e−λt

=
1

Γ(β)

∫ t

0

(t− s)β−1h(s)ds− λu(t) + c0 + c1t, t ∈ [0, 1]. (1.8)

In this case, we also find c0 = λu(0) = λc2.
The authors in [9] were lucky because they have imposed that u(0) = 0 which

led to that their main results are correct.
In the present paper, we consider the nonlinear Langevin equation:

cDβ(cDα + λ)u(t) = f(t, u(t),cDαu(t)), t ∈ [0, 1], (1.9)

subject to anti-periodic and nonlocal integral boundary conditions:

u(0) + u(1) = 0, u′(0) = 0, cDαu(1) =
µ

Γ(γ)

∫ η

0

(η − s)γ−1u(s)ds, (1.10)

where 0 < η < 1, γ > 0 and µ ∈ R.
The first condition is an anti-periodic boundary condition which appears in sev-

eral mathematical modeling of a assortment of physical approaches and has recently
drawn great attention for many contributors. The interpretation of the third condi-
tion is able to be expressed as the linear combination of the fractional derivative of
unknown function at the end is proportional to the the Riemann-Liouville fractional
integral of unknown function.

It is worth pointing out that the Langevin equations of fractional order have
received considerable attentiveness. There is an unusual turnout to study fractional
Langevin equations by a large number of authors (for instance, see [1–8,12–19,21–
24]) due to its multiple applications in different fields of science.

2. Preliminaries

This section is dedicated to complete some fractional calculus concepts mentioned
in the introduction. Also, to identify the general form of the solution for the linear
Langevin equation of two fractional order (1.5) with the boundary conditions (1.10).

Lemma 2.1. Let α and β be positive reals. If f is a continuous function, then we
have:

IαIβf(t) = Iα+βf(t).

Lemma 2.2. Let α be positive real. Then we have:

Iαtρ =
Γ(ρ+ 1)

Γ(ρ+ α+ 1)
tρ+α, ρ > −1,

cDαtρ =
Γ(ρ+ 1)

Γ(ρ− α+ 1)
tρ−α, ρ > −1, ρ 6= 0, 1, · · · , [α]

cDαtρ = 0, ρ = 0, 1, · · · , [α]

where [a] is the largest integer less than α.
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Lemma 2.3. Let n ∈ N and n− 1 < α ≤ n. If u is a continuous function, then we
have:

Iα cDαu(t) = u(t) + c0 + c1t+ · · ·+ cn−1t
n−1.

Let us now examine the linear fractional Langevin differential equation (1.5)
subject to the boundary conditions (1.10):

Lemma 2.4. If h ∈ C[0, 1], then the unique solution of the boundary value problem
(1.5) and (1.10) for 0 < α < 1 is given by:

u(t) =
1

Γ(α+ β)

∫ t

0

(t− s)α+β−1h(s)ds− λ

Γ(α)

∫ t

0

(t− s)α−1u(s)ds (2.1)

+ Eα(t)

(
µ

Γ(γ)

∫ η

0

(η − s)γ−1u(s)ds− 1

Γ(β)

∫ 1

0

(1− s)β−1h(s)ds

)
− Fα(t)

(
1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1h(s)ds− λ

Γ(α)

∫ 1

0

(1− s)α−1u(s)ds

)
,

where

Eα(t) =
(2tα+1 − 1)Γ(α+ 2)− λ(1 + α)(1− t)tα

∆Γ(α+ 2)
,

Fα(t) =
Γ(α+ 2) + λ(1 + α− 2t)tα

∆
,

∆ = 2Γ(α+ 2)− λ(1− α) 6= 0.

When α = 1 and λ 6= 0, the unique solution is given by:

u(t) =
1

Γ(β)

∫ t

0

e−λ(t−s)
(∫ s

0

(s− v)β−1h(v)dv

)
ds (2.2)

+
E(t)

Γ(β)

∫ 1

0

e−λ(1−s)
(∫ s

0

(s− v)β−1h(v)dv

)
ds

+ F (t)

[
µ

Γ(γ)

∫ η

0

(η − s)γ−1u(s)ds− 1

Γ(β)

∫ 1

0

(1− s)β−1h(s)ds

]
,

where

E(t) =
2(λt− 1 + e−λt)− λ2

2λ(1− e−λ)
,

F (t) =
2(λt− 1 + e−λt)− (λ− 1 + e−λ)

2λ(1− e−λ)
.

Proof. As we mentioned in the introduction, the solution of the equation (1.5)
for α < 1 has the form (1.6) and with the boundary condition u′(0) = 0 we deduced
that c0 = λc2. By using the anti-periodic boundary condition u(0) + u(1) = 0, we
find that u(1) = −c2 which can be rewritten as:(

2 +
λ

Γ(α+ 1)

)
c2 +

1

Γ(α+ 2)
c1 =

λ

Γ(α)

∫ 1

0

(1− s)α−1u(s)ds

− 1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1h(s)ds.
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By operating cDα on both sides of (1.6) and using the last condition in (1.10), we
get:

2λc2 + c1 =
µ

Γ(γ)

∫ η

0

(η − s)γ−1u(s)ds− 1

Γ(β)

∫ 1

0

(1− s)β−1h(s)ds.

