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FURTHER DISCUSSION ON KATO’S CHAOS
IN SET-VALUED DISCRETE SYSTEMS∗
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Abstract For a compact metric space Y and a continuous map g : Y →
Y , the collective accessibility and collectively Kato chaotic of the dynamical
system (Y, g) were defined. The relations between topologically weakly mixing
and collective accessibility, or strong accessibility, or strongly Kato chaos were
studied. Some common properties of g and g were given. Where g : κ(Y ) →
κ(Y ) is defined as g(B) = g(B) for any B ∈ κ(Y ), and κ(Y ) is the collection of
all nonempty compact subsets of Y . Moreover, it is proved that g is collectively
accessible (or strongly accessible) if and only if g in we-topology is collectively
accessible (or strongly accessible).
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1. Introduction

Since Li and Yorke [21] gave the first definition of chaos in 1975, the description of
chaos was highly explored. For example, Devaney chaos [8], Auslander-Yorke chaos
[1], dense chaos [25], distributional chaos [24], distributional chaos in a sequence
[29], F-chaos [27], shadowing properties [35], sensitivity and transitivity [17] and
others (see [5,6,9,19,20,23,31–34,37], for example). Topological dynamical systems
have been intensively discussed because they model many phenomena from various
disciplines of science.

In [14], H. Kato introduced a kind of chaos, named Kato’s chaos or everywhere
chaos. And an equivalent characterization of Kato’s chaos for a continuous map on
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a compact metric space was given by a way similar to Li-Yorke’s chaos. Also, it is
claimed that any topologically mixing map is Kato chaotic. In [10], some relations
between Kato’s chaoticity of a dynamical system (Y, g) and that of the set-valued
discrete system induced by (Y, g) were studied. It is showed that, if the set-valued
discrete system is Kato chaotic in the Vietoris topology, then so is the system (Y, g).
And the system (Y, g) is Kato chaotic if and only if so is the set-valued discrete
system in we-topology. Moreover, for a continuous map which has a fixed point on
a complete metric space without isolated point, if it is Ruelle-Takens chaotic, then
it is Kato chaotic. But the converse does not hold in general. Consequently, one
can see that Kato’s chaos is strictly weaker than Ruelle-Takens chaos.

In [18], we explored Kato’s chaos, sensitivity and accessibility of a given Cournot
map and presented a sufficient condition and a necessary condition for a Cournot
map to be Kato chaotic. Also, the accessibility of the product map g1 × g2 was
posed. Where g1 and g2 are accessible continuous maps on the metric spaces Y1
and Y2, respectively. In [33], X. Wu and J. Wang gave some characteristics of
accessibility or Kato’s chaos, and constructed a dynamical system (Y, g) which is
accessible but its product system (Y × Y, g × g) is not accessible.

The current work will further discuss Kato’s chaos for continuous maps on com-
pact metric spaces. The relations between topologically weakly mixing and col-
lectively accessible, or strongly accessible, or strongly Kato chaotic were studied.
Some necessary and sufficient conditions of g is collectively accessible (or strongly
accessible) were obtained. The results in this paper improve the corresponding ones
in [10] or others.

2. Preliminaries

A pair (u, v) ∈ Y × Y is called a Li-Yorke pair of a system (Y, g) (or the map
g : Y → Y ) on metric space (Y, d) if

lim sup
k→∞

d(gk(u), gk(v)) > 0

and
lim inf
k→∞

d(gk(u), gk(v)) = 0.

A subset A ⊂ Y having at least two points is a LY-scrambled set for the system
(Y, g) (or the map g : Y → Y ) if any (u, v) ∈ A×A : u 6= v is a Li-Yorke pair of the
system (Y, g) (or the map g : Y → Y ). A system (Y, g) (or the map g : Y → Y ) is
Li-Yorke chaotic if it has an uncountable LY-scrambled set.

