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RESEARCH ON THE COMPOSITION CENTER
OF A CLASS OF RIGID DIFFERENTIAL
SYSTEMS

1
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Abstract In this paper, we answer the question: under what conditions a
class of rigid differential systems have a composition center. We give the
sufficient and necessary conditions for these systems to have a center at origin
point. At the same time, we give the formula of focal values and the highest
order of fine focus.
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1. Introduction

Consider the system

v = —y+x(Pi(r,y) + Pa(z,y) + ... + Pa(2,y)) = —y + 2P, w.1)
v =z +y(Pi(z,y) + P2, y) + ... + Pu(z,y) = 2 + yP,

where Py(z,y) = ZHj:k pijz'y?, p;; are real numbers. The system in polar coor-
dinates becomes
=P+ Pl 4+ . 4+ Pt 0 =1.

This system is called a rigid system [3] because the derivative of the angular
variable is constant. It is clear that the origin is the only critical point and if it is
a center then it is a uniformly isochronous center [12]. In [9, 16], the authors
have proved that a planar polynomial differential system of degree n+1 has a center
at the origin of coordinates, then this center is uniform isochronous if and only
if by doing a linear change of variables and a scaling of time it can be written
as (1.1). The interest in the uniform isochronous centers has attracted people’s
attention since the 17th century. So far, there are many people who have strong
interest in this problem and have achieved fruitful results [2,8,9,12,16]. In [1,2] the
authors have used techniques based on normal forms and commutation and have
proved that the rigid system (1.1), in the cases: P = P + P, or P = Py + P,
or P = P + P, + P3 + Py, it has a center if and only if it is reversible. In [20],
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the author calculated by computer to get the center condition for this system with
P = P, + Py (k= 2,3,4,5). In [14,15], the numbers of limit cycles of (1.1) have
been discussed. In [18,19], some new methods have been used to studied the center
problem of this system.

In this paper, we consider the following rigid system

x’:—y+x(P1(x,y)+P3(:c,y)+P7(:E,y)), (12)

Y =z +y(Pi(z,y) + Ps(z,y) + Pr(,y)).

By [5,6], this system has a center at (0, 0) if and only if all solutions r(6) of periodic
differential equation

dr

deo
near the solution » = 0 are periodic, 7(0) = r(27). In such case it is said that
equation (1.3) has a center at r = 0.

As we known, the derivation of conditions for a center is a difficult and long-
standing problem in the theory of nonlinear differential equations, however due to
complexity of the problem necessary and sufficient conditions are known only for a
very few families of polynomial systems [4,13,17]. In [5,6] the authors introduce
a simple condition called Composition Conditions, which ensures that the Abel
equation

= 7(Py(cosB,sin 0)r + P3(cos ), sin 0)r® 4+ Pr(cos 6, sin 0)r") (1.3)

% — A(0)” + B(O)r® (1.4)
has a center. Roughly speaking the composition condition says that the primitives
of the functions A and B depend functionally on a new 27-periodic function. When
an Abel equation has a center because A and B satisfy the composition condition
we will say that the equation has a Composition Center [6].

The Composition Conjecture is that the composition condition is not only
the sufficient but also necessary condition for a center. This conjecture first ap-
peared in [7] with classes of coefficients which are polynomial functions in ¢, or
trigonometric polynomials. A counterexample was presented in [5] to demonstrate
that the conjecture is not true. To find the restrictive conditions under which the
composition conjecture is true, this is an open problem which has attracted dur-
ing the last years a wide interest. In [5] the author has proved that for a family
of cubic system the composition conjecture is valid. [21,22] the author used the
different method from [1,2] to prove that for system (1.1) with P = P; + P, and
P = Py + Py, the composition conjecture is true. The authors in paper [6, 10, 11]
give the sufficient and necessary conditions for the » = 0 of the Able equation (1.4)
to be a composition center.

In this paper, we find out all the restrictive conditions under which the origin
point of (1.3) is a composition center. At the same time, we give the sufficient and
necessary conditions for equation (1.2) to have a center at origin point by using
a different method from [1,2,20]. These center conditions are more succinet and
beautiful than those calculated by computer.

