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GLOBAL DYNAMICS OF A FILIPPOV PLANT
DISEASE MODEL WITH AN ECONOMIC

THRESHOLD OF INFECTED-SUSCEPTIBLE
RATIO∗
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Abstract This paper presents a Filippov plant disease model incorporat-
ing an economic threshold of infected-susceptible ratio, above which control
strategies of replanting or removing are needed to be carried out. Based on the
Filippov approach, we study the sliding mode dynamics and further the global
dynamics. It is shown that there is a unique equilibrium, which is a disease-
free equilibrium, an endemic equilibrium or a pseudo-equilibrium. Moreover,
the equilibrium is proved to be globally asymptotically stable. Our results in-
dicate that the control goal can be achieved by taking appropriate replanting
and removing rate.

Keywords Filippov systems, plant disease model, economic threshold, sta-
bility.
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1. Introduction
Recently plant diseases have become a threat to crop yield as well as quality, and
can further lead to health problem and unstable social effects [11,21,25]. Therefore
a wide array of measures have been developed to control plant diseases. The more
effective strategy is the integrated disease management, which combines several
control measures to minimize losses and maximize returns. Among these measures,
the cultural control measure including replanting and/or removing diseased plants
is widely accepted due to the little environmental influence, see [1, 6, 23,24,26,34].

One important approach to understand disease transmission mechanisms is math-
ematical modeling, see [1–5,9,10,12–20,22,24,26–34]. Fishman et al. [9] considered
the Citrus tristeza virus temporal spread model in a closed plant population with
periodic complete removal of infected plants. However, eradicating the infected
completely is generally not possible, nor biologically or economically. It is more
reasonable and feasible to bring down the number of infected under an economic
threshold, under which economic damage is acceptable. Thus by incorporating an
economic threshold, some plant disease models were established, see [1, 24,26,34].
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Note that the plants population might not be closed, and the number of the
infected and the susceptible plants might be always changed due to removing, re-
cruiting as well as replanting. It is more realistic and flexible to consider an economic
threshold as the ratio of the infected to the susceptible plants. Based on this motiva-
tion, we extend the model in [26] with an economic threshold of infected-susceptible
ratio as follows 

dS(t)

dt
= A− βSI − η1S + pSΦ(S, I),

dI(t)

dt
= βSI − η2I − vIΦ(S, I)

(1.1)

with

Φ(S, I) =

{
0, I

S < k,

1, I
S > k,

(1.2)

where S(t) and I(t) represent the number of susceptible plants and infected plants
at the time t respectively; the constant A is the recruitment rate of susceptible
plants; β is the infectious rate; η1 and η2 are the mortality rates of susceptible
and infected plants respectively; p and v denote the replanting rate of susceptible
plants and the removing rate of infected plants respectively and k ≥ 0 denotes
the economic threshold of infected-susceptible ratio. In this model, when the ratio
of the infected to the susceptible is less than k, no control measures need to be
implemented. However, once the ratio exceeds the threshold k, one should remove
the infected and/or replant the susceptible to control the disease.

Throughout this paper, we assume p < kv. When the infected-susceptible ra-
tio exceeds the economic threshold k, the approach for removing the infected, as
the leading role to control the plant disease, are mainly implemented to effectively
bring down the ratio of the infected to the susceptible under the ratio threshold k.
Furthermore, we assume p < η1 indicating that the replanting rate is less than the
death rate of susceptible plants. Then the replanting rate p meets p < min{kv, η1},
which not only contributes to minimizing the loss and maximizing the production
but also prevents the excessive increase in infected plants from replanting appropri-
ate number of susceptible plants.

The goal of this paper is to study the global dynamics of the model (1.1) with
(1.2). We find that the plant disease is able to be controlled by choosing appropri-
ate removing and replanting rate. The rest of the paper is organized as follows. In
section 2, we provide preliminaries for planar Filippov systems and dynamics anal-
ysis of the subsystems. Sliding mode dynamics are exhibited in Section 3. Section
4 is devoted to the analysis of the global dynamics of the model (1.1). Finally, we
discuss biological implications in Section 5.