Solving the former two equations to obtain:

c1 =
µ(∆ + 2λ)

∆Γ(γ)

∫ η

0

(η − s)γ−1u(s)ds− ∆ + 2λ

∆Γ(β)

∫ 1

0

(1− s)β−1h(s)ds

+
2λΓ(α+ 2)

∆Γ(α+ β)

∫ 1

0

(1− s)α+β−1h(s)ds− 2λ2Γ(α+ 2)

∆Γ(α)

∫ 1

0

(1− s)α−1u(s)ds,

and

c2 = − µ

∆Γ(γ)

∫ η

0

(η − s)γ−1u(s)ds+
1

∆Γ(β)

∫ 1

0

(1− s)β−1h(s)ds

− Γ(α+ 2)

∆Γ(α+ β)

∫ 1

0

(1− s)α+β−1h(s)ds+
λΓ(α+ 2)

∆Γ(α)

∫ 1

0

(1− s)α−1u(s)ds.

Substituting into (1.6) to obtain (2.1).
When α = 1 and λ 6= 0, we have c0 = λc2 and by using the anti-periodic

boundary condition u(0) + u(1) = 0, we find that:

2c2 +
c1
λ2
(
λ− 1 + e−λ

)
= − 1

Γ(β)

∫ 1

0

e−λ(1−s)
(∫ s

0

(s− v)β−1h(v)dv

)
ds.

From (1.8) and the last condition in (1.10), we get:

2λc2 + c1 =
µ

Γ(γ)

∫ η

0

(η − s)γ−1u(s)ds− 1

Γ(β)

∫ 1

0

(1− s)β−1h(s)ds.

Solving the former two equations to obtain:

c1 =
λ

1− e−λ

[
λ

Γ(β)

∫ 1

0

e−λ(1−s)
(∫ s

0

(s− v)β−1h(v)dv

)
ds

+
µ

Γ(γ)

∫ η

0

(η − s)γ−1u(s)ds− 1

Γ(β)

∫ 1

0

(1− s)β−1h(s)ds

]
,

and

c2 = − λ

2(1− e−λ)Γ(β)

∫ 1

0

e−λ(1−s)
(∫ s

0

(s− v)β−1h(v)dv

)
ds

− λ− 1 + e−λ

2λ(1− e−λ)

[
µ

Γ(γ)

∫ η

0

(η − s)γ−1u(s)ds− 1

Γ(β)

∫ 1

0

(1− s)β−1h(s)ds

]
.

Substituting into (1.7) to obtain (2.2).
To facilitate writing, we assume that:

E1 = max
t∈[0,1]

|Eα(t)| = Γ(α+ 2) + |λ|(1 + α)

|∆|Γ(α+ 2)
, (2.3)
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F1 = max
t∈[0,1]

|Fα(t)| = Γ(α+ 2) + |λ|(1 + α)

|∆|
. (2.4)

Also, from the increasingly of the function t 7→ λt − 1 + e−λt on (0, 1) for all
0 6= λ ∈ R, we can introduce that:

E = max
t∈[0,1]

|E(t)| = |2(λ− 1 + e−λ)− λ2|
2λ(1− e−λ)

, (2.5)

F = max
t∈[0,1]

|F (t)| = λ− 1 + e−λ

2λ(1− e−λ)
. (2.6)

According to Lemma 2.2, we can deduce that:

cDαEα(t) =
2tΓ(α+ 2)− λ[1− (1 + α)t]

∆
,

cDαFα(t) =
λ(1− 2t)Γ(α+ 2)

∆
,

E′(t) = F ′(t) =
1− e−λt

1− e−λ
.

It is not difficult to show that:

max
t∈[0,1]

|cDαEα(t)| = 2Γ(α+ 2) + |λ|(2 + α)

|∆|
= E2, (2.7)

max
t∈[0,1]

|cDαFα(t)| = |λ|Γ(α+ 2)

|∆|
= F2, (2.8)

max
t∈[0,1]

|E′(t)| = max
t∈[0,1]

|F ′(t)| = 1. (2.9)

3. Basic Constructions

In the present section, we investigate the existence of solution for the nonlinear
fractional Langevin equation (1.9) subject to the anti-periodic and nonlocal integral
boundary conditions (1.10). In order to do this, we apply the same fixed point
theorems used in [9]. However, we do not use the technique of the green function
due to its length.

Let the space C[0, 1] be the space of all continuous functions defined on the
interval [0, 1]. Define the space

E = {v|v ∈ C[0, 1],cDρv ∈ C[0, 1], 0 < ρ ≤ 1}

equipped with the norm

‖v‖E = max
t∈[0,1]

|v(t)|+ max
t∈[0,1]

|cDρv(t)|.

It is worth pointing out that Su [20] proved that E is a Banach space equipped with
the former norm.

As an indispensable part of the basic needs to complete our investigations, we
assume the assumptions:

(R1) The function f : [0, 1]× R× R→ R is a jointly continuous.
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(R2) There exist nonnegative function ω ∈ L1[0, 1] such that:

|f(t, u, v)| ≤ ω(t) + c|u|δ1 + k|v|δ2 , ∀(t, u, v) ∈ ([0, 1],R,R),

where c and k are positive constants and 0 < δi < 1, i = 1, 2.

(R3) The function f satisfies the Lipschitz condition:

|f(t, u1, v1)− f(t, u2, v2)| ≤ L(|u1 − u2|+ |v1 − v2|), ∀t ∈ [0, 1],

where L is a positive constant and u1, u2, v1, v2 ∈ R.