2. Several Lemmas

Alwash and Lloyd [5-7] proved the following statement.
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Lemma 2.1 ( [5,6]). If there exists a differentiable function u of period 2w such
that

A1 (0) = ' (0) Ar (u(6)), Az(6) = u'(6) Aa(u(6))
for some continuous functions A; and As, then the Abel differential equation

dr

75 = M(0)* + A (0)r°
has a center at r = 0.

The condition in Lemma2.1 is called the Composition Condition. This is a
sufficient but not a necessary condition for r = 0 to be a center [7,10].
The following statement presents a generalization of Lemma 2.1.

Lemma 2.2 ( [23]). If there exists a differentiable function u of period 2w such that
Ai(0) = u'A;(u), (i=1,2,...,n) (2.1)

for some continuous functions A, (i=1,2,...,n), then the differential equation

has a center at r = 0.
Denote :
igsind 9. P ' : i
P, = Z pij cos' Osin’ 0, P :/0 Ppdo, Cf, = m
i+j=k

Lemma 2.3. pr%o —|—p%1 # 0 and

2r 2

/ P121+1P3d9 =0, (’L =0, 1)’ P12J+1P7d9 =0, (] =0,1, 2,3)7
o 0

then
Py = Pi(A\1 4 2\o Py + 3X3P?), Pr = Py(pq + 2p2 Py + ... + Tz PP),

where p; (j =1,2,...,7) are real numbers and

1
1 :m(mopm(p‘fo +3pg1) + p21po1 (Pro — Po1)”

+ 2]912]9(2)12710(??0 - P(2)1) + 41703173129%0)»

1
A2 =—3\3p01, A3 = — 75—
3(pio + 151)?

+ (po3 — p21) (P31 — 3pPo1pio))-

((p3o — p12)(P3o — 3p10P21)

Proof. Denote

o= P10 b= Dot
VPl + 1é VP + P
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U=acosf+bsinf, V =asinf — bcosb,

then

P1 =P+ 03U, Pr = /s + P35,V + por,
2 27

a2+b2:1,U2+V2=1,/ U2d9=/ VZ2do =,
0 0

27 27 1\
/ Utdg = / ykg = ZE -,
0 0 (2k)!

Obviously, P3 and P; can be rewritten in the following forms

Py =mU + m3U3 +mV + TL3V3,
Pr = 51U + 83U + s5U° 4+ 57U + 1V + t3V3 + 5V + t,V7,

where n;(1 = 1,3),s;,t;(j = 1,3,5,7) are real numbers and

my = 3pagab® + po1 (b° — 2a%b) + pra(a® — 2ab?) + 3po3ab,
ms = (p3o — p12)(a® — 3ab?) + (pos — pa1)(b> — 3a°D).

By [2" PZHPydf = 0, (i = 0,1), we get

2m 2
/ (?’l1V2 + ’I’L3V4)d9 =0, / (77,1V4 + n3V6)d0 =0,
0 0

ie.,
3 3 5
ny + 1= 0, ik + s = 0,

solving these equations we get n; = ng = 0, so,

Py = myU +maU? = Py(\ +2)\o Py + 303 P}),

here A\; = —Z4E™M3_ 4 352 Ao Xy = —3A\3po1, Ny = ——— 8
) e]_i)e 1 \/m+ P13 2 sbot 3 3(1’%0"'1’31)%
y
27 .
/ PPTPrdo =0, (j = 0,1,2,3),
0
we get

(t1V2 + t3V4 + t5V6 + t7V8)d0 =0,
(VA4 13V + 15V +1,V10)dh = 0,
(t1 VO +t3V® + V0 41, V1%)do = 0,

(VB +t3V10 1 45V 1 1,V dh = 0,
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ie.,
3 5 35
i s &) (n
3 5 35 63 t
1 8 64 128 3 —0
5 35 63 231 " ’
8 64 128 512 5
35 63 231 429 t
64 128 512 1024 7

since the value of the determinant of the coefficient matrix of the above equations
is not equal to zero, so t; = t3 =t5 = t7 = 0 and

Py = 51U + s3U° + s5U° + 57U = Py(p1 + 219 Py + ... + Tur PY).

