Journal of Applied Analysis and Computation Website:http://jaac-online.com
Volume 10, Number 5, October 2020, 2233-2262 DOI:10.11948,/20190393

SECOND-ORDER NORMAL FORMS FOR
N-DIMENSIONAL SYSTEMS WITH A
NILPOTENT POINT

Chunrui Zhang"', Baodong Zheng? and Pei Yu?

Abstract Normal forms theory is one of the most powerful tools for the study
of nonlinear differential equations, in particular, for stability and bifurcation
analysis. Many works paid attention to normal forms associated with nilpotent
Jacobian where the critical eigenvalues have algebraic multiplicity k (k > 1)
and geometric multiplicity one, and in particular, the case k& > 2 is more
complicated for determining unfolding. Despite a lot of theoretical results on
nilpotent normal forms have been obtained, computation developing can not
satisfy practical applications. To our knowledge, no results have been reported
on the computation of explicit formulas of the nilpotent normal forms for & > 3
with perturbation parameters. The main difficulty is how to determine the
complementary spaces of the Lie transformation. In this paper, we achieve
the following results. (1) A simple dimension formula for the complementary
space of the Lie transform; (2) a simple direct method to determine a basis
of the complementary spaces; (3) a simple direct method to determine the
projection of any vector to the complementary spaces. Using this method,
the second-order normal forms for any n-dimensional nilpotent systems can
be given easily. As an illustrative application, the normal forms for the vector
field with triple-zero or four-fold zero singularity and functional differential
equation with a triple-zero singularity are presented, and explicit formulas
for the normal form coefficients with three or four unfolding parameters are
obtained.
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1. Introduction

Studying dynamical systems with multiple zero critical singularity is not only the-
oretically significant but also important in real applications. When the Jacobian
of a dynamical system evaluated at a critical point contains one or two zero eigen-
values, the so-called simple zero or double zero bifurcation may occur. A nilpo-
tent singularity corresponding to a double-zero eigenvalue with geometric multi-
plicity one is known as codimension-2 Bogdanov-Takens (B-T) singularity, which
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can yield homoclinic orbits to saddle equilibria near the critical point. Since Bog-
danov [20] and Takens [2] obtained the normal forms of B-T bifurcation and gave
a very detailed bifurcation analysis, many works have been done in this area(e.g.
see [1,4,9,13,14,19,21,24] and references therein). The triple-zero eigenvalue with
geometric multiplicity one called codimension-3 singularity has also been considered,
see Ref. [3,7,15,17,22,23].

There are few studies of codimension-4 or higher codimension problems with
non-semisimple nilpotent singularities, perhaps due to the relative rarity of higher
codimension singularities in ordinary differential equation (ODE) models. However,
in delay differential equations (DDEs) higher codimension singularities seem to
occur more frequently.

The method of normal forms provides a powerful tool in finding a simple form
which keeps the fundamental dynamics of the original system unchanged [6]. For a
practical system, not only the possible qualitative dynamical behavior of the system
is of concern, but also the quantitative relationship between the normal forms and
the original system needs to be established. For a general singular vector field with
non-semisimple nilpotent singularities, the computation of the normal forms is very
complicated. In particular, finding the explicit formulas of normal forms in terms of
the original systems coefficients with nilpotent singularities is very difficult. There-
fore, the crucial part in computing a normal form is the computational efficiency
in finding the normal forms coefficients. In this study, we consider the following
vector field.

&= Jr+ Fy(x) + F3(z) + -+ Fo_y(2) + O(jz]"), zeR", (1.1)

where J is the canonical Jordan nilpotent form, and F;(x) represents the ith—degree
homogeneous polynomial in the Taylor expansion of F(x). Introducing the coordi-
nate transformation,

x:y+h2(y), (12)

where ha(y) denotes the 2nd-degree homogeneous polynomial in y, and substituting
(1.2) into (1.1) yields

g = Jy+ Jha(y) — Dha(y)Jy + Fa(y) + F3(y) + -+ Fr1(y) + O(ly[").  (1.3)

The basic ideal of normal forms method is to choose a specific form for hs(y) so as
to simplify the 2nd-degree terms as much as possible.

Let H2 be the linear space of 2nd-degree homogeneous polynomials. Further,
we introduce the following linear map of H? into H2:

ha(y) — Dha(y)Jy — Jha(y).
Due to its presence in Lie algebra theory, this map is often denoted as

Ly, (h2(y)) = —(Dha(y)Jy — Jha(y)),

and is called Lie bracket operation. Assume that H2 can be (non-uniquely) decom-
posed as

where W is a complementary spaces of H2.
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The purpose of normal forms method is to choose ha(y) so that only the terms
in W are retained. We denote these terms by Fj(y). Thus, (1.3) can be simplified
to

g=Jy+F5(y)+ F3(y) + -+ Fo_1(y) + O(ly|"), (1.4)

and so the second-order terms have been simplified.

To determine the nature of the second-order terms that cannot be eliminated
(i.e., F¥(y)), we must investigate the space complementary to Ly, (H2). Solving
this problem involves the following three main tasks:

(1) determining the dimension of the complementary space of the Lie transform;

(2) determining the basis of the complementary space of the Lie transform; and

(3) determining the projection of any vector in H2 to the complementary space.

Using this method in this paper, the second-order normal forms for any n-
dimensional nilpotent systems can be given easily. We will present detailed steps
to show how to fulfill these tasks. Our goal is to analyze the codimension-n(n > 2)
singularity corresponding to n-zero eigenvalues with geometric multiplicity one.

In Section 2, we define Lie bracket operation (Choquet-Bruhat et al. Ref. [5]).
Using the linear transformation Ly, we determine the dimensions of the comple-
mentary space of Ly, (H2) and obtain the basis of the complementary space of
Ly, (H2), which is the key step in calculating the non-semisimple normal form and
the explicit coefficients of the normal form. More precisely, we present the following
results in this section.

(1) A simple dimension formula for the complementary spaces of the Lie trans-
form;

(2) a simple direct method to determine the basis of the complementary spaces;
and

(3) a simple direct method to determine the projection of any vector in H2 to
the complementary spaces.