Now, let the operator Pα : E→ E be defined, for α < 1, as:

Pαu(t) =
1

Γ(α+ β)

∫ t

0

(t− s)α+β−1f(s, u(s),cDαu(s))ds (3.1)

− λ

Γ(α)

∫ t

0

(t− s)α−1u(s)ds+ Eα(t)

(
µ

Γ(γ)

∫ η

0

(η − s)γ−1u(s)ds

− 1

Γ(β)

∫ 1

0

(1− s)β−1f(s, u(s),cDαu(s))ds

)
+ Fα(t)

(
λ

Γ(α)

∫ 1

0

(1− s)α−1u(s)ds

− 1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s),cDαu(s))ds

)
,

and the operator P : E→ E be defined as:

Pu(t) =
1

Γ(β)

∫ t

0

e−λ(t−s)
(∫ s

0

(s− v)β−1f(v, u(v), u′(v))dv

)
ds (3.2)

+
E(t)

Γ(β)

∫ 1

0

e−λ(1−s)
(∫ s

0

(s− v)β−1f(v, u(v), u′(v))dv

)
ds

+ F (t)

[
µ

Γ(γ)

∫ η

0

(η − s)γ−1u(s)ds

− 1

Γ(β)

∫ 1

0

(1− s)β−1f(s, u(s), u′(s))ds

]
.

For the sake of the readers’ convenience, we provide the following constants:

Q = Q1 +Q2 and R = R1 +R2, (3.3)

where

Q1 =
1 + F1

Γ(α+ β + 1)
+

E1

Γ(β + 1)
, R1 =

|λ|(1 + F1)

Γ(α+ 1)
+
|µ|E1η

γ

Γ(γ + 1)
,

Q2 =
1 + E2

Γ(β + 1)
+

F2

Γ(α+ β + 1)
, R2 = |λ|+ |µ|E2η

γ

Γ(γ + 1)
+
|λ|F2

Γ(α+ 1)
,

and

Φ = Φ1 + Φ2 and Ψ = Ψ1 + Ψ2, (3.4)
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where

Φ1 =
(1 + E)(1− e−λ)

λΓ(β + 1)
+

F

Γ(β + 1)
, Ψ1 =

F |µ|ηγ

Γ(γ + 1)
,

Φ2 =
(1 + |λ|)(1− e−λ)

λΓ(β + 1)
+

2

Γ(β + 1)
, Ψ2 =

|µ|ηγ

Γ(γ + 1)
.

Consider the closed balls:

Sr = {u ∈ E| ‖u‖E ≤ r}, (3.5)

S` = {u ∈ E| ‖u‖E ≤ `}, (3.6)

with radii, respectively,

r ≥ max
{

4Q‖ω‖E, (4cQ)
1

1−δ1 , (4kQ)
1

1−δ2 , 4rR
}
,

` ≥ max
{

4Φ‖ω‖E, (4cΦ)
1

1−δ1 , (4kΦ)
1

1−δ2 , 4`Ψ
}
.

Lemma 3.1. Assume that the assumption (R2) holds, then the operator Pα : E→
E defined in (3.1), satisfies PαSr ⊆ Sr where Sr defined in (3.5).

Proof. Taking u ∈ Sr and using (R2) yield:

|Pαu(t)|

≤ 1

Γ(α+ β)

∫ t

0

(t− s)α+β−1|f(s, u(s),cDαu(s))|ds

+
|λ|

Γ(α)

∫ t

0

(t− s)α−1|u(s)|ds+ |Eα(t)|
(
|µ|

Γ(γ)

∫ η

0

(η − s)γ−1|u(s)|ds

− 1

Γ(β)

∫ 1

0

(1− s)β−1|f(s, u(s),cDαu(s))|ds
)

+ |Fα(t)|
(
|λ|

Γ(α)

∫ 1

0

(1− s)α−1|u(s)|ds

+
1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1|f(s, u(s),cDαu(s))|ds
)

≤ 1

Γ(α+ β)

∫ t

0

(t− s)α+β−1(ω(s) + c|u(s)|δ1 + k|cDαu(s)|δ2)ds

+
|λ|

Γ(α)

∫ t

0

(t− s)α−1|u(s)|ds+ |Eα(t)|
(
|µ|

Γ(γ)

∫ η

0

(η − s)γ−1|u(s)|ds

+
1

Γ(β)

∫ 1

0

(1− s)β−1(ω(s) + c|u(s)|δ1 + k|cDαu(s)|δ2)ds

)
+ |Fα(t)|

(
|λ|

Γ(α)

∫ 1

0

(1− s)α−1|u(s)|ds

+
1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1(ω(s) + c|u(s)|δ1 + k|cDαu(s)|δ2)ds

)
≤‖ω‖E + crδ1 + krδ2

Γ(α+ β)

∫ t

0

(t− s)α+β−1ds+
|λ|‖u‖E

Γ(α)

∫ t

0

(t− s)α−1ds
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+ max
t∈[0,1]

|Eα(t)|
(
|µ|‖u‖E

Γ(γ)

∫ η

0

(η − s)γ−1|ds+
‖ω‖E+crδ1 +krδ2

Γ(β)

∫ 1

0

(1− s)β−1ds
)

+ max
t∈[0,1]

|Fα(t)|
(
‖ω‖E+crδ1 +krδ2

Γ(α+ β)

∫ 1

0

(1− s)α+β−1ds+
|λ|‖u‖E

Γ(α)

∫ 1

0

(1−s)α−1ds
)

≤
(

1+F1

Γ(α+β+1)
+

E1

Γ(β+1)

)
(‖ω‖E+crδ1 +krδ2)+

(
|λ|(1+F1)

Γ(α+ 1)
+
|µ|E1η

γ

Γ(γ + 1)

)
‖u‖E

≤Q1(‖ω‖E + crδ1 + krδ2) +R1r.