2. Preliminaries
In this section, we give some preliminaries for planar Filippov systems and discuss
the dynamics of two subsystems.

Since the system (1.1) is piecewise continuous, we consider its solutions in Filip-
pov sense. Thus some essential definitions on Filippov systems are given as follows
based on references [7, 27,28].
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Let R2
+ = {X = (S, I)T |S ≥ 0, I ≥ 0},

F1(X) =(A− βSI − η1S, βSI − η2I)
T

and

F2(X) =(A− βSI − η1S + pS, βSI − η2I − vI)T .

Then the system (1.1) with (1.2) can be written as the following generic planar
Filippov system:

Ẋ =

{
F1(X), X ∈ G1,

F2(X), X ∈ G2,
(2.1)

where G1 = {X ∈ R2
+|H(X) < 0} and G2 = {X ∈ R2

+|H(X) > 0} with H(X) =
I − kS as a smooth scale function.

Suppose HX(X) directs to G2, where HX(X) represents the gradient of H(X)
and ⟨·, ·⟩ is the standard scalar product. The separating boundary Σ = {X ∈
R2

+|H(X) = 0} can be partitioned by the following regions:

(1) Σc ⊂ Σ is the crossing region if ⟨HX(X), F1(X)⟩⟨HX(X), F2(X)⟩ > 0;
(2) Σs ⊂ Σ is the sliding region if ⟨HX(X), F1(X)⟩ > 0 and ⟨HX(X), F2(X)⟩ < 0;
(3) Σe ⊂ Σ is the escaping region if ⟨HX(X), F1(X)⟩ < 0 and ⟨HX(X), F2(X)⟩ > 0.

Now we give definitions of some types of singular points for the system (2.1).

Definition 2.1. A point X∗ is called a real equilibrium of the system (2.1) if
F1(X

∗) = 0, X∗ ∈ G1 or F2(X
∗) = 0, X∗ ∈ G2. A point X∗ is called a virtual

equilibrium of the system (2.1) if F1(X
∗) = 0, X∗ ∈ G2 or F2(X

∗) = 0, X∗ ∈ G1.
A point X∗ is called a boundary equilibrium of the system (2.1) if F1(X

∗) = 0,
X∗ ∈ Σ or F2(X

∗) = 0, X∗ ∈ Σ.

Definition 2.2. A point X∗ is called a tangent point of the system (2.1) if X∗ ∈ Σ
and ⟨HX(X∗), F1(X

∗)⟩⟨HX(X∗), F2(X
∗)⟩ = 0.

Definition 2.3. A point X∗ is called a pseudo-equilibrium if it is an equilibrium
of the sliding mode of the system (2.1), i.e. λF1(X

∗) + (1 − λ)F2(X
∗) = 0 with

0 < λ < 1, where

λ =
⟨HX(X∗), F2(X

∗)⟩
⟨HX(X), F2(X∗)− F1(X∗)⟩

.

The following propositions imply that the solutions of the model (2.1) with any
initial values in R2

+ are positive and bounded.

Proposition 2.1. Supposing that (S(t), I(t)) is a solution of the system (1.1) with
S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0 on [0, T ), where T ∈ (0,+∞], then S(t) ≥ 0 and
I(t) ≥ 0 for t ∈ [0, T ).

Proof. According to the first equation of the system (1.1)

dS

dt

∣∣∣∣
S=0

= (A− βSI − η1S − pSΦ(S, I)) |S=0 = A > 0,
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we have S(t) ≥ 0 for t ∈ [0, T ) as long as S0 ≥ 0. Consider the second equation of
the system (1.1)

dI

dt

∣∣∣∣
I=0

= (βS − η2 − vΦ(S, I))I |I=0= 0.