In Section 3, we obtain results for the complementary space of Ly, (H7,,
p parameters.

In Sections 4, 5 and 6, as an illustrative application, the normal forms for the
vector field and functional differential equation with triple-zero and four-fold zero
singularity are considered using the results of section 3. We derive the explicit
normal form for the triple-zero and four-fold zero singularity, which are of primary
importance in applications. On the one hand, we can determine the terms that are
inessential in determining the dynamical and bifurcation behaviors of the system.
On the other hand, as we can compute the normal form coefficients, we can identify
the parameter values for which nonlinear degeneracies take place. Near these critical
parameter values, more complicated bifurcation phenomena can occur.

) with

2. Complementary Space of Ly (H")

Let m,n be positive integers, R the real number field. We denote H?2 the following
space of 2nd degree homogeneous polynomials with n variables:

Hy ={P@)|Pn(X) = Y aijmeij,aijm €R,1<m<n},

1<i<j<n

where X = (11, 22,...,2,)T; P(x) = (P1(x), Py(x), - Py(x))T.
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Obviously, H? is a real inner product space. Let
e1 = (1,0,...,0)T es = (0,1,0,...,00T,... e, = (0,...,0,1)T.

Then, fm,l = T1T1€Em, fm,2 = T1T2€m, ..., fm’"(";—l) = TpTnem, m = 1,2,...,n,

consisting of a standard orthogonal basis of H2, called a natural basis.
Further, let

UmZ{P(X)em | P(X) = Z Q; jTiTj, Q4 5 GR}, m=12,...,n;
1<i<j<n

Vi ={P(X)e; | P(X) = > a; ;T:%5,0;; € R}, h=2,...,2n;

1<i<j<n,i+j=h
Vi = Vany1 = {0}
For example, when n = 3, h = 4, we have
Up = {(a112121 + a120122 + 4132103 + ae@2%2 + a2322x3 + azazxsrs)e; | a;; € R},
Vi = {(a132123 + a22x222)e1 | a13, a2 € R}.

Then the following result is obvious :

Lemma 2.1. U, is a subspace of H2, V}, is a subspace of Uy, and

m=1

(2) dim(H2) = 0FD - Qim(1,,,) = 20D — 1.2, 0.

(1) H2 =@ _, Up; Ui =@", Vi;

Let
010...00
001...00
Np=1]::: C i e R (2.1)
000...01
000...00

Define the linear transformation Ly, on H2 by N,, as follows:

Ly, (P(X)) = Dx P(X)No X — N, P(X),

where

P 9Py Py
Oxy Ozo " Oxn,
Py 0P oP;
) F) )

DXP(X) _ Z1 2 Tn
oP, 0P, opP,
dxry Oxo " Oxp

In this section, we investigate the dimensions of the complementary space of
Ly, (H?). 1t is easy to see that the following lemma is true.
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Lemma 2.2. U; is an Ly, -invariant subspace and
(1) Ly, (Vi) € Vi1, h =2,3,...,2n;
(2) Ly, (Uh) = @325 Ln, (Vi)
Now, we prove the following result.
Lemma 2.3. Suppose n > 2.

(1) If 2 < h <n, then Ly, is an injective linear mapping from Vj, to Viy1.
(2) If n+1 < h <2n, then Ly, is a surjective linear mapping from Vi, to Vipi1.

Proof. (1) For 2 < h < n, if there exists f(x) such that f(X)e; € V},, satisfying
Ln,(f(X)e1) =0, then f(X) = 0.

Case 1. h = 2. In this case, f(X) = azix1, Ly, (f(X)e1) = 2ax129¢3 = 0. So
a=0,f(X)=0.

Case 2. 3 < h <n, and h is an odd number. In this case, we can write

f(X)=a1z12p—1 + aswoxp_o+ ... + An—sThsTngs +AraTh1Tns.

Since
Ly, (f(X)e1) =larx12h + (a1 + a2)z2xp—1 + (a2 + a3)r3tp—o + ...+
(an-3 +an1)Tr1Tnss +an1Trr1Tria]er = 0.
2 2 2 2 2 2 2
we have
ay =0,a1+a2 =0,a2 +a3=0,...,ar_3 +an-1 =0,an1 =0.
2 2 2
Thus, a1 =as =...= ar =0, and f(X) = 0 follows.

Case 3. 3 < h <n, and h is an even number. In this case, we can write
f(X)=a1z12p-1 + a2@oxp—o+ ...+ Gr-2Th-2Tht2 + ALTRT .
2 2 2 2 2 2
Since

Ly, (f(X)el) :[alxlmh + (al + a2>372-73h71 + (Cl2 + a3>$3.’L‘h,2 + ...+

(an=2 +an—2)Th—2Znss + (@n—2 +2an)xnTarsz2]e; =0,
2 2 2 2 2 2 2 2

we obtain

a1:0,a1+a2:O,a2+a3:0,...,a¥+2a%:0,

which yields a; =as = ... = ay = 0, and so f(X) =0.

(2) For n +1 < h < 2n, we can prove that for any g(X)e; € Vj11, there exists
f(X)er € V3, such that Ly, (f(X)e1) = g(X)es.

Case 4. n+1 < h < 2n—1, and h is an odd number. In this case, 2 <
h—n+1<n, we write

g(X) = bh—nf1Th—nt1Tn+0p—nt2Th—ni2Tn_1+.. .—|—b%xh;1 m%-‘—b%x%xh;—l .
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Choose ap—pn, @h—nt1,--.,ar—1 as follows:
2

AQh—1 = bh+1,
2 2

an-3 =bn1 — Ah—1,
2 2 2

an-s =bn-s — ah—3,
2 2 2

Ap—n+1 = bh—n+2 — Ah—n+2,

h—n =bh_ni1 — Ahny1.
Then taking

f(X) = ah—nTh—nTn + Oh—n+1Th—n+1Tn—1+ ...+ A1 Th_1T ht1,

2 2

yields f(X)e1 € Vj, and so Ly, (f(X)e1) = g(X)e;.
Case 5. n+1 < h < 2n—1, and h is an even number. In this case, 2 <
h—n+1<n, we write

g(X) = bh—nt1Th—nt1Tn + Oh—nt2Th—nt2Tn-1+...+ b%xh;2 a:% + bgl‘%x%

We choose ap—p+t1,0h—nt2,...,0n as
2

Ap—n+1 = bh—n+17

Ah—n+t2 = bh—nt2 — Qh—nt1,

aAp—n+3 = bh—n+3 — AQh—n+2,
.

an—2 =bn2 — Ah—4a,
2 2 2

a% = %(b% - ah£2)7
and take
J(X) = ah—ni1%h—ns1Tn—1 + Ghni2Thni2ln-2 + ...+ anTrTn.