It is easy to see that:

cDαPαu(t)

=
1

Γ(β)

∫ t

0

(t− s)β−1f(s, u(s),cDαu(s))ds− λu(t)

+cDαEα(t)

(
µ

Γ(γ)

∫ η

0

(η−s)γ−1u(s)ds− 1

Γ(β)

∫ 1

0

(1− s)β−1f(s, u(s),cDαu(s))ds

)
−cDαFα(t)

(
1

Γ(α+β)

∫ 1

0

(1−s)α+β−1f(s, u(s),cDαu(s))ds− λ

Γ(α)

∫ 1

0

(1−s)α−1u(s)ds

)
.

Whence, as above, we can find that:

|cDαPαu(t)| ≤‖ω‖E + crδ1 + krδ2

Γ(β + 1)
+ |λ|r

+ E2

(
|µ|ηγr

Γ(γ + 1)
+
‖ω‖E + crδ1 + krδ2

Γ(β + 1)

)
+ F2

(
‖ω‖E + crδ1 + krδ2

Γ(α+ β + 1)
+

|λ|r
Γ(α+ 1)

)
=Q2(‖ω‖E + crδ1 + krδ2) +R2r.

These lead to:

‖Pαu‖E = max
t∈[0,1]

|Pαu(t)|+ max
t∈[0,1]

|cDαPαu(t)|

≤ Q(‖ω‖E + crδ1 + krδ2) +Rr ≤ r,

where Q and R are defined as in (3.3), which means that the operator Pα : E→ E
satisfies PαSr ⊆ Sr.

Lemma 3.2. Assume that the assumption (R2) holds, then the operator P : E→ E
defined in (3.2), satisfies PS` ⊆ S` where S` defined in (3.6).

Proof. Taking u ∈ S` and using (R3) yield:

|Pu(t)| ≤ 1

Γ(β)

∫ t

0

e−λ(t−s)
(∫ s

0

(s− v)β−1|f(v, u(v), u′(v))|dv
)
ds

+
|E(t)|
Γ(β)

∫ 1

0

e−λ(1−s)
(∫ s

0

(s− v)β−1|f(v, u(v), u′(v))|dv
)
ds

+ |F (t)|
(
|µ|

Γ(γ)

∫ η

0

(η − s)γ−1|u(s)|ds
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+
1

Γ(β)

∫ 1

0

(1− s)β−1|f(s, u(s), u′(s))|ds
)

≤‖ω‖E + c`δ1 + k`δ2

Γ(β + 1)

(∫ t

0

sβe−λ(t−s)ds+ |E(t)|
∫ 1

0

sβe−λ(1−s)ds

)
+ |F (t)|

(
|µ|ηγ‖u‖E
Γ(γ + 1)

+
‖ω‖E + c`δ1 + k`δ2

Γ(β + 1)

)
.

It is well-known that:∫ t

0

sβe−λ(t−s)ds ≤ tβ
∫ t

0

e−λ(t−s)ds =
1− e−λt

λ
tβ ≤ 1− e−λ

λ
,

and also ∫ 1

0

sβe−λ(1−s)ds ≤
∫ 1

0

e−λ(1−s)ds =
1− e−λ

λ
,

which yield:

|Pu(t)| ≤ ‖ω‖E+c`δ1 +k`δ2

Γ(β + 1)

(1+E)(1−e−λ)

λ
+F

(
|µ|ηγ`

Γ(γ + 1)
+
‖ω‖E+c`δ1 +k`δ2

Γ(β+1)

)
= Φ1(‖ω‖E + c`δ1 + k`δ2) + Ψ1`.

It is easy, by using the Leibnitz integral rule, to see that:

d

dt
(Pu(t)) =

−λ
Γ(β)

∫ t

0

e−λ(t−s)
(∫ s

0

(s− v)β−1f(v, u(v), u′(v))dv

)
ds

+
1

Γ(β)

∫ t

0

(t− s)β−1f(s, u(s), u′(s))ds

+
E′(t)

Γ(β)

∫ 1

0

e−λ(1−s)
(∫ s

0

(s− v)β−1f(v, u(v), u′(v))dv

)
ds

+ F ′(t)

[
µ

Γ(γ)

∫ η

0

(η − s)γ−1u(s)ds

− 1

Γ(β)

∫ 1

0

(1− s)β−1f(s, u(s), u′(s))ds

]
.

Whence, as above, we can find that:∣∣∣∣ ddt (Pu(t))

∣∣∣∣ ≤‖ω‖E + c`δ1 + k`δ2

Γ(β + 1)

(1 + |λ|)(1− e−λ)

λ
+
|µ|ηγ`

Γ(γ + 1)

+
2(‖ω‖E + c`δ1 + k`δ2)

Γ(β + 1)

=Φ2(‖ω‖E + c`δ1 + k`δ2) + Ψ2`.