If I0 = 0, then I(t) = 0 holds for all t ∈ [0, T ). If I0 > 0, we claim I(t) > 0 holds
for all t ∈ [0, T ). Otherwise, there exists t1 = inf{t : I(t) = 0} with t1 > 0 such
that I(t1) = 0 and I(t) > 0 for t ∈ [0, t1). Note that

dI

dt
= βSI − η2I − vIΦ(S, I) ≥ −(η2 + v)I.

Thus for t ∈ [0, t1), we have

0 = I(t1) ≥ I0e
−(η2+v)t1 > 0,

which is a contradiction. Thus I(t) ≥ 0 for all t ∈ [0, T ) when I(0) ≥ 0.

Proposition 2.2. The set Ω = {(S, I) ∈ R2
+ | S + I ≤ A

µ } is a positively invariant
and attracting region for the system (1.1) with any given initial conditions in R2

+,
where µ = min{η1 − p, η2} > 0.

Proof. It follows from (1.1) that

d(S + I)

dt
≤ A− η1S − η2I + pS ≤ A− µ(S + I), (2.2)

where µ = min{η1 − p, η2} > 0. Thus d(S+I)
dt ≤ 0 if S + I = A

µ , which means Ω is
positively invariant. Notice that from (2.2) we can obtain

S(t) + I(t) ≤ A

µ
+

(
S(0) + I(0)− A

µ

)
e−µt,

which means that lim
t→+∞

[S(t) + I(t)] ≤ A
µ if S(0) + I(0) > A

µ . Hence the set Ω is
attracting.

The dynamics of the subsystems will play an important role in the analysis of
the global dynamical behavior of the system (2.1). Next, we examine the global
stability for the subsystems {

dS
dt = A− βSI − η1S,
dI
dt = βSI − η2I,

(2.3)

and {
dS
dt = A− βSI − η1S + pS,
dI
dt = βSI − η2I − vI

(2.4)

respectively. For the subsystem (2.3), the basic production number is R1 = Aβ
η1η2

and there are two possible equilibria, a disease-free equilibrium E1
0 and an endemic

equilibrium E1, where

E1
0 = (

A

η1
, 0), E1 = (S1, I1) = (

η2
β
,
Aβ − η1η2

η2β
).
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Proposition 2.3. For the subsystem (2.3), the disease-free equilibrium E1
0 is glob-

ally asymptotically stable if R1 < 1, while the endemic equilibrium E1 is globally
asymptotically stable if R1 > 1.

Proof. According to [26], for R1 > 1, rewrite the subsystem (2.3) as{
dS
dt = −η1(S − S1)− βI(S − S1)− βS1(I − I1),
dI
dt = βI(S − S1)

(2.5)

and consider the Lyapunov function

V1(S, I) =
1

2
(S − S1)

2 + S1(I − I1 − I1 ln
I

I1
).

The time derivative of V1 along the solutions of the system (2.5) is

d

dt
V1(S(t), I(t)) =− (η1 + βI)(S − S1)

2 ≤ 0.

Then by utilizing LaSalle’s invariance set principle, we conclude that the endemic
equilibrium E1 is globally asymptotically stable.

Similarly, for the case where R1 < 1, taking a Lyapunov function

V10(t) =
1

2
(S − A

η1
)2 +

A

η1
I

and employing LaSalle’s invariance set principle, we claim that the disease-free
equilibrium E1

0 is globally asymptotically stable.
For the subsystem (2.4), the basic production number is R2 = Aβ

(η1−p)(η2+v) and
the possible equilibria are E2

0 and E2, where

E2
0 = (

A

η1 − p
, 0), E2 = (S2, I2) = (

η2 + v

β
,
Aβ − (η1 − p)(η2 + v)

β(η2 + v)
).

Then we have the following proposition, whose proof is very similar to that of
Proposition 2.3 and is omitted.