Then, f(X)e; € V}, and so Ly, (f(X)e1) = g(X)es.
Case 6. h = 2n. In this case, g(X)e; € Vapt1 = {0}, so g(X) = 0. Choose
f(X) = zpxn, then f(X)ey € Vo, and so Ly, (f(X)e1) =0 = g(X)ey. O
The following theorem provides a general formula for determining the dimension
of the complementary space (Ly, (H?2))®.

Theorem 2.4. Supposen > 2. The dimension of any complementary space Ly, (H2)¢
is given by

3n? + 2n), n=0
3n?+2n+3),n=1

(
dim(Ly, (Hy))® = (
(3n2 + 2n), n=
(

oo|= ool ool ool

2
n?+2n—1),n=3
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Proof. Denote A the matrix of Ly, |y, on the standard basis z;zje1,1 < < j <
n. Then,

A-E;, 0 0 0 0
0 A —-E; 0 0 O
0 0 A —-E;,...0 O

where F, is the s x s identity matrix, s = nintl), Simplifying the matrix M by

2
elementary column transformation yields

Es 0 0... 0 0 O
—-AE;, 0...0 0 O
0 —AE;... 0 0 O
M —
0 0 0...-AFE, 0
0 0 0...0 —-AA"
Thus,
n(n+1) 2
dim(Ly, (H2))¢ = dimU; — dim LY, (Uy) = - > dim Ly, (Vi).
h=2
By Lemma 2.3, we have
dim LY, (V) = min{dim V3, dim Vi1, }.
Since
dim(V3) =0, h=2n+1,2n+2,...,
we obtain
2n n
> dim Ly (Vi) =Y min{dim(V,), dim(Vin)}.
h=2 h=2

If n=0 (mod 4), denote n = 4k + 4. Then

n2 + 2n
8 )

> min{dim(Vy),dim(Viin)} =41+ 243+ ...+ k) +3(k +1) =
h=2
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and so 1
dim(Ly, (H2)) = g(3n2 +2n).

Ifn=1 (mod 4), denote n =4k + 1. Then, we obtain

- -1
> min{dim(V), dim(Viea)} = 40 +2 434 k) = 2 DOED,
h=2
yielding

1
dim(Ly, (H?))¢ = g(3n2 +2n +3).

If n=2 (mod 4), denote n = 4k + 2. Then, we have

. . n? +2n
> min{dim(V,),dim(Vin)} =41+ 2+ 3+ ...+ k) + (k+1) = .
h=2

which leads to 1
dim(Ly, (H?))¢ = g(:’m2 +2n).
If n=3 (mod 4), denote n = 4k 4+ 3. Then,
= 24 om+1
S min{dim(Vy), dim(V o)} = 41+ 24+ 34+ ...+ k) + 2(k + 1) = %

h=2

and thus )
3 2n —1
dim(Ly, (H2) = Z

O
The following example illustrates Theorem 2.4.

Example 2.5. The dimensions of the complementary space (Ly, (H2))¢ for n =
2,3,...,15, is given by

‘ 3 ‘ 4 ‘ ) ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘11‘12‘13‘14‘15

[\

n ‘

dim(Ly, (H2))¢| 2 ‘ 4 ‘ 7 ‘11‘15‘20‘26‘33‘40‘48‘57‘67‘77‘88
Corollary 2.6. Let n > 2, A be the matriz of Ly, |y, on the standard basis
fl,la"'7f1,s- Then,

o nln+1)

rank(A™) + dim(Ly, (H?)) D)

Corollary 2.7. Let n > 2,5 = w,t = dim(Ly, (H2))¢, A be the matriz of
Ly, |u, on the standard basis fi1,...,f1s. Then, there exists matriz B € R*!

such that rankB =t and mnk(A"fB) = s. Moreover, for any B € R®, there exists
Yy € R*, Zy € RY, such that A™Yy + BZy = 5.

In the following, a method to construct a complementary space to Ly, (H?2), and
a very simple algorithm to calculate the projection from H?2 to the complementary
space are presented. We have the following theorem.
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Theorem 2.8. Let n > 2,8 = %,t = dim(Ly, (H2))¢, A be the matriz of
Ly, |u, on the standard basis fi1,...,f1,s,B € R**" satisfying rankB = t and

rank(A™:B) = s. Then,
Hj =Ly, (H7) @ W,

where
W = span{glaQQa cee 7gt}, (91392 cee agt) = (fn,la fn,27 sy fn,s)B~

Moreover,

(91(X), 92(X), ..., g:(X)) Zo
is the projection of f(X) = > 1", Z§:1 a;jfij(X) € H2 to W (along Ly, (H?)),
where (Yg, Zg), Yo € R, Zg € R, is a solution of the equation:

a11 a21 ap—1,1 Qn1
_ ai2 _ a2 an—1,2 an2

A"Yy + BZy = A" ! + A2 +...4+A
a1,s a2, s Qn—1,s An,s

Proof. By Theorem 2.4, we obtain that

A-E, 0 0 ...0 0
0 A -E, 0 ...0 0

is the matrix of Ly, on the standard basis

fras e frsse s fadse ooy frgse
Take

(fl,lw"afl,sa"'7fn717"'afn,s)