Assume that t ≥ 2 is an integer, and that ζ is the product metric on the product
space Y (t) = Y × Y × · · · × Y︸ ︷︷ ︸

t

defined by

ζ((u1, u2, · · · , ut), (v1, v2, · · · , vt)) =
t

max
i=1
{d(ui, vi)}

for any (u1, u2, · · · , ut), (v1, v2, · · · , vt) ∈ Y (t).
Let (Y, d) be a metric space. A dynamic system (Y, g) (or the map g : Y → Y ) is

transitive if for any nonempty open subsets A1, A2 ⊂ Y , gk(A1) ∩A2 6= ∅ for some
integer k > 0. A dynamic system (Y, g) (or the map g : Y → Y ) is topologically
mixing if for any nonempty open subsets A1, A2 ⊂ Y , gp(A1) ∩ A2 6= ∅ for some



Further discussion on Kato’s chaos in. . . 2493

integer k > 0 and any integer p > k. A dynamic system (Y, g) (or the map g :
Y → Y ) is sensitive if there is a N > 0 such that for any given ε > 0 and any
given u ∈ Y , there exists a point v ∈ Y : d(u, v) < ε such that d(gk(u), gk(v)) > N
for some integer k > 0, where N is called a sensitivity constant of g. A dynamic
system (Y, g) (or the map g : Y → Y ) is accessible if for any ε > 0 and any two
nonempty open subsets U1, U2 ⊂ Y , there are two points u ∈ U1 and v ∈ U2 such
that d(gk(u), gk(v)) < ε for some integer k > 0. A dynamic system (Y, g) (or the
map g : Y → Y ) is chaotic in the sense of Ruelle and Takens [10] if it is transitive
and sensitive. A dynamic system (Y, g) (or the map g : Y → Y ) is Kato chaotic if
it is sensitive and accessible.

Let κ(Y ) be the collection of all nonempty compact subsets of Y . The Hausdorff
metric dH on the space κ(Y ) is defined as

dH(E,F ) = max{%(E,F ), %(F,E)}

for any E,F ∈ κ(Y ), where %(E,F ) = inf{λ > 0 | d(y,E) < λ, y ∈ F}. For any
compact metric space (Y, d), the topology on κ(Y ) which is induced by dH is the
same as the Vietoris generated by a basis consisting of all sets of the form,

{W1,W2, · · · ,Wm} =

B ∈ κ(Y ) | B ⊂
⋃

1≤i≤m

Wi, B ∩Wi 6= ∅, 1 ≤ i ≤ m

 ,

where Wi is a nonempty open subset of Y for any i ∈ {1, 2, · · · ,m}. It is known
that this topology is admissible in the sense that the map id : Y → κ(Y ) which
is defined by id(y) = {y} for any y ∈ Y is continuous. And κ(Y ) is compact if
and only if Y is compact. Let F(Y ) be the set of all finite subsets of Y . Under
this topology, F(Y ) is dense in κ(Y ) (see [2, 22, 26]). For any continuous self-map
g : Y → Y , a continuous map g : κ(Y ) → κ(Y ) is defined as g(B) = g(B) for any
B ∈ κ(Y ). If a point y ∈ Y is identified as a subset {y} of Y , the system (Y, g) is a
subsystem of its induced system (κ(Y ), g) (see [3, 10–13,16,26,36]).

Now, some strong forms of accessible, sensitive, or Kato’s chaos were given.

Definition 2.1. Let (Y, g) be a dynamical system on a metric space (Y, d). The
system (Y, g) (or the map g) is said to be collectively accessible, if for any ε > 0

and any nonempty open subsets S
(1)
1 , S

(1)
2 , · · · , S(1)

s , S
(2)
1 , S

(2)
2 , · · · , S(2)

t ⊂ Y , there

exist y
(1)
i ∈ S(1)

i for any i ∈ {1, 2, · · · , s} and y
(2)
j ∈ S(2)

j for any j ∈ {1, 2, · · · , t}
such that one of the following holds:

(i) there is an i0 ∈ {1, 2, · · · , s} such that d(gm(y
(1)
i0

), gm(y
(2)
j )) < ε for any

j ∈ {1, 2, · · · , t} and some integer m > 0.

(ii) there is a j0 ∈ {1, 2, · · · , t} such that d(gm(y
(1)
i ), gm(y

(2)
j0

)) < ε for any i ∈
{1, 2, · · · , s} and some integer m > 0.

Clearly, collective accessibility implies accessibility.