3. Main results

Consider equation
dr

@~
where P, = Ziﬂ-:k pij cos’ sin’ 0, pij (6,5 =0,1,2,...,k, k =1,3,7) are real num-
bers and p3, + p3; # 0.

Pir+ P3T3 + 1377‘7)7 (3.1)

Theorem 3.1. Suppose that one of the following conditions:
1. (14 4 X3)(35 + 23X3)(330 + 703\3 + 6573) # 0;

. 14+>\3 :0,p01 7&0,

144+ X3 =0, po1 =0,b3 = 0;

.35+ 23)\5 = 0, Po1 7é 0;

.35+ 2303 =0, po1 =0, bs = 0;

. 330 4 703\3 + 6573 = 0, po1 # 0;
7. 330 4 7033 + 6573 = 0, po1 = 0, by =0,

is satisfied. Then r =0 is a center of (3.1) if and only if

S T W N

27 2
PPy =0, (i=0,1), [ P¥T'Pdo=0,(j=0,1,23). (32
0 0
Le.,
P1op21 — Po1Pi2 + 3p1opos — 3po1pso = 05 (3.3)
P3Py — P21Pg1P10 + P12P01P1o — PosPip = 0;
P10(5P61 + 3paz + 5pas + 35po7) — po1(5p16 + 334 + Sps2 + 35p70) = 0; (3.5)

P1o(3p61+3pas+ Tpas +63por) —3pTopor (3ps2 +3pss+ Tpro+Tpie)

+ 3p10Pg1 (325 +3pas + TPor+Tpe1) — P (3p16+3p3a+Tps2+63pr0) =0;
P10 (5p61 +7paz+21pas +231por) —5plopor (5ps2+ Tpro+Tpsa+21p1e)

+ 10p3p31 (5pas+Tper +Tp2s+21por) — 10p3opi: (5psa+Tpis + Tps2+21pro) (3.7)

+ 5p10P01 (5p25+ Tpor+ Tpas +21pe1) —poy (5p16+ Tpsa +21psa +231prg) =0;
P70p(7)1 - P61P81P10 + P52P31P%o - P431031P?0 + P34p8110%0 - P25P31P?0

+ p16po1pSo — porpip = 0.

(3.6)

(3.8)
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Moreover, this center is a composition center and uniformly isochronous center.
Where A3 is the same as it is in Lemma2.3, b; = %fozw Prsinifdd, (i = 3,5,7).

Proof. Necessity: Let (6, c) be the solution of (3.1) such that 7(0,¢) = ¢(0 <

¢ < 1). We write
r(0,c) = CZ an(6)c",
n=0

where ag(0) = 1 and a,(0) = 0 for n > 1. The origin of (3.1) is a center if and only
if r(0 +2m,¢) =7(0,¢), ie, ag(2m) =1, a,(27) =0(n=1,2,3,...) [10,12].
Substituting (6, ¢) into (3.1) we obtain

oo o0 o0

Z 0)c" =cP( Zan "2 43 Py( Z M 4" Py ( Zan(G)cn)S. (3.9)

n=0 n=0 n=0
Equating the corresponding coefficients of ¢™ of (3.9), we get
9 ( ) - 17

0(0)

1(0) Plao» a1(0) =0,
5(0) = 2aga1 Py, a2(0) =0,
5(0) =

1(0) =

2
Il

S

Q

0 (2agpay + a?) Py + agPs, a3(0) = 0,
0 (2apas + 2a1a2) Py + 4a0a1P3, as(0) =0,

a

a
solving these equations we obtain
ap =1, ay :Pl, a9 :pf, as :plg—l—’yo, a4:P14—|—’}/1,

where

Yo = Pg, Y1 = 2p1p3 + 2P1P3. (310)
By this we see that a;(27) =0, (i =0, 1,2,3) and from a4(27) = 0 implies that