A-E;, 0 0 .0 0
0 A —-E; 0 0 0
0 0 A —-E;,...0 O

:(fl,la"'afl,sa"'7fn717"'afn,8)
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Thena LN,I(HEL) = Span(fl,lv sy fl,sa ey f~n,1a sy fn,s)~
It follows from the proof of Theorem 2.4, that

rankH?2 — rank(Ly, ) = s — rank(A"),

and thus
A-E;, 0 0 ...0 0 O
0 A —-E; 0 0 0 0

-— 0 0 A —-E;...0 0 O
0 0 0 O .A—-FE; 0
0 0 0 O .0 A B
Es; 0 0...0 O 0O
-AE;, 0...0 O 0O
- 0 —AE,... 0 0 0 O s

0 0 0 -AE; 00
0 0 0 0 —AA" B

So

Hj = Ly, (Hy) ® W.
Then, for any

FX) =" aifiy(X) € Hy,

i=1 j=1
denote
a11 a21 anl
a2 a2 an2
a1 = , Qip = ; y Oy =
al,s a2,s anws
We take
Y: =AYy — ay,
Yy = AY] — ag,
Ynfl = AYn72 — Qp—1,

and so obtain

AY, 1 =AYy — (A" tay + A" a0+ ...+ o) + ap = o, — BZ.
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Hence,
Yo
Y1
(,]2:1,13"'7f2,17"'1fn,s) Y2
Ynfl
A-FE;... 0 0
Y,
0 A 0 0
Y1
0O 0 ...0 O
:(fl,la-"7f1,s7"'7fn,1)"'af’n78) Y2
0 . A —-F;
Ynfl
0 O .0 A
aq
Q2
:(fl,h"'vfl,sv'~~7fn,1;~"7fn,s)
Qp—1
Oén—BZO.
:f(X)_<gl7927"'7gt)Z0~
Therefore,
Yo
Y,

f(X):(.le?"'a.fl,sw"?fn,lw-',fn,s) Y2 +(917927-~~7gt)20-

Yn—l

O

Remark 2.9. Let n > 2/s = w,t = dim(Ly, (H?))¢, A be the matrix of
Ly, |u, on the standard basis fi1,..., f1,s. Take B = (£1, &2, ..., &) as an orthonor-
mal basic system solution for the homogeneous linear equation, A"z = 0. Then B
satisfies

B e R rankB=t, rank(A":B)=s, BTA"=0, B'B=E,.
In this case, A"Yy + BZy = 3 implies Zy = B' 3 for any 3 € R®.
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Example 2.10. For n = 2, we have s = 3,¢ = 2 and

000 000
A=12001],4%=|000
010 200

10
Choose B=| 01 | . Then

00

(fo1, f22, fo3) B = (ziea, m132e0, 23€2) B = (x7e2, 122€3),

and hence

) ) 0 0
H; = Ly,(Hy) ® W, W =span ,
l‘% T1X9

For any f(X) = 22221 Z?:l ai; fi;(X) € Hj, solving the equation:

a1 a1

Ao+ BZy=Ao + a2, ar= | ap |,02=| a |.

a13 a23

we have

a21
ZO = BT(AOll + 052) =

2a11 + azz

So

. 0 0 0
Projy, f(X) = , | Zy = ,
Lbl 12 aglxl —+ (20,11 —+ 022)$1$2

3. Complementary Space of Ly (H2 ) with Param-

n—+p
eters

Now we want to extend the normal form techniques to systems with parameters.
The goal is to transform the system into normal form near the fixed point in both
phase space and parameter space.

Let n > 2,p > 1, 1, po, . .., pp be independent parameters, and

H2 ={P(X,)|Po(X, ) = > aijmmy+ Y bijpisy

1<i<j<n 1<i<j<p
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Ly

1<i<n,1<j<p

Ci jTiftj, Gi g, Di g cij € R,1 <m < n},

where

X:(l'l,l'g,...,xn)T, M:(Mlvﬂ%"'vﬂ’p)’r

P(X’:u) - (Pl(X7M)7P2(X7/’(')"'aPn(le”'))T'

)

Obviously, H?2 4p is a real inner product space with

1

. 2
dimH, ., 5

(n+p)(n+p+1).
Moreover, the following

s fms—1 = Tn_1Tnem, fm,s = TnTnem,
Jm,s+1 = T1p1€m, frn s+2 = T1H2€m, -« -, fnt = TnllpCm,
frt+1 = H1p1Cm, fm,t42 = B12€m, - - -5 fm,q = EplpCm,

n(n+1) n(n+ 1) (n+p)(n+p+1)

=1,2,... = t= =
m y Sy )1, S ) ) 92 +np, q ) )

fm,l = T1T1€m, fm,2 = T1T2€m, - . -

constitutes a standard orthogonal basis of H? 4p» called a natural basis.
Define the linear transformation Ly, on H7, by Ny, which is defined in (2.1),
as follows:

Ly, (P(X,p)) = Dx P(X, ))Non X — Np P(X, ),

where
OP1(X,p) OP1(X,p) 0P (X 1)
89:1 6932 o 8$n
0Py (X p) 9P (X,p) 0P (X, )
Dxp(X, /J) _ oxq Oxo Oxp
0Py (X,p) OPn(X,p) 0P, (X, 1)
oxq Oxo e Oxy,

In this section, we study the complementary spaces Ly, (H?2 +p)5.

Denote U, = span{ fm1, fm2, - -

7fmq}7m:172,...7n.

Theorem 3.1. Suppose n > 2,p > 1. Then, the dimension of the complementary

space Ly, (H2, )¢ is
3n2é|»2n 4 P(P;Fl) + np, n=0 mod4 ;
3n242n+3 | pp+l) = .
+ +np,n=1 (modd
dim(Ly, (H2,,))={ ,° 2 ’

3n2+82n—1 + p(p2+1) +np,n=3

3n28+2n + p(p2+1) + np,

(mod4)
(mod4)
n=2 (modd);
(mod4).