Definition 2.2. ( [23]) Let (Y, g) be a dynamical system on a metric space (Y, d)
and λ > 0 a constant. The system (Y, g) (or the map g) is said to be collectively
sensitive with the collective sensitivity constant λ if for any finitely many distinct
points a1, a2, · · · , am ∈ Y and any ε > 0, there exist m distinct points b1, b2, · · · , bm
in Y such that the following two conditions are satisfied:



2494 R. Li, T. Lu, G.Chen & X.Yang

(i) d(aj , bj) < ε for all 1 ≤ j ≤ m;

(ii) there exist i0 and j0 satisfying 1 ≤ i0, j0 ≤ m such that d(gk(aj), g
k(bj0)) >

λ(1 ≤ j ≤ m) or d(gk(ai0), gk(bj)) > λ(1 ≤ j ≤ m) for some integer k > 0.

Obviously, collective sensitivity implies sensitivity.

Definition 2.3. Let (Y, g) be a dynamical system on a metric space (Y, d). The
system (Y, g) (or the map g) is said to be collectively Kato chaotic if it is collectively
accessible and collectively sensitive.

It is clear that collective Kato’s chaos implies Kato’s chaos.

Definition 2.4. ( [30]) Let (Y, g) be a dynamical system on a metric space (Y, d).
The system (Y, g) (or the map g) is said to be strongly accessible, if for any ε > 0
and any nonempty open subsets S1, S2, · · · , St ⊂ Y , there exist yi ∈ Si for any
i ∈ {1, 2, · · · , t} such that d(gm(yi), g

m(yj)) < ε for any j ∈ {1, 2, · · · , t} and some
integer m > 0.

Definition 2.5. ( [30]) Let (Y, g) be a dynamical system on a metric space (Y, d)
and N ≥ 2 be an integer. Then λ > 0 is a N -sensitive coefficient of the dynamical
system (Y, g) (or the map g), if there is an integer m > 0 such that for any nonempty
open set V ⊂ Y , there exist N points v1, v2, · · · , vN ∈ V satisfying

min{d(gm(vi), g
m(vj)) | i, j ∈ {1, 2, · · · , N}, i 6= j} ≥ λ.

The supremum of all N -sensitive coefficients of the system (Y, g) is denoted by λN
which is called the N -critically sensitive coefficient of the system (Y, g). For any
v1, v2, · · · , vN ∈ Y , denote

r(v1, v2, · · · , vN ) = min{d(vi, vj) | i, j ∈ {1, 2, · · · , N}, i 6= j}

and put

rN = sup
v1,v2,··· ,vN∈Y

{r(v1, v2, · · · , vN )}.

Obviously, λN ≤ rN , and both of them monotonically decrease to 0.

The dynamical system (Y, g) (or the map g) is said to be N -maximum sensitive
if λN = rN and is said to be totally maximum sensitive (TMS, for short) if for every
integer N > 0, λN = rN .

Definition 2.6. ( [30]) Let (Y, g) be a dynamical system on a metric space (Y, d).
The system (Y, g) (or the map g) is said to be chaotic in the strong sense of Kato,
if it is both TMS and strongly accessible.

Definition 2.7. Let (Y, g) be a dynamical system on a metric space (Y, d). The
system (Y, g) (or the map g) is topologically transitive if for any nonempty open sets
U, V ⊂ Y , there is an integer m > 0 such that gm(U) ∩ V 6= φ. The system (Y, g)
(or the map g) is topologically weakly mixing if g × g is topologically transitive.

In this paper, the we-topology on κ(Y ) is just the topology which is generated
by the sets e(B) = {C ∈ κ(Y ) | C ⊂ B}, where B ⊂ Y is an open set.
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3. Kato chaoticity

For giving the proofs of main results, the following lemmas are needed.

Lemma 3.1 ( [16]). Let g : Y → Y be a continuous map on a compact metric space
(Y, d). Then g is topologically weakly mixing if and only if g(t) is transitive for any
integer t ≥ 2, where g(t) = g × g × · · · × g︸ ︷︷ ︸

t

.

Lemma 3.2 ( [4, 15, 16]). Let g be a continuous self-map on the compact interval
[0, 1]. If g is topologically transitive, then one of the following statements is hold.

(i) The map g is topologically mixing.

(ii) There exists a fixed point a of g in (0, 1) such that g2|[0,a] and g2|[a,1] are all
topologically mixing.

Lemma 3.3 ( [28]). Let g be a continuous self-map on the compact interval [0, 1].
Then g is topologically transitive if and only if g is Devaney chaotic.