Proposition 2.4. For the subsystem (2.4), the disease-free equilibrium
E2

0 = ( A
η1−p , 0) is globally asymptotically stable if R2 < 1, whereas the endemic

equilibrium E2 = (S2, I2) is globally asymptotically stable if R2 > 1.

At last in this section, it is remarked that for the system (2.1) the disease-
free equilibrium E1

0 is always real and the disease-free equilibrium E2
0 is always

virtual. Furthermore when R1 > 1, the endemic equilibrium E1 is real (virtual)
if and only if Aβ − η1η2 − kη22 < 0 (> 0), while it is boundary if and only if
Aβ − η1η2 − kη22 = 0. When R2 > 1, the endemic equilibrium E2 is virtual (real)
if and only if Aβ − k(η2 + v)2 − (η1 − p)(η2 + v) < 0 (> 0), while it is boundary if
and only if Aβ − k(η2 + v)2 − (η1 − p)(η2 + v) = 0.

3. Sliding mode dynamics
In this section, we will study the sliding mode dynamics for the system (2.1). Choose
vector n = (−k, 1) as a normal vector on discontinuous boundary Σ. To determine



2268 L. Huang, H. Ma, J. Wang & C. Huang

the tangent points and further the sliding region on Σ, we need the following func-
tions which are defined by

g1(S) = ⟨n, F1(S, kS)⟩ = k[β(k + 1)S2 + (η1 − η2)S −A] (3.1)

and
g2(S) = ⟨n, F2(S, kS)⟩ = k[β(k + 1)S2 + (η1 − η2 − p− v)S −A].

Solving g1(S) = 0 and g2(S) = 0 yields the horizontal ordinates S1
T and S2

T of
tangent points respectively, where

S1
T =

−(η1 − η2) +
√
(η1 − η2)2 + 4βA(k + 1)

2β(k + 1)
, (3.2)

S2
T =

−(η1 − η2 − p− v) +
√

(η1 − η2 − p− v)2 + 4βA(k + 1)

2β(k + 1)
. (3.3)

It can be checked that 0 < S1
T < S2

T if p+v > 0 and S1
T = S2

T if p+v = 0 by simple
calculation. Moreover, we can get the sliding region on Σ as

Σs = {(S, I) ∈ R2
+ | S1

T < S < S2
T , I = kS},

and the sliding mode equation on Σs as

dS

dt
=

1

(p+ v)
f(S), I = kS (3.4)

according to Filippov convex method [8], where

f(S) = β(p− kv)S2 − (vη1 + pη2)S + vA. (3.5)

Under the assumption p < kv, there is a unique zero S∗ of the function f(S), where

S∗ =
(vη1 + pη2)−

√
(vη1 + pη2)2 − 4vAβ(p− kv)

2β(p− kv)
.

Moreover, E∗ = (S∗, kS∗)T is the only possible pseudo-equilibrium for the system
(2.1) and this pseudo-equilibrium exists if S1

T < S∗ < S2
T . The following lemma can

help us to verify whether E∗ = (S∗, kS∗)T is a pseudo-equilibrium.

Lemma 3.1. If p < kv, then the following assertions hold:

(i) sign(S∗ − S1
T ) = sign(Aβ − kη22 − η1η2);

(ii) sign(S∗ − S2
T ) = sign(Aβ − k(η2 + v)2 − (η1 − p)(η2 + v)), where sign(·) is the

sign function

sign(ρ) =


1, ρ > 0,

0, ρ = 0,

−1, ρ < 0.