2246 C. Zhang, B. Zheng & P. Yu

Proof. Let A be the matrix of Ly, |y, on the standard basis of U;. Then,

A-E, 0 0 ...0 0

is the matrix of Ly on the standard basis of H? 4p» Where

Opsp
A1 00 Ep Opxp
A=10 A0 |, A2 = Ep Opxp ’
0 00

EP OPXP

npxXnp

where A; is the matrix of Ly, |w on the standard basis of W = span{ fi1, fi2, . . -
and Aj is the matrix of Ly, |y on the standard basis of V=span{fi,s+1, f1,s+2, - -

Simplifying the matrix M by elementary column transformation, we have

—-FE, 0 0O ...0 0 O
A -E, 0 ...0 0 O
0 A -E;,...0 0 O
M —
0 0 0 ...A-E;, 0
0 0 0O ...0 A A"
Because
n
Opxp
Ep Opxp
Ay = Ep Opxp =0,
Ep Opsxp

npxXnp

,fls}a
'7f11t}'
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so we obtain

AT 0 0
. A7 0
A= 0 Azo0 | =
00
0 00

Then, with a similar proof to that for Theorem 2.4, we can prove that

dim(Ly, (H2,,))® = w — rankA?

3n2;-2n + p(p2+1) +np, n=0(mod4);

2 1
W+p(7372+)+np’ n=

(mod4)
3n2+82n+3 I p(pgrl) + np, n = 1(mod4);
( )
(mod4)

2
3"2+82"_1 + p(p;l) +np,n=3

Example 3.2. We list below the dimensions of the complementary spaces
(LNn (HTZL+;D))C for n = 23 33 47 57 6,p = 15 27 37 47 53 6.

dim(Ly, (H7,,))\n=2n=3|n=4n=">5n=06

n

p=1 5 108 |12 | 17 | 22
p=2 9 | 13 | 18 | 24 | 30
p=3 14 | 19| 25 | 32 | 39

20 | 26 | 33 | 41 | 49

27 | 34 | 42 | 51 | 60

ST RS I I~
I
(=) ot =~

35 43 52 62 72
Theorem 3.3. For any n > 2,p > 1,q = %, let A be the matrix of
Ly, |u, on the standard basis f11,..., fi,q,t = g — rankA™, matriz B € R7*" satis-
fying rankB =t and rank(A™:B) = q. Further, if
(91(X),92(X) .., 9:(X)) = (fu1, fr2s -+ frig) B,
and W = span{g1(X), g2(X), ..., g:(X)} C U,, then
H72L+p =Ly, (H£+p) oW

Moreover,

(91(X),92(X), ..., qe(X) Zo, Zo = (21,22,-..,2)" €R

is the projection of f(X) =311, >0 ai; fi;(X) € Hyy, to W (along Ly, (H} )

) if and only if there exists Yo € R? such that
AnYO + BZO = A"71a1 + A"72a2 + e + AOLn_l + (6770

where
T .
ai:(ail,aig,...,aiq) , 1=1,2,...,n.
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Proof. The proof is similar to that for Theorem 2.8, and thus omitted. O

Example 3.4. For n = p = 3, we have

000000
200000
A; 00 0 00
010000
A=1 0 450 AL = A= E3 0 0
010000
0 00 0 E50
21x21 001200 9x9
000010
Since
000000 000000
000000 000000
9 200000 3 000000 5 00
Alz ) A1: ) A2: )
200000 000000 E50
030000 600000
001200 030000
Oax1 Os4x1 Osxig
A2 0 0
) ) 6 0 O
A3=0, A’=] 0 A20]|, A= v
0 3 0Oix19
0 00

O15x1 O15x1 O15%19

we can choose
Ey O4x15

B = 0354 02x15

O15x4 Eis
Then,
Hj, 3= Ln,(H;3) & W,
W = span{g1(X), g2(X), ..., g190(X)},
where

2 2
(91(X), g2(X), ..., 910(X)) = (z7es, w122€3, ..., u3e3) B
2 2
:(%63, T1X2€3,L1X3€3,To€3, L141€3,T1H2€3, T1H3€E3, T2U1€3, L2U2€3, T2[L3E3Z,

2 2 2
T3U1€3, T3U2€3, LIUIES, [41€3, b1 42€3, 41 U3ES, Uo€3, U2 U3ES, M3€3)~
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For any f(X) = Z?zl 231:1 aij fi;(X) € H3 5, we solve the equation:
A3Yy + BZy = A%0q + Aas + ag,
where
a1 = (a1,1,01,2,. .. 7@1721)T, az = (az1,a29,..., 0,2,21)T, s, 03
= (as,1,as32,- .. 70,3)21)T.
Since BB = E19, BTA® = 0, we have Zy = BT(A%a; + Aas + a3). So
Projy, f(X)
0 0 0
=ag1 | 0 | + (as2+2a21) 0 + (ag,3 + asz2 +2a11) 0

7 19 I1x3

o
o
o
o

+(aga+az2+2a11)| 0 | +asz 0 +aszs 0 +aszg 0

2
T3 T1H1 L1H2 L1H3

(as,10 + a2,7) 0 + (a3,11 + ass) 0 + (as,12 + azy9) 0

T2 T2 b2 T2 3

+ (as,13 + az,10 + a1,7) 0 + (@314 + a211 +a1,8) 0

T3p1 T3 2

+ (as,15 + az12 + a19) 0 +azi6| 0 | +asar 0

T343 It i fiz

+ as,1s 0 + as,19 0 + as 20 0 + as,21 0 )
Hipts M2 2 23 K33
that is
Projy, f(X)
=laz 177 + (az2 + 2a91)T129 + (a33 + aza + 2a1.1)7123 + (az 4 + az 2 + 2a;1)73

+agrxipn + a3 gripiz + azoripiz + (as 0 + az7)rapn + (az11 + a2,8)T2pio

+ (as,12 + az,9)xaps + (as,13 + a210 + a1,7)T3p1 + (@314 + a2.11 + 61,8) T3 o
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4*(0&15%*a112%*alﬂ)$3u34*¢3@6M%4*a347M1M24*03J8M1H34*0349M2M2
+ as,20f2ks + as 01 p3s)(0,0,1)T,

which is the projection of f(X) = Zf=1 231:1 aijfi;(X) € H3, 3 to W (along

Ly, (H3ys)).