Lemma 3.4 ( [7]). Let gi be continuous self-maps on a metric space Yi for any
i ∈ {1, 2}. Then g1 × g2 is sensitive if and only if so is at least one of g1 and g2.

Lemma 3.5. Let g be a topologically mixing map on a metric space (Y, d). Then,
for any ε > 0 and any nonempty open sets A,B ⊂ Y , there exists an integer l > 0
such that, for any t ≥ l, d(gt(at), g

t(bt)) < ε for some at ∈ A and bt ∈ B.

Proof. Choose c ∈ Y . Since g is topologically mixing, then g × g is topologically
mixing. Therefore, for any ε > 0 and any nonempty open sets A,B ⊂ Y , there
exists an integer l > 0 such that, for any t ≥ l,

d(gt(at), g
t(c)) <

1

2
ε and d(gt(c), gt(bt)) <

1

2
ε

for some at ∈ A and bt ∈ B. Consequently,

d(gt(at), g
t(bt)) <

1

2
ε+

1

2
ε = ε.

Lemma 3.6. Let gi(i ∈ {1, 2}) be continuous self-maps on the compact interval
[0, 1]. If gi is topologically transitive for any i ∈ {1, 2}, then, for any ε > 0 and
any nonempty open sets Ai, Bi ⊂ [0, 1](i ∈ {1, 2}), there exists an integer l > 0
such that, for any t ≥ l, d(g2t1 (a2), g2t1 (a1)) < ε and d(g2t2 (b2), g2t2 (b1)) < ε for some
(a1, b1) ∈ A1 ×B1 and (a2, b2) ∈ A2 ×B2.

Proof. If gi is topologically mixing for any i ∈ {1, 2}, then, by Lemma 3.5 and
its proof, for any ε > 0 and any nonempty open sets Ai, Bi ⊂ [0, 1](i ∈ {1, 2}),
there exists an integer l > 0 such that, for any t ≥ l, d(g2t1 (a2), g2t1 (a1)) < ε and
d(g2t2 (b2), g2t2 (b1)) < ε for some (a1, b1) ∈ A1 ×B1 and (a2, b2) ∈ A2 ×B2.

If g1 is topologically mixing but g2 is not topologically mixing, then, by hypoth-
esis and Lemma 3.2, there is a fixed point c ∈ (0, 1) of g2 satisfying that g22 |[0,c] and
g22 |[c,1] are all topologically mixing. By Lemma 3.5 and the above argument, for any
ε > 0 and any nonempty open sets Ai, Bi ⊂ [0, 1](i ∈ {1, 2}), there is an integer
l > 0 such that, for any t ≥ l, d(g2t1 (a2), g2t1 (a1)) < ε and d(g2t2 (b2), g2t2 (b1)) < ε for
some (a1, b1) ∈ A1 ×B1 and (a2, b2) ∈ A2 ×B2.
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Similarly, one can assume that g1 and g2 are all not topologically mixing. Then,
for any ε > 0 and any nonempty open sets Ai, Bi ⊂ [0, 1](i ∈ {1, 2}), there is an
integer l > 0 such that, for any t ≥ l, d(g2t1 (a2), g2t1 (a1)) < ε and d(g2t2 (b2), g2t2 (b1)) <
ε for some (a1, b1) ∈ A1 ×B1 and (a2, b2) ∈ A2 ×B2.

In [14], it is pointed out that a topologically mixing map g on a compact metric
space Y is Kato chaotic. In [33], it is proved that any topologically transitive con-
tinuous interval map is accessible. While, the following Theorem 3.1 and Theorem
3.2 will improve and extend these results.

Theorem 3.1. Let g be a continuous self-map on a compact metric space (Y, d).
If g is topologically weakly mixing, then g(t) is Kato chaotic for any integer t > 0.

Proof. Firstly, the following shows that if a map is topologically weakly mixing,
then it is Kato chaotic.

Let ε > 0 and choose b ∈ Y . Write

V = B(b,
1

2
ε) = {a ∈ Y | d(a, b) <

1

2
ε}.

Since g is topologically weakly mixing, by the definition, for any nonempty open sets
U1, U2 ⊂ Y , there exists an integer l ≥ 1 satisfying (g× g)l(U1×U2)∩ (V ×V ) 6= ∅.
That is, there exist a ∈ U1, b ∈ U2 such that gl(a), gl(b) ∈ V . So, d(gl(a), gl(b)) ≤
d(gl(a), b) + d(b, gl(b)) < ε. This implies that g is accessible.