Proof. We only give the proof of the assertion (i), since the assertion (ii) can be
similarly obtained. Without loss of generality, we prove that S1

T > S∗ is equivalent
to Aβ − kη22 − η1η2 < 0. By p < kv, f(S∗) = 0 and the definition (3.5) of f(S), we
derive that S1

T > S∗ if and only if f(S1
T ) < 0. Notice that g1(S

1
T ) = 0, i.e.,

β(k + 1)(S1
T )

2 + (η1 − η2)S
1
T −A = 0.
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Thus we can obtain

f(S1
T ) = − (p+ v)(η1 + kη2)

k + 1

(
S1
T − A

η1 + kη2

)
,

which implies that f(S1
T ) < 0 if and only if S1

T >
A

η1 + kη2
. On the other hand, the

definition (3.1) of g1(S) means that S1
T >

A

η1 + kη2
is equivalent to

g1

(
A

η1 + kη2

)
=

Ak(1 + k)

(η1 + kη2)2
(Aβ − kη22 − η1η2) < 0.

Consequently, S1
T > S∗ if and only if Aβ− kη22 − η1η2 < 0. The proof is completed.

4. Analysis of global dynamics
In this section, we concentrate on the global dynamics for the system (2.1). We
start by giving two lemmas to preclude closed orbits. Denote the right-hand sides
of the system (2.1) Fi by f i(X), where f i(X) = (f i

1(X), f i
2(X)), i = 1, 2.

Lemma 4.1. There is no closed orbit that contains a part of the closure of the
sliding mode Σs for the system (2.1).

Proof. We give the proof by the way of contradiction. Without loss of generality,
suppose that E1 is real and E2 is virtual and there exists a closed orbit C that
contains a part of Σs. Then the closed orbit C must start from the tangent point
T1 and reach Σs after some time, as shown in Fig. 1. This implies that any orbit
outside C cannot converge to E1, which leads to a contradiction with the global
asymptotical stability of E1 in region G1 for the system (2.3). Analogously, the
orbit starting from the tangent T2 will not reach Σs either.
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Figure 1. The possible closed orbit containing a part of Σs if E1 is real and E2 is virtual.

Lemma 4.2. There is no closed orbit surrounding Σs for the system (2.1).

Proof. Suppose there exists a closed orbit Γ that surrounds Σs, as shown in Fig.2.
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Figure 2. The possible closed orbit surrounding Σs.

Denote the part below Σ as Γ1 and the part above Σ as Γ2. The closed orbit Γ
intersects with Σ at the points N1 and N2. Let D1 be the bounded region delimited
by Γ1 and N1N2 and D2 be the region bounded by Γ2 and N1N2. Let B(S, I) = 1

SI ,
then

2∑
i=1

∫∫
Di

[
∂(Bf i

1)

∂S
+

∂(Bf i
2)

∂I
]dSdI =

2∑
i=1

∫∫
Di

(− A

S2I
)dSdI < 0, (4.1)

where i=1,2. Applying Green’s theorem, we have∫∫
D1

[
∂(Bf1

1 )

∂S
+

∂(Bf1
2 )

∂I
]dSdI

=

∮
Γ1∪

−−−→
N2N1

Bf1
1dI −

∮
Γ1∪

−−−→
N2N1

Bf1
2dS

=

∫
Γ1

Bf1
1dI +

∫
−−−→
N2N1

Bf1
1dI − (

∫
Γ1

Bf1
2dS +

∫
−−−→
N2N1

Bf1
2dS)

=

∫
Γ1

B(f1
1 f

1
2 − f1

2 f
1
1 )dt+

∫
−−−→
N2N1

Bf1
1dI −

∫
−−−→
N2N1

Bf1
2dS

=

∫
−−−→
N2N1

(Bf1
1dI −Bf1

2dS)

=

∫
−−−→
N2N1

[
A

S2
+

η2 − η1
S

− β(k + 1)]dS

=−A(
1

N1
− 1

N2
)− β(k + 1)(N1 −N2) + (η2 − η1) ln |

N1

N2
|,

where dS = f1
1dt and dI = f1

2dt along Γi (i = 1, 2). Similarly,∫∫
D2

[
∂(Bf2

1 )

∂S
+

∂(Bf2
2 )

∂I
]dSdI

=

∫
−−−→
N1N2

(Bf2
1dI −Bf2

2dS)