2m
/ P1P3d9 =0. (3.11)
0
Denote:
¢ =f+~c +ac + B + 60,
where
:Z 77 Z’%C Q—ZQZ 7ﬂ Zﬂlc 6—250
1=0 =0
Thus
O =1+ 20 + (07 + 20+ 2B 4 a4 A fE DL
+ a2 +2(76 + af)et + B2 + ., '
¢ =f1HAFC £ (67 +affa)e £ 4B+ (457 +12fMe)e

+ (4f35 +12296)C10 + (4* + 1272 a + 6 £2a?)c!? + ...,
= 8+ 8fTye + (28942 +8f7a)c® +88f7c" + ..., (3.14)



2512 Y. Yan & Z. Zhou

fr=> Cmn P (3.15)
k=0

Substituting r = ¢c = (f + v¢® + ac® + Bc” + §¢!0)c into (3.9) and using (3.12)-
(3.15) we get
CL/5 = P1(5p15 +2 Z pli’}/j> + chgpl,

i+j=1
solving this equation we obtain
a5 = P15 + Y2, (316)
where
Yo = 3P}Ps + 4P, P, P3 + 3P?Ps. (3.17)

By (3.11) and (3.16) and (3.17) we have as(27) = 0.
Applying (3.9) and (3.12)—(3.15) we obtain

ag = Pi(6P} +2 Y Pjy;) + Ps(CiP} + Civ),

itj=2
solving this equation we get
ag = PP + 3 + g, (3.18)
where
v3 = 4P} P34+ 6P2P, Py + 6P, P?P3 + 4P} P3, ap = 2P3. (3.19)

By (3.11) and (3.18) and (3.19) we see that if ag(27) = 0, then
2m

P}Pydf = 0. (3.20)
0

Using (3.11) and (3.20) and Lemma2.3 we get
Py = Pi(\ + 2\ P) + 303 PP), (3.21)
where \; (i = 1,2, 3) are the same as they are in Lemma2.3. Therefore,
Py = X3P} + NP + \ Py (3.22)

By (3.21) and (3.22) we see that v, (k = 0,1,2,3) are the polynomials with
respect to Py of degree k + 3, o is a polynomial on P; of degree 6 , so they are 27
periodic functions.

Applying (3.9) and (3.12)—(3.15) we get

arer = PP b ygin + arn + B, (=0,1,2), (3.23)

where

k _
=Y (k+1—j)1+ )P PPy, (3.24)
j=0
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k —_—
Br=Y (k+1—j)Ci P 7PP, (3.25)
7=0
ap = 2]532,

al:8]53]31P3+2]51P3}53+5]51}5327

_ — — R e — = — 2 -

oy = 4P, P, P3P3 + 12P3 P2 Py + 9P Py 4+ 20P, P3Py P3 + 10P, P3 + 6P} P3P,
————— —n — - =2 = =

a3 = 6PP P3P3 + 14P} P} + 24P, Py Py + 12P, P2 Py P3 + 16 P3P P

R - _ _ —_— ___ 14 _
+ 3602 Py Py P3+30P, Py P2 Py+30P, Py P2 P3+6P2 P3Py Py+12P3 Py Ps + §P§’.

By these relations and (3.11) and (3.20)-(3.22) we see that 4y and oy, are 27-
periodic functions, thus from a7y (27) =0, (k =0, 1,2) imply that

2
/ PLP2d0 = 0, (3.26)
0

Applying (3.9) and (3.12)— (3.15) we obtain
aro+x = PP 4y + sk + Bk + 0k, (K =0,1,2,...,5), (3.27)

where 7, Bi are expressed by (3.24) and (3.25), respectively, oy, is the polynomial
on P of degree 64k, o (k= 0,1,2,...,5) are the solutions of the following equations:

8o = 4P330 + 8Pro,
8 = 2P (0o +70P0) +4P3 Y C3,PiB;+8P; Y CiyPryj,

itj=1 i+j=1
5y = 2P Z (P{8; 4+ i) + 4AP; Z C3,,PiB; + 8P Z Cé+i P,
i+j=1 i+j=2 i+j=2
0y = 2P Z (P{6; + ;) + 4Ps( Z C3,PiBj + b0 + 37050)
=2 i+j=3
+Pr(8 > ChyiPly; + 2873 + 8ay),
i+5=3
0y =2P( Z (P{8;+7iB;)+7000 + oo Bo) +4P5( Z C3., P+ Z C3,,Pé;
itj=3 i+j=4 itj=1
+3 Z (i + 1)Pf7jﬂl)+P7(8 Z Cé+ipf7j+28 Z C§+i15f Z Vi1 Vio
i+j+i=1 i+j=4 i+j=1 i1+i2=j
+8 ) CiiPlaj +86).
itj=1
Si 1 i B
S =2P1( > (Pio;+viBi)+ Y (mid;+ i)+ 553) +Py(4 ) Ch P
i+j=4 i+j=1 i+j=5
+4 ) CiPio;+12 > (i+ D)PjyB) + Pr(8 Y Ciy Pl
itj=2 i+ tl=2 i+j=5

+28 > Ci Plym+8 > CiPlaj+8 > CiPiB;).
i+j+1=2 i+j=2 1+j=1
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Solving these equations we get

50 = 4p3p7 + 4P3P7; (328)

01 = 8P1P3P7+24P3P1P7+10P7]51P3+10P1P3p7+30P1P3P7 + 6p1P3P7; (3.29)
8o =12P? Py P;+84P3 P2 P, +60P, Py P, P;+60P, P3 P, P;+18P2 Py P,

+ 24P, P, Py Py + 60P, P, P3P; + 12P, Py P3P; + 18P; P2 P3 (3.30)

+ 48P1P7P1P3 + 6P7p12P3 + 126]512]53137;
83 =28 P2 PyP; 4 16 P2 P3Py 4 108 P2 P3P, Py + 42P? P; P, Ps + 90P2 P, Ps Py

+ 18P} P, P3Py 4 210P, P3P P; + 144P, P Py P, P; 4 252P, P2 P3 P;

+42P, P, P2P3 + 96 P, P, Py Py Py + 12P, P, P2 Py + 224 P3P} P,
+ 14P} P; + 16 P3Py Py 4 28 P; P} Py 4 108 P2 P3 Py P; + 210P, P3 P2 P;

+ 4P} P3Py + 392P3 Py P; + 210P2 Py Py P3 + 54Py P; P P + 14P3 Py;
(3.31)
84 =40P} P3Py 4 20 P} Py P; 4 168 P} P3P, P; + 64P} P, P, Ps + 120P} P, P3 P,

+ 24P} Py Py Py + 378 Pf P3 P2 P; + 252P} Py Py Py P; + 378 P PE Ps P

+ 72P? P, P P3 + 144P} P, P; P, P3 + 18P P? P3Py + 560P, Py PP P,
+ 40P, P P; + 40P, Py P3Py + 64P, P, P} Py + 252P, P2 P3 P, Py

+ 504P, P, Py P2 P; + 8Py P; P3Py + T84, P3 Py P; + 420 P, P2 P; Py Ps

+ 108P, P, P; P2 P; + 28 P, P2P; + 84P2 Py P; + 504P3 PPy + 6APs P, P, Py

+ 120P3 P, P3P; + 24P3 Py P3Py 4+ 16 P; Py P3Py + 40P, P P3 + 4P?
+ 168P} Py Py P; + 378 P Py PP Py + 560 P, Py PP Py + 40P, P3 P3Py

+ 48P, P, P} Py + 252 P P, P2 P3 + 672P} P; P, P3 + 48 P3 P; P, Ps
+ 1008 P} P3 P; + 120 P P2 Pr;

(3.32)
85 = 54P} P3Py + 24P} P3P; + 240P;) P3Py P; + 90 P P; P, Py + 150P} P, P3 P;

+ 30P;} Py P3Py + 588 P} P3P P; + 384 P} Py P3 P, P; + 504 P P2 P3Py

+ 108 P} Py P2 Py + 1927 P, P; Py P + 24P} P2 Py Py + 1008 PPy PP P,
+ 81P? P?P; + T2PE P3Py Pr + 108 PE Pr PP Py + 432 P2 P2 P Py P;