On the other hand, g is topologically weakly mixing, so it is sensitive. Thus, by
the definition, g is Kato chaotic.

Moreover, by Lemma 2.1, g is topologically weakly mixing if and only if so is
g(t) for any integer t ≥ 2. Thus, g(t) is Kato chaotic for any integer t ≥ 0.

Theorem 3.2. Let t be a given positive integer and gi(i ∈ {1, 2, · · · , t}) be contin-
uous self-maps on the compact interval [0, 1]. If gi is topologically transitive for any
i ∈ {1, 2, · · · , t}, then g1 × g2 × · · · × gt is Kato chaotic.

Proof. By hypothesis and Lemma 3.3, gi is sensitive for any i ∈ {1, 2, · · · , t}. By
Lemma 3.4, g1 × g2 × · · · × gt is sensitive.

By Lemma 3.2 and Lemma 3.4, for any ε > 0 and any nonempty open sets
Ai, Bi ⊂ [0, 1](i ∈ {1, 2, · · · , t}), there is an integer l > 0 such that, for any m ≥ l,
there are (ai,m, bi,m) ∈ Ai ×Bi for any i ∈ {1, 2, · · · , t} satisfying

d(g2m(ai,m), g2m(aj,m)) < ε and d(g2m(bi,m), g2m(bj,m)) < ε

for any i, j ∈ {1, 2, · · · , t} : i 6= j. So, g1 × g2 × · · · × gt is accessible. Consequently,
g1 × g2 × · · · × gt is Kato chaotic.

Corollary 3.1. Let g be a continuous map on the compact interval [0, 1]. If g is
topologically transitive, then g(t) is Kato chaotic for any integer t > 0.

Proof. By Theorem 3.2, Corollary 3.1 is true.
Remark 3.1. Is there a continuous interval map Kato chaotic but not topologically
transitive?

4. Strong forms of Kato chaoticity

Theorem 4.1. Any topologically weakly mixing map g on a compact metric space
(Y, d) is collectively accessible.
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Proof. Let b ∈ Y be a given point. For any ε > 0, denote

S = B(b,
1

2
ε) = {a ∈ Y | d(a, b) <

1

2
ε} ⊂ Y.

By Lemma 3.1, g is topologically weakly mixing if and only if so is
g(n) = g × g × · · · × g︸ ︷︷ ︸

n

for any integer n ≥ 2. Then, for any nonempty open subsets

S
(1)
1 , S

(1)
2 , · · · , S(1)

s , S
(2)
1 ,

S
(2)
2 , · · · , S(2)

t ⊂ Y and the above subset S ⊂ Y , there exist y
(1)
i ∈ S

(1)
i for any

i ∈ {1, 2, · · · , s}, y(2)j ∈ S(2)
j for any j ∈ {1, 2, · · · , t} and an integer m > 0 such

that gm(y
(1)
i ) ∈ S for any i ∈ {1, 2, · · · , s} and gm(y

(2)
j ) ∈ S for any j ∈ {1, 2, · · · , t}.

This implies that d(gm(y
(1)
i ), gm(y

(2)
j )) < ε for any i ∈ {1, 2, · · · , s} and any j ∈

{1, 2, · · · , t}. Consequently, g is collectively accessible.

Corollary 4.1. Any topologically weakly mixing map g on a compact metric space
(Y, d) is collectively Kato chaotic.

Proof. By Theorem 4.1 in [36], if g is a topologically weakly mixing map, then it
is collectively sensitive. By Theorem 4.1 and hypothesis, g is collectively accessible.
Thus, g is collectively Kato chaotic.

Theorem 4.2. Any topologically weakly mixing map g on a compact metric space
(Y, d) is strongly accessible.

Proof. Suppose that g is a topologically weakly mixing map on a compact metric
space (Y, d). Then, for any integer N > 0, g(N) = g × g × · · · × g︸ ︷︷ ︸

N

is topologically

transitive.
Let ε > 0. Pick y0 ∈ Y . Write

V = {y ∈ Y | d(y0, y) <
1

2
ε}.