=−A(
1

N2
− 1

N1
)− β(k + 1)(N2 −N1) + (η2 + v − η1 + p) ln |N2

N1
|.
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Since N2 > N1, then

2∑
i=1

∫∫
Di

[
∂(Bf i

1)

∂S
+

∂(Bf i
2)

∂I
]dSdI

=

∫∫
D1

[
∂(Bf1

1 )

∂S
+

∂(Bf1
2 )

∂I
]dSdI +

∫∫
D2

[
∂(Bf2

1 )

∂S
+

∂(Bf2
2 )

∂I
]dSdI

=

∫
−−−→
N2N1

(Bf1
1dI −Bf1

2dS) +

∫
−−−→
N1N2

(Bf2
1dI −Bf2

2dS)

=(p+ v) ln |N2

N1
| > 0,

which contradicts with (4.1). Hence there is no closed orbit surrounding Σs.

Lemma 4.3 (See [8], §13). If a half trajectory T+ is bounded for the system (2.1),
then its limit set Ω(T ) contains either an equilibrium or a closed trajectory.

In the following, we consider global dynamics of all possible equilibria including
the disease-free equilibrium E1

0 , the endemic equilibrium E1 or E2 and the pseudo-
equilibrium E∗.

Theorem 4.1. Suppose that p < min{kv, η1} and R1 < 1. Then the disease-free
equilibrium E1

0 is globally asymptotically stable for the system (2.1).

Proof. By the assertion (i) of Lemma 3.1, R1 = Aβ
η1η2

< 1 yields Aβ−kη22−η1η2 <

0 and further gives S∗ < S1
T . Notice that

Aβ − k(η2 + v)2 − (η1 − p)(η2 + v)

=Aβ − kη22 − η1η2 + (p− kv)(v + η2)− (η1 + kη2)v,
(4.2)

we obtain that Aβ − k(η2 + v)2 − (η1 − p)(η2 + v) < 0 if R1 < 1 and p < kv.
Since Aβ − kη22 − η1η2 < 0 and Aβ − k(η2 + v)2 − (η1 − p)(η2 + v) < 0, then

S∗ < S1
T < S2

T by Lemma 3.1, which reveals that there is no pseudo-equilibrium on
the sliding mode Σs. Also, the orbit on the sliding mode Σs goes down along the
Σs as f(S) < 0 for S ∈ (S1

T , S
2
T ) from the equation (3.5). Besides, Proposition 2.2

explains that solutions of the system (2.1) are bounded and no closed orbit exists
for the system (2.1) on the basis of Lemma 4.1 and Lemma 4.2. In this case the
ω-limit set of the system (2.1) is the unique real equilibrium E1

0 by Lemma 4.3 so
that any solution of system (2.1) eventually stabilizes at the disease-free equilibrium
E1

0 , as shown in Fig. 3.
For R1 > 1, by the equation (4.2) and p < kv, we have Aβ − k(η2 + v)2 − (η1 −

p)(η2 + v) < Aβ− kη22 − η1η2, which contradicts with the case Aβ− kη22 − η1η2 < 0
and Aβ − k(η2 + v)2 − (η1 − p)(η2 + v) > 0. Then we have the following theorem.

Theorem 4.2. Suppose that p < min{kv, η1} and R1 > 1. Then for the system
(2.1) the following assertions hold:

(i) the real equilibrium E1 is globally asymptotically stable if Aβ − kη22 − η1η2 < 0
and Aβ − k(η2 + v)2 − (η1 − p)(η2 + v) < 0;

(ii) the real equilibrium E2 is globally asymptotically stable if Aβ − kη22 − η1η2 > 0
and Aβ − k(η2 + v)2 − (η1 − p)(η2 + v) > 0;
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Figure 3. Global asymptotic stability of the disease-free equilibrium E1
0 , where the parameter are

chosen as follows: η1 = 0.6, η2 = 0.9, A = 5, β = 0.1, p = 0.1, v = 0.6, k = 0.5.