These lead to:

‖Pu‖E = max
t∈[0,1]

|Pu(t)|+ max
t∈[0,1]

|DPu(t)|

≤ Φ(‖ω‖E + c`δ1 + k`δ2) + Ψ` ≤ `,

where Φ and Ψ are defined as in (3.4), which means that the operator P : E → E
satisfies PS` ⊆ S`.
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Lemma 3.3. Assume that the assumption (R3) holds, then the operator Pα : E→
E defined in (3.1), satisfies PαBr ⊆ Br where:

Br = {u ∈ E| ‖u‖E ≤ r}, (3.7)

with radius

r ≥ |1−QL −R|−1QM,

where Q and R are defined in (3.3) and M = maxt∈[0,1] |f(t, 0, 0)|.

Proof. In view of Lipschitz condition in the assumption (R3), we can find that:

|f(t, u(t),cDαu(t))| = |f(t, u(t),cDαu(t))− f(t, 0, 0) + f(t, 0, 0)|
≤ |f(t, u(t),cDαu(t))− f(t, 0, 0)|+ |f(t, 0, 0)|
≤ L(|u(t)|+ |cDαu(t)|) +M

≤ L‖u‖E +M ≤ Lr +M.

Similarity, as in Lemma 3.1, we can complete the proof.
Also, we can prove the following lemma:

Lemma 3.4. Assume that the assumption (R3) holds, then the operator P : E→ E
defined in (3.2), satisfies PB` ⊆ B` where:

B` = {u ∈ E| ‖u‖E ≤ `}, (3.8)

with radius:

` ≥ |1− ΦL −Ψ|−1ΦM,

where Φ and Ψ are defined in (3.4) and M = maxt∈[0,1] |f(t, 0, 0)|.

4. Existence Results

In the present section, the existence of solutions for the boundary value problem
(1.9)-(1.10) is investigated by means of applying the Schauder fixed point theorem.
Also, we provide an example to illustrate the applicability of our results in this
section.

Theorem 4.1. Assume that the assumptions (R1) and (R2) hold. Then, the
boundary value problem (1.9)-(1.10) has at least one solution in [0, 1].

Proof. In addition to results of Lemmas 3.1 and 3.2, it suffices to prove that
the operator Pα : Sr → Sr if α < 1 and the operator P : S` → S` if α = 1 are
completely continuous. Then with applying the Schauder fixed point theorem, we
show the existence of solutions for the boundary value problem (1.9)-(1.10). In
order to show that, the assumptions (R1) and u(t) ∈ E yield the continuity of the
operators Pα and P. Now, let 0 ≤ t1 < t2 ≤ 1 and

N = max
t∈[0,1]

|f(s, u(s),cDαu(s))|.

From the definition of Eα in Lemma 3.4, we can get:

|Eα(t2)− Eα(t1)| ≤ 2(tα+1
2 − tα+1

1 )Γ(α+ 2) + |λ|(1 + α)(tα2 − tα1 − tα+1
2 + tα+1

1 )

|∆|Γ(α+ 2)
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≤ 2(tα+1
2 − tα+1

1 )Γ(α+ 2) + |λ|(1 + α)(tα2 − tα1 )

|∆|Γ(α+ 2)
.

Similarly, for Fa, E and F , we can deduce that:

|Fα(t2)− Fα(t1)| ≤ |λ|(1 + α)(tα2 − tα1 )

|∆|
,

|E(t2)− E(t1)| ≤ |λ|(t2 − t1) + |e−λt2 − e−λt1 |
λ(1− e−λ)

,

|F (t2)− F (t1)| ≤ |λ|(t2 − t1) + |e−λt2 − e−λt1 |
λ(1− e−λ)

.

Thus, for α < 1, we get:

|Pαu(t2)− Pαu(t1)|

≤ N

Γ(α+ β)

∫ t1

0

[
(t2 − s)α+β−1 − (t1 − s)α+β−1

]
ds

+
N

Γ(α+ β)

∫ t2

t1

(t2 − s)α+β−1ds+
|λ|r
Γ(α)

∫ t1

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
ds

+
|λ|r
Γ(α)

∫ t2

t1

(t2 − s)α−1ds+ |Eα(t2)− Eα(t1)|C1 + |Fα(t2)− Fα(t1)|C2

≤N(tα+β2 − tα+β1 )

Γ(α+ β + 1)
+

2|λ|r(t2 − t1)α

Γ(α+ 1)

+
2(tα+1

2 − tα+1
1 )Γ(α+ 2) + |λ|(1 + α)(tα2 − tα1 )

|∆|Γ(α+ 2)
C1 +

|λ|(1 + α)(tα2 − tα1 )

|∆|
C2,

and

|cDα(Pαu(t2))−c Dα(Pαu(t1))|

≤ N

Γ(β)

∫ t1

0

[
(t2 − s)β−1 − (t1 − s)β−1

]
ds

+
N

Γ(β)

∫ t2

t1

(t2 − s)β−1ds+ |λ||u(t2)− u(t1)|

+ |cDαEα(t2)−c DαEα(t1)|C1 + |cDαFα(t2)−c DαFα(t1)|C2

≤N(tβ2 − t
β
1 )

Γ(β + 1)
+ |λ|

(
N(tα+β2 − tα+β1 )

Γ(α+ β + 1)
+

2|λ|r(t2 − t1)α

Γ(α+ 1)

)