By the transitivity of g(N), for any ε > 0, any integer N > 1 and any nonempty open
sets U1, U2, · · · , UN ⊂ Y , there exists an integer m ≥ 0 satisfying gm(Uj)∩V 6= ∅ for
any j ∈ {1, 2, · · · , N}. So, for any j ∈ {1, 2, · · · , N}, there exist xj ∈ Uj satisfying
gm(xj) ∈ V . This implies that d(gm(xi), g

m(xj)) < ε for any i, j ∈ {1, 2, · · · , N}.
Thus, g is strongly accessible.

Theorem 4.3. Any topologically weakly mixing map g on a compact metric space
(Y, d) is chaotic in the strong sense of Kato.

Proof. Assume that g is a topologically weakly mixing map on a compact metric
space (Y, d). Then, for any integer N > 0, g(N) is topologically transitive.

The following will prove that the set

Tran(g(N)) = {(y1, y2, · · · , yN ) ∈ Y (N) | orb((y1, y2, · · · , yN ), g(N)) = Y (N)}

which consists of all transitive points of the system (Y (N), g(N)), is a dense Gδ set.
Since Y is a compact metric space, it has a countable topological basis B =

{Bj}∞j=1. This means that B(N) is a topological basis of Y (N). Obviously, one has
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that

Tran(g(N)) =
⋂

i1,··· ,iN∈{1,2,··· }

⋃
m∈{0,1,··· }

(gm × gm × · · · × gm)︸ ︷︷ ︸
N

(Bi1×Bi2×· · ·×BiN ).

By the transitivity of (Y (N), g(N)), for any nonempty open sets

U1 × U2 × · · · × UN , V1 × V2 × · · · × VN ⊂ Y (N),

there exists an integer m ≥ 0 satisfying

(gm × gm × · · · × gm)︸ ︷︷ ︸
N

(U1 × U2 × · · · × UN ) ∩ (V1 × V2 × · · · × VN ) 6= ∅.

So, Tran(g(N)) is a dense Gδ set.
Now, it can be proved that g is totally maximum sensitive (TMS, for short). By

the definition of rN (g), for any λ0 ∈ (0, rN (g)), there exist points y1, y2, · · · , yN ∈ Y
satisfying

min{d(yi, yj) | i, j ∈ {1, 2, · · · , N}, i 6= j} ≥ rN (g)− 1

2
λ0.

From the above argument, one can see that for any nonempty open set (U1 ×U2 ×
· · · × UN ) ⊂ Y (N), there exists

(y1, y2, · · · , yN ) ∈ (U1 × U2 × · · · × UN ) ∩ Tran(g(N))

and an integer m ≥ 0 satisfying

max{d(xi, g
m(yi)) | i, j ∈ {1, 2, · · · , N}, i 6= j, xi ∈ Ui} <

1

4
λ0.

Therefore, for any i, j ∈ {1, 2, · · · , N}, i 6= j, one has that

d(gm(yi), g
m(yj)) ≥ d(xi, xj)− d(xj , g

m(yj))− d(xi, g
m(yi)) ≥ rN (g)− λ0.

Hence rN (g) − λ0 is a N -sensitive coefficient of (Y, g). By the arbitrariness of N
and λ0, g is TMS.

For a continuous self-map g on a compact metric space (Y, d), [10] proved that
if g is accessible, then g is accessible. Now, it will be shown that there are similar
conclusions about collectively accessible and collectively Kato chaotic. However, [10]
did not tell us whether Kato’s chaoticity of g on a compact metric space (Y, d)
implies Kato’s chaoticity of g. The following will give some results to answer this
question.

Theorem 4.4. For a continuous self-map g on a compact metric space (Y, d). If g
is collectively accessible, so is g.

Proof. Let S
(1)
1 , S

(1)
2 , · · · , S(1)

s , S
(2)
1 , S

(2)
2 , · · · , S(2)

t ⊂ Y be nonempty open sets

and ε > 0. By Lemma 3.1 in [10], both e(S
(1)
i ) and e(S

(2)
j ) are nonempty open

subsets of κ(Y ) for any i ∈ {1, 2, · · · , s} and any j ∈ {1, 2, · · · , t}. Since g is

collectively accessible, then there exist K
(1)
i ∈ e(S(1)

i ) for any i ∈ {1, 2, · · · , s} and

K
(2)
j ∈ e(S(2)

j ) for any j ∈ {1, 2, · · · , t} such that one of the following holds:
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(1) there is an i0 ∈ {1, 2, · · · , s} such that dH(gm(K
(1)
i0

), gm(K
(2)
j )) < ε for any

j ∈ {1, 2, · · · , t} and some integer m > 0.