(iii) the pseudo-equilibrium E∗ is globally asymptotically stable if Aβ−kη22−η1η2 >
0 and Aβ − k(η2 + v)2 − (η1 − p)(η2 + v) < 0.

Proof. We first give the proof of the assertion (i). If Aβ − kη22 − η1η2 < 0
and Aβ − k(η2 + v)2 − (η1 − p)(η2 + v) < 0, then by Lemma 3.1 we have S∗ <
S1
T < S2

T which explains that there is no pseudo-equilibrium. The orbit on Σs goes
downward along the Σs as f(S) < 0 for S ∈ (S1

T , S
2
T ) by the equation (3.5). Besides,

Aβ− k(η2 + v)2 − (η1 − p)(η2 + v) < 0 indicates that the endemic equilibrium E2 is
virtual or the disease-free equilibrium E2

0 exists, while the endemic equilibrium E1

is a real equilibrium if Aβ − η1η2 − kη22 < 0 and R1 > 1. Therefore, by Lemma 4.3,
the ω-limit set of the system (2.1) is the unique real equilibrium E1 so that in this
case E1 is globally asymptotically stable for the system (2.1), as shown in Fig. 4.
Analogously, we can obtain the assertion (ii), as shown in Fig. 5.
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Figure 4. Global asymptotic stability of the
endemic equilibrium E1, where the parameters
are chosen as follows: η1 = 0.3, η2 = 0.8, A =
8, β = 0.04, p = 0.1, v = 0.5, k = 0.5.
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Figure 5. Global asymptotic stability of the
endemic equilibrium E2, where the parameters
are fixed as follows: η1 = 0.2, η2 = 0.5, A =
20, β = 0.1, p = 0.1, v = 0.8, k = 0.4.

Now we turn to the proof of the assertion (iii). The conditions Aβ−η1η2−kη22 >
0 and Aβ−(η1−p)(η2+v)−k(η2+v)2 < 0 imply that S1

T < S∗ < S2
T , which indicates

that there exists a pseudo-equilibrium E∗. The pseudo-equilibrium E∗ is stable on
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the sliding mode Σs since f(S) > 0 for S ∈ (S1
T , S

∗) and f(S) < 0 for S ∈ (S∗, S2
T ).

In addition, Aβ − η1η2 − kη22 > 0 and Aβ − k(η2 + v)2 − (η1 − p)(η2 + v) < 0
explain that solutions of both subsystems cannot converge to their own equilibria.
Accordingly, in this case the pseudo-equilibrium E∗ is globally asymptotically stable
for the system (2.1) (see Fig. 6).
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Figure 6. Global asymptotic stability of the pseudo-equilibrium E∗, where the parameters are fixed as
follows: η1 = 0.55, η2 = 0.8, A = 15, β = 0.1, p = 0.5, v = 0.9, k = 0.6.

5. Biological implications
In this paper, we put forward a Filippov plant disease model incorporating a thresh-
old policy and control strategies for cutting off the infected and replanting the sus-
ceptible. Our goal is to establish conditions for controlling the number of infected
plants below a given tolerable threshold so that the farmers can evaluate and choose
appropriate rouging and replanting control strategies to scientifically minimize the
economic losses and maximize the production.

Making use of the Filippov approach for sliding mode and global dynamics, we
investigate the global dynamics of the model (2.1) and acquire the global stability of
all possible equilibria including disease free equilibrium E1

0 , pseudo-equilibrium E∗,
endemic equilibrium E1 or E2 as the value of parameters varies, which is summarized
in Theorem 4.1 and Theorem 4.2.

These theorems also reveal that the choice of replanting rate p and the roug-
ing rate v are of great importance in controlling the plant disease and reduce the
losses. Next by varying the control parameters p and v under the assumption
p < min{kv, η1}, we distinguish three cases to illustrate how to achieve our control
goal: to maintain the infected-susceptible ratio below the ratio threshold k.