882P% P, P P} P; + 12P? P, P} P3 + 1176 P2 P P3 P; + 630P2 P P; P, Ps

+ 162 P2 P, P; P2 P3+42P} P} P;+240P, P? P, P; +1260P, P3 PP,

+180P1P3P7P1P3+3OOP1P3P1P3P7+60P1P3P1P3P7+36P1P7P1P3p3
+90P, P; P}P; 4 9P, P? + 384P, P} Py P, P; + 882P, P2P; P P;

+ 1344 P, P, P; P} P; + 96 P, P, P3 P3P; + 96 P, Py P; P} P3 + 504 P, P2 P; P2 P3
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+ 1344 P, P} P; Py P3 + 96 P, Py P; Py P3 + 2016 Py P P3 P; + 240P, P, P} P;
+ 54P} Ps P; + 240 P} P3 Py P; 4 588 P} Ps P2 P; + 1008 P P3 P} P;
+ 1260P, P3 P{P; + 1008 PP P; P3 + T2P} Py Py P; + 294P5 P2 P;

S _ = _ —_ — _ 2 _
+ 480P, P3P3 Py Py + 384 P, P3Py Py P, +162P2 P Ps P +90P, P3Py

+ 300P, P3 Py P; P3+60P, P3 Py PsP; + 108P P3P3 P; + 192P3 P, P; P, Ps

+24P3P7P12P3 +504P12P7P3P3 +48P7P1P7+GP1P7P7 —6]515P3P7

+ 30P} Py P; Py + 252P3 Py P; P2 + 840 P2 Py P; P} + 1764.P, Py P; P

+ 2268P) Py P; + 168P2 P P; Py 4+ 567P2 P2 P; — 372P, Ps Ps P, Py

— 2 = - - =
+42PP3 P; + 804P, PsP; Py Py — 114P2P3 P3P,
A — A _
= ﬁ(1184850 +310617)\3) PE Pr + 3—;(139058 + 7510473) P/ P; + ... (3.33)
By (3.11) and (3.20) and Lemma2.3 we see that v; and «; are the polynomials
functions with respect to P; and they are 2m-periodic. Thus, by (3.27) we see that
if aj04%(27) = 0, then B34 (27) + 6 (27) =0, (k =0,1,...,5). By a10(27) = 0 and
(3.28) we get f3(2m) + do(2m) = 0, i.e.,
2m 2m

27
56 P}Pydf + 4 / P3Prdf = 4(14 + \3) P}P;do = 0. (3.34)
0 0 0

Case 1. If (14 + \3)(35 + 23X3) (330 + 703\3 + 65)2) # 0. By (3.34) we have

27
P} P;df = 0. (3.35)
0
Using (3.26) and (3.35) and (3.29) we see that aq1(27) = 0. Using (3.30) we see
that if a12(27) = 0, then

27 _ _ o
Bs(27) 4 82(27) = / (252P) P; + 48P, P, P, P3 + 6 P; P2 Py + 126 P P3 P;)df
0

36 27 _
= 3(35 +23)\3) ; PP Prdf = 0, (3.36)
by the hypothesis , it implies

27
P} Prdf = 0. (3.37)
0

By (3.26) and (3.35) (3.37) we see that a13(27) = 0. Applying (3.32) we see that if
a14(27) = 0, then

B7(2m) 4 64(27)

27 _
= / (792P] P; 4 48P, P; P} Py + 252 P2 P, P? P3)df
0

2m
+ / (672P} P; Py Py + 48 Py P; P Py + 1008 P P3 Py + 120 P, P% P;)d6
0
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12 27 _
:€@w+mwﬂma@ P P;df =0, (3.38)
0

by the hypothesis, it implies

2
P! P;df = 0. (3.39)
0
In summary, by (3.11) and (3.20) and (3.26), (3.35),(3.37) and (3.39) imply that
the condition (3.2) is the necessary for the origin to be a center of equation (3.1).
Case 2. If 14+ A3 = 0,po1 # 0, then Ay = —3XA3pp1 # 0 and (3.34) is
an identity, by this we see that a19(6) is 2m-periodic and the coefficient function
2(4P3P; + 56 P2 Pr) of Py of 84(6) + 61(0) is 2m-periodic. Thus, by a1;(27) = 0
implies that