Example 3.5. For n = p = 4, we have

A; 00
A=1 0 4,0
0 00

Since
A2 =

0000000000
2000000000
0100000000
0010000000
0100000000

0010200000
36x36 0001010000
0000010000

0000001200

0000000010

0000000000
0000000000
2000000000
0100000000
2000000000
0300000000
0020200000
0010200000
0001030000

0000001200

0 0 0O
Es 0 00

0 E35 00

0 0 Es0
16x16

0000000000
0000000000
2000000000
0000000000
2000000000
6000000000
0400000000
0300200000
0040060000

0001030000



Second-order normal forms for a ...

2251

4
, A5 = 016x16,

0000000000
0000000000
0000000000
0000000000
Al = 0000000000
0000000000
8000000000
6000000000
01000000000
0040060000
0000
A8 = 0000
0000
E;000
we can choose
Eg
O1x6
B=1 0ix¢
O2x6
O26x6

Then,

where

(gl(X)aQQ(X), ce
=(fa1, s fae:3fa7, —4fas, fann, -

Osx1 O6x26

3 O1x26
—4 0O1x26
0 O2x29
0 FEg

Hi,, =Ln,(H; ) ®W,

W = span{g1(X), g2(X), ...

,933(X)) = (fa1,-

0 000
0 000
Es 000
0 £400

00

36x33

For any f(X) = 2?21 Z;S-G:l aijfij(X) € HZ 4, let

aq (al,l, : 7a1,36)T;
az = (az,--- ,a2,36)T§
ag = (as1, - 7(13,36)T;
ay = (as, - aa36)" -

A4 0

7933(X)}7

-, fa36)B
-y fa,36)-
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we solve the equation:

A4YO + BZy = A3a1 + A2a2 + Aas + ay.

Es  0sx1 Osx26

Since BTB=| 0,46 25 1x26 | BTA*=0,wehaveZ, = (BTB)"'BT(43a;+

026x6 O26x1 Fa2g
A2a2 + Aag + O£4). So

Proij(X)

0 0

x% T1To

0 0
0 0
=(91(x), g2(x),- -+, g33(x)) Zo = a1 + (as,2 + 2a3,1)
0
0
+ (aa,3 + as,2 + 2a2,1) + (4,4 + as,3 + az,2 + 2a1,1)
0

13 T1T4

o O
o O

+ (aa,5 + as,2 + 2a2,1) + (6a1,1 + 3az2,2 + as,;z + 2a3,5 + aa6)
0 0
x2 Tax3
0
1 0
+ %(2612,3 —2a2,5 + 3as,4 — as,6 + 3a4,7 — 4aas)
0
3Tox4 — 41:§
0 0
4 0 4 0
+ Z 4,104j + Z(GS,IOJrj + as,14+5)
j=1 0 j=1
T1fhj L2fbj
0
4 0
+ Z(a2,10+;‘ + as,14+4j5 + aa,18+5)
j=1 0

T3fLj
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0
4 0
+ Z(a1,10+]‘ + a2,14+; + a3,18+45 + a4,224;)
j=1 0
Taptj
0
0
0
4 4 0
+ Z Q4,26+ 0 + Z a4,26+;
j=1 j=1 0
0
Hafts
K1 s
0 0 0
3 2
0 0 0
+ Z 4,30+ + Z 4,334 + aa,36
j=1 0 j=1 0 0
M2+ 13 145+2 i

4. Normal forms for 3-dimensional Vector Field
with a Nilpotent Point with Three Parameters

Consider the vector field

&= Jr+ Fy(x, p)+ Fs(x, p) +- -+ Fp(z, 0) +0(J2]"), 2 €R® pelcCR? (4.1)

010
where J = | 001 | is the canonical Jordan nilpotent form, and F;(x, 1) represents

000

the ith-degree homogeneous polynomial in the Taylor expansion of F(z, ).
According to Theorem 3.3 and Example 3.4, we have the following normal form
of system (4.1):

T 010 T
s | =1001 zo | + [a3,1$f + (as,2 + 2a21)T122
.’i?g 000 I3

+ (ag3 +az2 +2a11)z123 + (@34 + az2 + 2a1,1)23 + az 71 + az g1 o
+az 913 + (az,10 + az2,7)ropn + (az11 + a2.8)Tapz + (az12 + az,9)r2p3
+ (az13 4+ as10 + a1,7)xspn + (a4 + a2,11 + a1,8) T340

+ (as,15 + a2,12 + a1,0) 33 + az1645 + as,1741 12 + Q31801 13 + a3,19/242
+ ag 2023 + az 21 p3ps) (0,0, 1)
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Ignoring the higher order terms p;1;(4,j = 1,2, 3), we obtain

Theorem 4.1. If the Jacobian of vector field (4.1) evaluated at a critical point
involves a triple-zero eigenvalue with geometric multiplicity one, ignoring the higher
order terms p;p;(i,7 = 1,2,3), we obtain the reduced normal form with unfolding
on the center manifold near (z, ) = (0,0) as follows:

T1 = Tg,
To = x3, (4.2)
By = M21 + Aoy + Az + mat + a3 + 31T + Na123,

where

A1 = ag7pn + agspe + asops,

A2 = (az 10 + a2,7)p1 + (as 11 + az,8)pe + (az 12 + az,op3,

A3 = (as 13 + a2,10 + a1,7)t1 + (as,14 + a2 11 + a1,8)p2 + (@315 + az.12 + a1,9) i3,

m = asa,

N2 = (a3 4 + azz2 + 2a1,1),

n3 = (as2 + 2a2,1),

Ny = (ass + az2 + 2a1,1).

Generically, we expect the fixed points to move as the parameters are varied.