(2) there is a j0 ∈ {1, 2, · · · , t} such that dH(gm(K
(1)
i ), gm(K

(2)
j0

)) < ε for any
i ∈ {1, 2, · · · , s} and some integer m > 0.

If (1) holds, by definition of dH , for any x ∈ K(1)
i0

,

d(gm(x), gm(K
(2)
j )) = inf{d(gm(x), gm(y)) | y ∈ K(2)

j } < ε

for any j ∈ {1, 2, · · · , t}. Choose xi0 ∈ K
(1)
i0
⊂ S

(1)
i0

. Then there exists a point

yj ∈ K(2)
j ⊂ S(2)

j satisfying d(gm(xi0), gm(yj)) < ε for any j ∈ {1, 2, · · · , t}.
Similarly, if (2) holds, for any y ∈ K(2)

j0
,

d(gm(y), gm(K
(1)
i )) = inf{d(gm(y), gm(x)) | x ∈ K(1)

i } < ε

for any i ∈ {1, 2, · · · , s}. One can choose yj0 ∈ K
(2)
j0
⊂ S

(2)
j0

. Then there exists a

point xi ∈ K(1)
i ⊂ S

(1)
i satisfying p(gm(yj0), gm(xi)) < ε for any i ∈ {1, 2, · · · , s}.

Thus, g is collectively accessible.

Corollary 4.2. For a continuous self-map g on a compact metric space (Y, d). If
g is collectively Kato chaotic, so is g.

Proof. By Theorem 4.4, If g is collectively accessible, so is g. By hypothesis and
Corollary 2.4 in [36], g is collectively sensitive. So, g is collectively Kato chaotic.

Theorem 4.5. For a continuous self-map g on a compact metric space (Y, d). If g
is strongly accessible, so is g.

Proof. For any integer t > 0, let S1, S2, · · · , St ⊂ Y be nonempty open sets and
ε > 0. By Lemma 3.1 in [10], e(Sj) is a nonempty open subset of κ(Y ) for any
j ∈ {1, 2, · · · , t}.

Since g is strongly accessible, then there existKj ∈ e(Sj) for any j ∈ {1, 2, · · · , t}
such that dH(gm(Ki), g

m(Kj)) < ε(i, j ∈ {1, 2, · · · , t}) for some integer m > 0. By
definition of dH , for any i ∈ {1, 2, · · · , t} and any x ∈ Ki,

d(gm(x), gm(Kj)) = inf{d(gm(x), gm(y)) | y ∈ Kj} < ε

for any j ∈ {1, 2, · · · , t}. Choose xi ∈ Ki ⊂ Si. Then there exists a point yj ∈ Kj ⊂
Sj such that p(gm(xi), g

m(yj)) < ε for any j ∈ {1, 2, · · · , t}. Thus, g is strongly
accessible.

Theorem 4.6. For a continuous self-map g on a compact metric space (Y, d). If g
is chaotic in the strong sense of Kato, so is g.

Proof. Firstly, if g is TMS, so is g. Let N > 0 be a given integer, g is TMS, and
λ > 0 is a N -sensitive coefficient of the dynamical system (κ(Y ), g). Then, for any
nonempty open set V ⊂ Y , there exist N points v1, v2, · · · , vN ∈ e(V ) satisfying

min{dH(gm(vi), g
m(vj)) | i, j ∈ {1, 2, · · · , N}, i 6= j} ≥ λ.

So, by

dH(gm(vi), g
m(vj)) = max{sup

a∈vi
d(gm(a), gm(vj)), sup

b∈vj
d(gm(a), gm(vi))}
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for any i, j ∈ {1, 2, · · · , N}, i 6= j, one has

sup
a∈vi

d(gm(a), gm(vj)) > λ

or
sup
a∈vj

d(gm(a), gm(vi))} > λ

for any i, j ∈ {1, 2, · · · , N}, i 6= j. Without loss of generality, one can assume that

sup
a∈vi

d(gm(a), gm(vj)) > λ

for any i, j ∈ {1, 2, · · · , N}, i 6= j. Then, for any i, j ∈ {1, 2, · · · , N}, i 6= j, there
exists a point ai ∈ vi such that

d(gm(a), gm(vj)) = inf
b∈vj
{d(gm(a), gm(b))} > λ.