27
Ba(2m) + 01 (27) = / (30]51]53]37 + 6]51P3P7)d9
0

27 27 27
:?M/ ﬁﬂ%+%&/ ﬁﬂw+%k/ P2P;df
0 0 0

27
:MM/ P}Prdo =0,
0

S0, 027r P} P;df = 0, i.e., the identity (3.35) is valid. Similar to case 1, using (3.35)
we can get that the identities (3.37) and (3.39) are valid. Therefore, the condition
(3.2) is the necessary for the origin to be a center of equation (3.1).

Case 3. If 14+ X3 = 0, po1 = 0, bg = 0, then p1g # 0, P, = pipcosf, P, =
piosind. By (3.26) we get [" sin@Pydf = 0 and

27 2

_ 3
ﬁﬂwzgf (3sin6 — sin 30) Prdf = 0.
0 0

i.e., the identity (3.35) is valid. Similar to case 2, we know that the condition (3.2)
is the necessary for the origin to be a center of equation (3.1).

Case 4. If 354 23X3 = 0,po1 # 0, then Ay = —3A3pg1 # 0 and the identity
(3.35) is valid, (3.36) is an identity, and a11(0) and a12(0) are 2m-periodic functions,
by this we see that the coefficient function 2(252P) P; + 48P, P, P, P3 + 6 P; PP P3 +
126 P2P3 P;) of Py in the formula 8(6) + d3(0) is 2m-periodic and from a;3(27) = 0
follows that

Be(2m) 4 03(27)
27 _ o _ _ B _ _
:/'@W&H+w%ﬁy¢ﬂmﬁaa&+%agﬁ&+m@amo
0

2803, (7 _
=X (28X + T) P} P;df = 0,
0
5 Xy = —3\3po1 # 0, from above follows that

—_3
as A3 = —33,

27
Py P:df = 0,
0
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i.e., the identity (3.37) is valid. Similar to case 1, we can get (3.39). Thus the

condition (3.2) is the necessary for the origin to be a center of equation (3.1).
Case 5. If 35 +23\3 = 0,po1 = 0, b5 = 0, then pyg # 0, P, = pigcosf, P, =

prosin 6. By (3.26) and (3.35) we get fo% sinOP;df = 0, fogﬂ sin 30 P;df = 0, thus

27 5 27
/ PP Prdf = %) / (10sin 6 — 5sin 30 + sin 50) Prdf = 0,
0 0

i.e., the identity (3.37) is valid. Similar to case 4, we get (3.39). Thus the condition
(3.2) is the necessary for the origin to be a center of equation (3.1).

Case 6. If 330 + 703)\3 + 65)\% = 0,po1 # 0, then Ay = —3A3pg1 # 0, (14 +
A3)(35+23X3) # 0 and 139058+ 751045 # 0, (3.35) and (3.37) are valid and (3.38)
is an identity, a14(6) is 2m-periodic function, by this we see that the coefficient
function 2(792PFP7+48P1P7P13P3+252p12P7P12P3—|—672P13P7P1P3—|—48P3P7P1P3+
1008 P} P3 P; +120P, P2 P;) of Py in the formula Bg(0) + d5(0) is 2m-periodic, by this
from ay5(27) = 0 follows that

Bs(2m) + 05(27)

2m _ _
:/ (6p1p7p776]515P3P7+30p14P3P7P1 +252P13P3P7P12
0

+ 840P} P3P, P} + 1764 P, P3 P; Py + 2268 P} P3Py + 168 P2 P3Py P + 567P; PR P;

. _ — 9 R o —
— 372P, P3Py P; Py + 42D, Py P; + 804P, Py P; P, Py — 114P2 Py Py P;)df

27
=X2(139058 4 75104)3) / P! Prdf =0,
0

thus the identity (3.39) is valid . Therefore, the condition (3.2) is the necessary for
the origin to be a center of equation (3.1).