This does not happen in (4.2); the origin always remains a fixed point. This situation
is easy to remedy. Notice from the form of (4.2) that any fixed point must have

1 = xo = 0. Suppose that system (4.2) satisfies 71 # 0. We make the coordinate
transformation [18]

z=a1+ 3,
Y = T2,
Z = X3,
then Eq.(4.2) becomes
T =y,
Y=z, (4.3)

Z2 =K1+ Koy + K3z + n1x2 + 7]2y2 + N3y + Maxz,
2
4%, ko = Ao — )‘217;713 ’\21—7]7714 Using the method developed
in Ref [8,10,12], we can obtain the following truncated hypernormal form up to
second order:

where k1 = —

, K3 = A3 —

T =y,
Y=z, (4.4)
i =K1+ Koy + K3z — 32% + May + 122,

— 13 — "4
and M= —2m Y2 = 2n °
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5. Normal form of a DDE system associated with
triple-zero singularity

In this section, we present the normal form of a functional differential equation
associated with a trip-zero singularity.

Let us consider an abstract retarded functional differential equation with pa-
rameters in the phase space C = C([—,0]; R"), described by

u(t) = L(p)uy + F(ug, p), (5.1)

where u; € C, is defined by u(0) = u(t + ), —7 < 0 < 0, the parameter u € RP is
a parameter vector in a neighborhood V' of zero. L(u) : V — L(C, R") is C*~1 and
F:C x RP — R" is C*(k > 2) with F(0,) = 0, DF(0,1) = 0. Define L = L(0)
and

G(ug, p) = Fug, p) + (L(p) = L(0))us,

under which system (5.1) can be rewritten as
w(t) = Lus + G(ug, ). (5.2)

Then, the linear homogeneous retard functional differential equation (5.2) can be
written as
u(t) = Luy, (5.3)

where L is a bounded linear operator and satisfies

0
L(p:/ dn(8)e(9), Ve e C. (5.4)

—T

Here, n(6)(0 € [—7,0]) is an n x n matrix function of bounded variation. Let Ay be
the infinitesimal generator such that

AOQD = Qba D(AO) = {90 € Cl([_T> O]a Rn) : 90(0) = fET d77(9)<P(9) } ’
and its adjoint is given by
Ao =, D(AG) = {4 € C1([0,7), B™") : $(0) = — [°, dn(®)6(~6) } -

Define the bilinear form between C and ¢’ = C([0, 7], R"") by

0 0
() = $(0)(0) — [ /O B(E — 0)dn(B)p(€)de, Yib € CL, Wy € C.

In the following, we will consider the case for which L has a triple-zero eigenvalue
and all other eigenvalues have negative real parts.

Let A be the set of eigenvalues with zero real part and P be the generalized
eigenspace associated with A which has a triple-zero eigenvalue and P* the space
adjoint with P. Then, C' can be decomposed as

C=PodQ, whereQZ{<peC’:<<p,w>=O,V¢EP*}a
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with dim p = 3. Choose the bases ® and ¥ for P and P* respectively such that

<U,d>=] &=0"B, U=—BY,

010

where I is the m x m identity matrix and B= | 00 1 |. Following the ideas in [9],

000
we consider the enlarged phase space BC,

BC = {90 :[-7,0) = R™: ¢ continuous on [—7,0), ﬂehm ©(0) € R™ } _
—0-
Then, the elements of BC can be expressed as ) = ¢ + zoa, p € Cya € R™ and

0, —7<6<0,
zo(0) = I o=0

where I is the identity operator on C. The space BC has the norm | ¢ + upa |=
| ¢ |c + | @|gn. Then, the continuous projection w : BC' — P, defined by

(¢ + uoe) = O[(¥, p) + ¥(0)al,

allows us to decompose the enlarged phase space BC = P @ Kerw. Let u = &z +y.
Then, system (5.1) can be decomposed as

i = Bz + U(0)G(®z + y, 1), 65
W — Agry + (I — mugG(Px +y, 1) z € 3,y € Q'

for y € Q' = QNC* C Kerr, where Agqn is the restriction of Ag as an operator from
Q' to Banach space Kerm. Employing Taylor’s theorem, system (5.5) becomes

j>2

) (5.6)
G =Aqy+ %:2 HACRND)
-

where f}"(x,y,u) (i = 1,2) denotes the homogeneous polynomials of degree j in
variables (z,y, p). For J = B, as defined above, the non-resonance conditions are
naturally satisfied. According to normal form theory for DDEs in [9], system (5.6)
can be transformed into the following normal form on the center manifold,

1
& = Bx + 595(33,0,/1) + h.o.t. (5.7)

For a normed space Z, denote VjG(Z ) the linear space of homogeneous polynomials
of (z,p) = (21, x9, 3, 1, U2, 13) with degree j and with coefficients in Z and define
M; the operator in VjG(R?’ x Kerm) with the range in the same space by
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where
D1 by + S —po
Mjlp = Mjl P2 = %SEQ + %1’3 —p3 |
p3 B gy + B3y

ary [0%015)
M?h = M?h(z, 1) = Dyh(x, n) Bz — Agrh(z, ).

Using M jl, we have the following decompositions,

Vj6(R3) = Im(Mjl) @ (Im(Mjl))c, Vf(R?’) = Ker(M7) @ (Ker(M7)).

j J
Then, g2 (z,0, 1) can be expressed as
g; (l’, Oa :U‘) = PrOJ(Im(le))quI (Z, 07 p’)

From the results obtained in section 3, we know that a basis of (Im(M3))¢ can be
taken as the set composed by the elements

0 0 0 0 0 0 0
01, 0 ; 0 U 0 ) 0 ) 0 )
Xy T1T2 123 i) T1p1 T2 T3
0 0 0 0 0 0
0 ) 0 ) 0 ) 0 ) 0 ) 0 )
To M T2 2 T2 3 T3 T3 2 T3 3
0 0 0 0 0 0
0 |- 0 ) 0 ) 0 ) 0 ) 0
I 111412 [1143 fi2fi2 fi2ft3 p3fis

Further, since
f2(x.y, 1) = U(0)Fa(®z +y),
we let .
fo(x,0,p) = Z Z aij fij (X, p).
i=1j=1

Example 3.4 shows that the projection of f(X) € (Im(M3))€ is given by

Proj tunaye £ (X 1)

=laz 127 + (a3 2 + 2a9,1) 7172 + (a3 + az 2 + 2a2.1)7173
+ (a3 4 + a2 + 2a1,1)$§ + agrripn + azgripie + agorips + (as10 + a2,7) T4
+ (as11 + asg)xaps + (asi2 + a2,9)rap3 + (az 13 + az10 + a1,7)xs
+ (as14 + az11 + a1,8)xspz + (a3 15 + az,12 + a1,9) T34 + CL3,16M% + ag, 174142

+ as 18143 + as 19fafle + as sofapis + as 21 psps] (0,0, 1)T-
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Ignoring the higher order terms p;1;(4,j = 1,2, 3), we obtain
93(2,0, 1) = (A1 + Xowa + Asws + mai + ol + nzziws + nazrx3)(0,0,1)7,
where A1, Aa, A3, 71,72, m3 and 74 are given in (4.2).