+ |λ|
(

2(tα+1
2 − tα+1

1 )Γ(α+ 2) + |λ|(1 + α)(tα2 − tα1 )

|∆|Γ(α+ 2)
C1 +

|λ|(1 + α)(tα2 − tα1 )

|∆|
C2

)
+
|2Γ(α+ 2) + λ(1 + α)|(t2 − t1)

|∆|
C1 +

2|λ|Γ(α+ 2)(t2 − t1)

|∆|
C2,

where

C1 =
|µ|

Γ(γ)

∫ η

0

(η − s)γ−1|u(s)|ds− 1

Γ(β)

∫ 1

0

(1− s)β−1|f(s, u(s),cDαu(s))|ds,

C2 =
1

Γ(α+ β)

∫ 1

0

(1−s)α+β−1|f(s, u(s),cDαu(s))|ds+
|λ|

Γ(α)

∫ 1

0

(1−s)α−1|u(s)|ds.
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It is obvious that, they are independent of u and if t2 − t1 → 0, then Pαu(t2) −
Pαu(t1)→ 0 and cDα(Pαu(t2))−cDα(Pαu(t1))→ 0. These mean that the operator
Pα : E→ E is equicontinuous.

When α = 1, we have:

|Pu(t2)− Pu(t1)| ≤ N

Γ(β + 1)

∫ t1

0

sβ |e−λ(t2−s) − e−λ(t1−s)|ds

+
N

Γ(β + 1)

∫ t2

t1

sβe−λ(t2−s)ds

+ |E(t2)− E(t1)|C3 + |F (t2)− F (t1)|C4

≤N |e
−λt2 − e−λt1 |tβ1

Γ(β + 1)

∫ t1

0

eλsds+
Ne−λt2tβ2
Γ(β + 1)

∫ t2

t1

eλsds

+
|λ|(t2 − t1) + |e−λt2 − e−λt1 |

λ(1− e−λ)
(C3 + C4)

=
N |e−λt2 − e−λt1 |tβ1

Γ(β + 1)

eλt1 − 1

λ
+
Ne−λt2tβ2
Γ(β + 1)

1− eλ(t2−t1)

λ

+
|λ|(t2 − t1) + |e−λt2 − e−λt1 |

λ(1− e−λ)
(C3 + C4),

and, similarity ∣∣∣∣ ddt (Pαu(t))t=t2 −
d

dt
(Pαu(t))t=t1

∣∣∣∣
≤N |e

−λt2 − e−λt1 |tβ1
Γ(β + 1)

eλt1 − 1

λ
+
Ne−λt2tβ2
Γ(β + 1)

1− eλ(t2−t1)

λ

+
N(tβ2 − t

β
1 )

Γ(β + 1)
+
|e−λt2 − e−λt1 |
|1− e−λ|

(C3 + C4),

where

C3 =
1

Γ(β)

∫ 1

0

e−λ(1−s)
(∫ s

0

(s− v)β−1|f(v, u(v), u′(v))|dv
)
ds,

C4 =
|µ|

Γ(γ)

∫ η

0

(η − s)γ−1|u(s)|ds+
1

Γ(β)

∫ 1

0

(1− s)β−1|f(s, u(s), u′(s))|ds.

It is obvious that, they are independent of u and if t2 − t1 → 0, then Pu(t2) −
Pu(t1) → 0 and D(Pu(t2)) − D(Pu(t1)) → 0. These mean that the operator P :
E→ E is equicontinuous.

Therefore, all assumptions of the Schauder fixed point theorem hold which leads
to the boundary value problem (1.9)-(1.10) has at least one solution in [0, 1].

Example 4.1. Consider the following boundary value problem for fractional Langevin
equations:

cD
3
2 (cDα + 1/4)u(t) = f(t, u(t),cDαu(t)), 0 < t < 1,

u(0) + u(1) = 0, u′(0) = 0, cDαu(1) =
5

Γ(5/2)

∫ η

0

(η − s)3/2u(s)ds.
(4.1)
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Here we take β = 3/2, µ = 5, γ = 5/2, λ = 1/4, η = 1/2, and

f(t, x, y) =
t2 sin(πt)

1 +
√
t

+ π

∫ t

0

xδ1 sin2(πs)ds+ yδ2 cos2(πt).

It is easy to show that:

|f(t, x, y)| ≤ t2

1 +
√
t

+ π|x|δ1
∫ 1

0

sin2(πs)ds+ |y|δ2 ≤ t 3
2 +

π

2
|x|δ1 + |y|δ2 ,

which means that c = π
2 , k = 1 and ω(t) = t

3
2 ∈ L1[0, 1] equipped with the norm:

‖ω‖E = max
t∈[0,1]

{t 3
2 }+ max

t∈[0,1]
{cDαt

3
2 }

= 1 + max
t∈[0,1]

{
Γ( 5

2 )

Γ( 5
2 − α)

t
3
2−α

}
= 1 +

√
3π

4Γ( 5
2 − α)

.

Thus, the function f : [0, 1] × R2 → R satisfies the assumptions (R1) and (R2)
for all 0 < δ1, δ2 < 1 and 0 < α ≤ 1. Therefore, according to Theorem 4.1, the
boundary value problem (4.1) has at least one solution on [0, 1].

5. Uniqueness Results

In the present section, the uniqueness of solution for the boundary value problem
(1.9)-(1.10) is investigated by means of applying the Banach fixed point theorem.
Also, we provide an example to illustrate the applicability of our results in this
section.