Case 7. If 330 + 703\35 + 65)\% = 0,pp1 = 0,b7; = 0, then p;g # 0, P, =
procos, P, = pigsind. By (3.26) and (3.35) and (3.37) we get fo% sin 0 Prdf =
0, [Z7sin30Pydf = 0, [77 sin50.Pydf = 0, thus

27 7 27
/ Pl P;df = % / (35sin 6 — 21sin 360 + 7sin 56 — sin 70) P7df = 0,
0 0

i.e., the identity (3.39) is valid. Thus the condition (3.2) is the necessary for the
origin to be a center of equation (3.1).

Sufficiency: Now, we show that the condition (3.2) is also sufficient for r = 0
to be a center.

By Lemma2.3, using (3.2) we have

7
Py = Py(\ + 2\ Py + 303 P0), Py = Py Zkﬂkpf_l7
k=1

where \;, p; are real numbers. As P, P, are 27-periodic functions , by Lemma2.2,
r =0 is a center and composition center of (3.1).
In summary, the present theorem has been proved. O
Obviously, by this theorem implies the following result.
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Corollary 3.1. Suppose that A3 > 0. Then r =0 is a center of (3.1), if and only
if
2r 2
/ F%“RMQ:Q@:OJL/‘]fﬁﬁywzowj:QLQQ)
0 0

Moreover, this center is a composition center. (3.3) —(3.8) are all the focus values
of system (1.2).

Remark 3.1. By Theorem3.1, the focal values of system (1.2) is a constant multiple
of six definite integrals (3.2) and the highest order of the fine focus is seven.

Theorem 3.2. For equation (3.1), if one of the following conditions:

1. 14+ A3 =0, po1 = 0,b3 # 0;

2. 35+23X3 =0, po1 =0, bs # 0;

3. 330 + 703)\3 + 6502 = 0, po1 = 0, by # 0,
is satisfied, then the origin point of (3.1) can’t be a composition center, where
As, bi(i = 3,5,7) are the same as they are in Theorem 3.1.

Proof. Now we only prove that if the first condition of the present theorem is
satisfied, then the origin point of (3.1) can’t be a composition center. Conversely,
assuming that 14 + A3 = 0, pg1 = 0,b3 # 0 and r = 0 is a composition center, then
pro # 0 and P, = pigcosf, P, = pigsiné,

27 27
/ PJMH:Q/ P} P3df =0,
0 0

by Lemma 2.3

D30 P30 — D12 5
Py = Pi(~= - ==—5—P}),
P1o Pio
i.e., P, and Pj satisfy the composition conditions (2.1) with u = P; ( if taking

u = cosg — sing, then it is not a 2m-periodic function and does not meet the

requirements of the Lemma2.2). As r = 0 is a composition center of (3.1),
P7 = Pﬂ/J(Pl) = P10 COS 9¢)(p10 sin 0)
1 2m 1 2m
by = — Prsin30d6 = — / Py cos 01(p1o sin 0) (3sin 6 — 4sin® 0)dh = 0,
T Jo T Jo

it is contradict with b3 # 0. Therefore, if the first condition of the present theorem
is satisfied , then » = 0 can’t be a composition center of (3.1). Similarly, in the
other cases, the present conclusions are valid. O

Example 3.1. The system

v = —y+a(x+y)(d +di(2? — day + y?) + dex® + (—d + d3) 2y
+(dy — d3 + dy)zty? + (—dy + ds — dy + d5)2°y?
+(do — d3 + dy)z?y* + (—do + d3)xy® + day/®),

Y =z +y(@+y)(di + di(2? — day + y?) + do2® + (—da + d3)z’y
+(dy — d3 + dy)z*y? + (—dy + ds — dy + d5)2°y?

+(dy — d3 + dy)a*y* + (—dz + d3)zy® + d2y®)
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has a composition center at (0,0), where, d; # 0, d; (i = 1,2...,5) are arbitrary

numbers. In this example A3 = 3% > 0 and the conditions of Theorem3.1 are
1
satisfied.
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