Summarizing the above results yields the following theorem.

Theorem 5.1. If Eq.(5.1) has a triple-zero eigenvalue with geometric multiplicity
one, then on the center manifold near (us, p) = (0,0), the reduced normal form with
unfolding has the following form:

1 = g,
To = T3,

T3 = A\1x1 + Aaxo + A3x3 + 7711‘% + T)QfE% + 1n3x1T2 + Nax123,
where

A1 = azrp1 + azgpe + asops,

Ao = (asjo + ag,7)p1 + (as,11 + az8)pe + (as,12 + a2,9p3,

A3 = (a313 + a0+ a1,7)p1 + (as,14 + az11 + a18)pe + (as,15 + a2,12 + a1,9) 3,
M = a3,

N2 = (az 4+ as 2 +2a1,1),

N3 = (az2 + 2a2,1),

na = (az3 + as2 4 2a1,1).

This form is consistent with the Ref [11,16]. If necessary, we can also convert it
into (4.3) or (4.4).

6. Normal forms for 4-dimensional Vector Field
with a Nilpotent Point with Four Parameters

Consider the vector field

i =Jr+Fy(x, p)+F3(z,p)+- -+ Fpo(z,u)+0(|z]"), =R, pelcCRY (6.1)

0100

0010
where J = is the canonical Jordan nilpotent form, and F;(x, y1) repre-

0001
0000
sents the ith-degree homogeneous polynomial in the Taylor expansion of F'(z, u).
According to Theorem 3.3 and Example 3.5, we have the following normal form
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of system (6.1):

1 0100 T
3'32 0010 T9 9
= + [a4’1x1 + (2043’1 + a472):v1m2
i3 0001 | | 3
T4 0000 Ty

+ (a33 + az2 + 2a1,1)x123 + (aaa + azz + a2 + 2a;1,1)x124

+ (aa5 + az o + 2a2,1)x3 + (6a11 + 3ag + az 3 + 2a3.5 + a46)T2w3
1
+ ?5(261273 —2as5 + 3a3.4 — a3 + 3a4,7 — 4a478)(3x2x4 - 4:17%)
4 4
+ Z a4, 1045115 + Z(a3,10+]’ + aa,1445) T2l
j=1 j=1
4
+ Z(az,lo+j + a3 1445 + Qa,1845) T3l
j=1
4
+ ) (1,104 + 2,144 + G318+ + a.221)Taft
j=1
4 3
+ Z a4,26+5H1 /4 + Z (4,30+5 24 +1
j=1 j=1
2
+ Z 4,33+ H3k+2 + aq3603)(0,0,0,1)T.
j=1

Ignoring the higher order terms p;4;(¢,7 = 1,2,3,4), we obtain
Theorem 6.1. If the Jacobian of vector field (6.1) evaluated at a critical point
involves a four-zero eigenvalue with geometric multiplicity one, ignoring the higher

order terms ;15 (i, j = 1,2,3,4), we obtain the reduced normal form with unfolding
on the center manifold near (xz, ) = (0,0) as follows:

':tl = T2,
"t2 = I3,
j’j3 = [L‘47 (6.2)

Bq = M1+ AoTo + A3x3 + My + )23 + 003 + n323

+ Y121T2 + V2T1T3 + Y3T1X4 + YaZ2X3 + V52224,

where

Ao =Y (az10+5 + aa1445),

j=1
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>

@

I
(=

(a2,1045 + a3,1445 + a4,18+5),

<.
[

~

A1 =) (@104 + a214+j + a3,18+; + a4,22+45),
=1
= a4,
N2 = ags5+azo + 2az 1,
N3 = ——(2a2,3 — 2a2,5 + 3asz 4 — as,¢ + 3a4,7 — 4asg),

25
Y1 = 2a3,;1 + aq.2,
Y2 = a3 3+ az2+ 2017,
Y3 = a44 + a3z +az2 + 2a1 1,
va = 6a11 + 3az2 + az3 + 2a35 + a6,

V5 = 2%(2@,3 —2a2,5 + 3az .4 — as6 + 3a4,7 — das s).

Generically, we expect the fixed points to move as the parameters are varied.
This does not happen in (6.2); the origin always remains a fixed point. This situation
is easy to remedy. Notice from the form of (6.2) that any fixed point must have
x1 = x2 = 0. Suppose that system (6.2) satisfies 7, # 0. We make the coordinate
transformation [20]

Tr=x1+ 2)‘7117
Yy = T2,
z = w3,
W = Ty,
then Eq. (6.2) becomes

r =Y,

Y=z

o, (63)

W = K1 + Koy + K3z + Kaw + mz? + ney? + 132’

+ MY + Y2xz + Y3TW + Yayz + Ysyw,

2
Al _ s
4an1’ 2n °

A17s
2n1

A172
2m

Ko = Ao — K4 = A4

where k1 = — , K3 = A3 —

7. Conclusion

In this paper, we have derived second-order explicit formulas of the normal forms
associated with nilpotent critical points. As an application, the explicit formulas
have been obtained for normal forms with unfolding associated with a triple-zero
and a four-fold zero singularity in vector field and retarded functional differential
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equations. The formulas obtained in this paper can be easily implemented using a
computer algebra system such as Maple or Mathematica.
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