Theorem 5.1. Assume that the assumptions (R1) and (R3) hold. Then, the
boundary value problem (1.9)-(1.10) has a unique solution in [0, 1] if LQ + R < 1
for α < 1 and if LΦ + Ψ < 1 for α = 1, where Q,R and Φ,Ψ are defined in (3.3)
and (3.4), respectively.

Proof. In addition to results of Lemmas 3.3 and 3.4, it suffices to prove that the
operator Pα : Br → Br if α < 1 and the operator P : B` → B` if α = 1 satisfy the
contraction condition. Consider u, v ∈ Br and t ∈ [0, 1], by the assumption (R3)
for α < 1, we have:

|f(s, u(s),cDαu(s))− f(s, v(s),cDαv(s))|
≤ L(|u(t)− v(t)|+ |cDαu(s)−c Dαv(s)|)
≤ L( max

t∈[0,1]
|u(t)− v(t)|+ max

t∈[0,1]
|cDαu(t)−c Dαv(t)|)

≤ L‖u− v‖E,

which leads to:

|Pαu(t)− Pαv(t)|

≤L‖u− v‖E
Γ(α+ β)

∫ t

0

(t− s)α+β−1ds+
|λ|‖u− v‖E

Γ(α)

∫ t

0

(t− s)α−1ds

+ |Eα(t)|
(
|µ|‖u− v‖E

Γ(γ)

∫ η

0

(η − s)γ−1ds+
L‖u− v‖E

Γ(β)

∫ 1

0

(1− s)β−1ds
)
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+ |Fα(t)|
(
L‖u− v‖E
Γ(α+ β)

∫ 1

0

(1− s)α+β−1ds+
|λ|‖u− v‖E

Γ(α)

∫ 1

0

(1− s)α−1ds
)

=(LQ1 +R1)‖u− v‖E,

and also

|cDαPαu(t)−c DαPαv(t)| ≤ (LQ2 +R2)‖u− v‖E.

Thus,

‖Pαu− Pαv‖E ≤ (LQ+R)‖u− v‖E.

For α = 1, we have:

|Pu(t)− Pv(t)|

≤L‖u− v‖E
Γ(β + 1)

∫ t

0

sβe−λ(t−s)ds+
|E(t)|L‖u− v‖E

Γ(β + 1)

∫ t

0

sβe−λ(t−s)ds

+ |F (t)|
[
|µ|‖u− v‖E

Γ(γ)

∫ η

0

(η − s)γ−1ds+
L‖u− v‖E

Γ(β)

∫ 1

0

(1− s)β−1ds
]

=
L(1 + E)‖u− v‖Etβ

Γ(β + 1)

1− e−λt

λ
+ F

[
|µ|ηγ

Γ(γ + 1)
+

L
Γ(β + 1)

]
‖u− v‖E

≤(LΦ1 + Ψ1)‖u− v‖E,

and also

|P ′u(t)− P ′v(t)| ≤ (LΦ2 + Ψ2)‖u− v‖E.

Thus,

‖Pu− Pv‖E ≤ (LΦ + Ψ)‖u− v‖E.

Since LQ + R < 1 and LΦ + Ψ < 1, then the operators Pα and P are contraction
operators. Therefore, all assumptions of the contraction mapping principle hold
which leads to the boundary value problem (1.9)-(1.10) has a unique solution in
[0, 1].

Example 5.1.
cD

3
2 (cDα + 1/4)u(t) = f(t, u(t),cDαu(t)), 0 < t < 1,

u(0) + u(1) = 0, u′(0) = 0, cDαu(1) =
5

Γ(5/2)

∫ η

0

(η − s)3/2u(s)ds.
(5.1)

Here we take β = 3/2, µ = 2/3, γ = 5/2, λ = 1/4, η = 1/3, and

f(t, x, y) = L
(
t2 sin(πt)

1 +
√
t

+
π

2

∫ t

0

x sin(πs)ds+ tan−1 y

)
.

It is easy to show that:

|f(t, x1, y1)− f(t, x2, y2)| ≤ L
(
|x1 − x2|

π

2

∫ 1

0

sin(πs)ds+ |y1 − y2|
)
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= L (|x1 − x2|+ |y1 − y2|) ,

which means that the function f : [0, 1] × R2 → R satisfies assumption (R1) and
the Lipschitz condition in the assumption (R3). By carrying out of Mathematica
11 software , we have:

Q = 3.17745, R = 0.876652, Φ = 3.22745, Ψ = 0.0162196,

which means that the condition LQ + R < 1 is satisfied if 0 < L < 0.03882 when
α = 1/2 and the condition LΦ + Ψ < 1 is satisfied if 0 < L < 0.304816 when α = 1.
Therefore, according to Theorem 5.1, the boundary value problem (5.1) has unique
solution on [0, 1] if 0 < L < 0.03882 when α = 1/2 and if 0 < L < 0.304816 when
α = 1.

6. Conclusion

As a matter of fact and over this paper, we have determined the incorrect method to
use the condition u′(0) = 0 in [9] , and it was rectified successfully. Likewise, in the
main consequences of a proposed boundary value problem conditional on an anti-
periodic and nonlocal integral boundary conditions, we used the technic of Schauder
and Banach fixed point theorems to scrutinize the existence and uniqueness upshots
respectively. It is worthiness to symbolize each one by an exemplar which already
what we did.