Case 1: R1 < 1

In this case, the infected plants will eventually goes extinct whether the control
measures are implemented or not by Proposition 2.3 and Theorem 4.1. Compared
with no control measures (p = 0, v = 0), taking appropriate control measures
(p ≥ 0, v > 0, p < min{kv, η1}) helps control the plants disease faster. As shown in
Fig.7, without any control measures, the infected-susceptible plants ratio (i.e. I(t)

S(t) )
stay below the threshold k after time t1. By contrast, with the same initial values
and other parameters, it takes time t2 for I(t)

S(t) maintaining below k when control
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measures are carried out (p = 0.4, v = 0.4). Due to t2 < t1, we conclude that
taking control measures contributes to achieving control goal faster, which reduces
the losses.

Case 2: R1 > 1 and Aβ − kη22 − η1η2 < 0.
Similar to the discussion in Case 1, control goal can be achieved with or without

control strategies since any solution of the system (2.1) with any given initial values
will eventually stabilize at the endemic equilibrium E1 by Proposition 2.3 and the
assertion (i) of Theorem 4.2. In particular, Fig. 8 suggests that choosing appropriate
control parameters p and v can help achieve the control goal faster and minimize
the losses.
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Figure 7. The graph of the infected-
susceptible plants ratio I(t)

S(t)
with different con-

trol parameters p and v when R1 < 1, where
the parameters are chosen as follows: η1 =
0.6, η2 = 0.8, A = 10, β = 0.04, k = 0.5 and
the initial value (S(0), I(0)) = (20, 16).
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Figure 8. The graph of the infected-
susceptible plants ratio I(t)

S(t)
with different con-

trol parameters p and v when R1 > 1 and
Aβ − kη2

2 − η1η2 < 0. The parameters are
chosen as follows: η1 = 0.3, η2 = 0.5, A =
4, β = 0.04, k = 0.3 and the initial value
(S(0), I(0)) = (20, 8).

Case 3: R1 > 1 and Aβ − kη22 − η1η2 > 0.
Under the assumption p < min{kv, η1}, it is worth noting that whether the

control goal can be achieved depends on the control parameters p and v. As shown
in Fig. 9, if we choose parameters p and v in the region U1, the susceptible-infected
ratio I(t)

S(t) can be ultimately controlled at the threshold k by the assertion (iii) of
Theorem 4.2. Nevertheless, we fail to come to control goal if the parameters p and
v are taken in the region U2 since the ratio I(t)

S(t) always exceed the threshold k by
the assertion (ii) of Theorem 4.2.

Notice that the control strategy in this paper is based on the ratio of the infected
population over the susceptible population. It should be pointed out that the same
analysis would work for the case that the control strategy is based on the ratio of
the infected population over the total population. The above analysis indicates that
control measures are effective if appropriate removal rate v and replanting rate p are
chosen. Note that we only discuss the dynamics of the system (2.1) provided p < kv
and more abundant dynamics when p > kv remain for further investigation. In the
case p > kv, Fig.10 shows that two pseudo-equilibira E∗

1 , E
∗
2 and a real equilibrium

E2 coexist, and there are two heteroclinic orbits between which one connects the
two pseudo-equilibira E∗

1 , E
∗
2 and the other connects the pseudo-equilibrium E∗

2 and
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the real equilibrium E2.
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Figure 9. The parameter region in the p − v
plane, where the equilibrium E∗ or E2 is glob-
ally asymptotically stable (GAS) if R1 > 1 and
Aβ−kη2

2−η1η2 > 0. The other parameters are
picked up as follows: η1 = 0.5, η2 = 0.6, A =
10, β = 0.05, k = 0.17. Besides, U1 ∪ U2 =
{(p, v)|p < min{kv, η1}, p ≥ 0, v ≥ 0}.
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