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdu-
laziz University, Jeddah, under grant No. (D-638-130-1441). The authors, therefore,
gratefully acknowledge DSR technical and financial support.

References

[1] B. Ahmad, J. J. Nieto, A. Alsaedi and M. El-Shahed, A study of nonlinear
Langevin equation involving two fractional orders in different intervals, Non-
linear Anal. Real World Appl., 2012, 13(2), 599–606.

[2] H. Baghani, An analytical improvement of a study of nonlinear Langevin e-
quation involving two fractional orders in different intervals, J. Fixed Point
Theory Appl., 2019, 21, 95, 1–11.

[3] H. Baghani and J. J. Nieto, On fractional Langevin equation involving two
fractional orders in different intervals, Nonlinear Anal. Model. Control, 2019,
24, 884–897.

[4] H. Baghani, Existence and uniqueness of solutions to fractional Langevin e-
quations involving two fractional orders, J. Fixed Point Theory Appl., 2018,
20(63), 1–7.

[5] O. Baghani, On fractional Langevin equation involving two fractional orders,
Commun. Nonlinear Sci Numer. Simulat., 2017, 42, 675–681.



Fractional Langevin equation 2573

[6] A. Chen and Y. Chen, Existence of Solutions to Nonlinear Langevin Equation
Involving Two Fractional Orders with Boundary Value Conditions, Boundary
Value Probl., 2011, Article ID 516481, 1–17.

[7] H. Fazli and J. J. Nieto, Fractional Langevin equation with anti-periodic bound-
ary conditions, Chaos, Solitons and Fractals, 2018, 114, 332–337.

[8] Z. Gao, X. Yu and J. R Wang, Nonlocal problems for Langevin-type differential
equations with two fractional-order derivatives, Bound Value Probl., 2016, 52,
DOI:10.1186/s13661-016-0560-4.

[9] Y. Khalili and M. Yadollahzadeh, Existence results for a new class of nonlinear
Langevin equations of fractional orders, Iranian J. Sci. Tech., Trans. A: Sci.,
2019, 43(5), 2335–2342.

[10] A. A Kilbas, H. M Srivastava and J. J. Trujillo, Theory and applications of
fractional differential equations, North-Holland Math. Stud., ElsevierScience
B.V., Amsterdam, 204, 2006.

[11] I. Podlubny, Fractional Differential Equations, Mathematics in Science and
Engineering, 198. Academic Press, New Tork, 1999.

[12] A. Salem, F. Alzahrani and M. Alnegga, Coupled system of non-linear frac-
tional Langevin equations with multi-point and nonlocal integral boundary con-
ditions, Math. Problen. Eng., 2020, Article ID 7345658, 15 pages.

[13] A. Salem and M. Alnegga, Measure of Noncompactness for Hybrid Langevin
Fractional Differential Equations, Axioms, 2020, 9(2), 59.

[14] A. Salem, F. Alzahrani and A. Al-Dosari, Attainability to solve fractional dif-
ferential inclusion on the half line at resonance, Complexity, 2020, Article ID
9609108, 13 pages, https://doi.org/10.1155/2020/9609108.

[15] A. Salem and A. Al-Dosari, Existence results of solution for fractional Sturm-
Liouville inclusion involving composition with multi-maps, J. Taibah Univ. Sci.,
2020, 14(1), 721–733.

[16] A. Salem, F. Alzahrani and B. Alghamdi, Langevin equation involving two
fractional orders with three-point boundary conditions, Diff. and Integral Equ.,
2020, 33(3–4), 163–180.

[17] A. Salem, F, Alzahrani and M. Alnegga, Coupled System of Non-linear Frac-
tional Langevin Equations with Multi-point and Nonlocal Integral Boundary
Conditions, Math. Problen. Eng., 2020, Article ID 7345658, 15 pages.

[18] A. Salem, F. Alzahrani and L. Almaghamsi, Fractional Langevin equation with
nonlocal integral boundary condition, Mathematics, 2019, 7(5), 402, 1–10.

[19] A. Salem and B. Aghamdi, Multi-Point and Anti-Periodic Conditions for Gen-
eralized Langevin Equation with Two Fractional Orders, Fractal and Fractional,
2019, 3(4), 51, 1–14.

[20] X. Su, Boundary value problem for a coupled system of nonlinear fractional
differential equations, Appl. Math. Lett., 2009, 22, 64–69.

[21] C. Zhai and P. Li, Nonnegative Solutions of Initial Value Problems for Langevin
Equations Involving Two Fractional Orders, Mediterr. J. Math., 2018, 15, 164,
1–11.



2574 A. Salem

[22] C. Zhai, P. Li and H. Li, Single upper-solution or lower-solution method for
Langevin equations with two fractional orders, Advances in Diff. Equ., 2018,
360, 1–10.

[23] Z. Zhou and Y. Qiao, Solutions for a class of fractional Langevin equations
with integral and anti-periodic boundary conditions, Boundary Value Probl.,
2018, 152.

[24] H. Zhou, J. Alzabut and L. Yang, On fractional Langevin differential equations
with anti-periodic boundary conditions, Eur. Phys. J. Special Topics, 2017, 226,
3577–3590.


	Introduction
	Preliminaries
	Basic Constructions
	Existence Results
	Uniqueness Results
	Conclusion