Hence, for any i, j ∈ {1, 2, · · · , N}, i 6= j, one can choose a point bj ∈ vj satisfying
d(gm(a), gm(bj)) > λ. By the definition and the above argument, g is N -sensitive
with the N -sensitive coefficient λ. Therefore, the N -critically sensitive coefficient
λN (g) of the system (Y, g) is not less than the N -critically sensitive coefficient λN (g)
of the system (κ(Y ), g). That is, λN (g) ≤ λN (g) for any integer N > 0. Set

rN (Y ) = sup
y1,y2,··· ,yN∈Y

r(y1, y2, · · · , yN )

and
rN (κ(Y )) = sup

y1,y2,··· ,yN∈κ(Y )

r(y1, y2, · · · , yN ).

Obviously, λN ≤ rN (Y ) ≤ rN (κ(Y )) for any integer N > 0. Since g is TMS, then
g is TMS.

By Theorem 4.5, g is chaotic in the strong sense of Kato.

Theorem 4.7. For a topologically transitive map g on the interval [0, 1], g and g
are collectively accessible.

Proof. Since g is topologically transitive, by Lemma 3.2, there exists a fixed point
a ∈ (0, 1) of g satisfying that g2|[0,a] and g2|[a,1] are all topologically mixing. This

means that, for any ε > 0 and any nonempty open subsets S
(1)
1 , S

(1)
2 , · · · , S(1)

s , S
(2)
1 ,

S
(2)
2 , · · · , S(2)

t ⊂ [0, 1], there exists an integer l > 0 such that, for any k ≥ l,

d(gk(yi(k)), gk(a)) <
1

st
ε

for any integer k ≥ l, ∀i ∈ {1, 2, · · · , s}, and

d(gk(a), gk(yj(k))) <
1

st
ε

for any integer k ≥ l, ∀j ∈ {1, 2, · · · , t}. Where yi(k) ∈ S(1)
i (i ∈ {1, 2, · · · , s}) and

yj(k) ∈ S
(2)
j (j ∈ {1, 2, · · · , t}). Consequently, d(gk(yi(k)), gk(yj(k))) < ε for any

integer k ≥ l, any i ∈ {1, 2, · · · , s} and any j ∈ {1, 2, · · · , t}. So, g is collectively
accessible.
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Since g2|[0,a] and g2|[a,1] are topologically mixing, then g2|[0,a] and g2|[a,1] are
topologically mixing. This means that, for any ε > 0 and any nonempty open

subsets S
(1)
1 , S

(1)
2 , · · · , S(1)

s , S
(2)
1 , S

(2)
2 , · · · , S(2)

t ⊂ κ([0, 1]) there exists an integer
l > 0 such that, for any k ≥ l,

dH(gk(yi(k)), gk({a})) < 1

st
ε

for any integer k ≥ l, ∀i ∈ {1, 2, · · · , s} and

dH(gk({a}), gk(yj(k))) <
1

st
ε

for any integer k ≥ l, ∀j ∈ {1, 2, · · · , t}. Where yi(k) ∈ S(1)
i (i ∈ {1, 2, · · · , s}) and

yj(k) ∈ S
(2)
j (j ∈ {1, 2, · · · , t}). Consequently, d(gk(yi(k)), gk(yj(k))) < ε for any

integer k ≥ l, any i ∈ {1, 2, · · · , s} and any j ∈ {1, 2, · · · , t}. So, g is collectively
accessible.

Corollary 4.3. For a topologically transitive map g on the interval [0, 1], g and g
are collectively Kato chaotic.

Proof. Since g is topologically transitive, then g is cofintely sensitive. This implies
that g and g are collectively sensitive. By the definition and Theorem 4.4, g and g
are collectively Kato chaotic.

Theorem 4.8. For a topologically transitive map g on the interval [0, 1], g and g
are strongly accessible.

Proof. Since g is topologically transitive, by Lemma 3.2, there exists a fixed point
a ∈ (0, 1) of g satisfying that g2|[0,a] and g2|[a,1] are topologically mixing. This
means that for any ε > 0 and any nonempty open subsets S1, S2, · · · , St ⊂ [0, 1],
there exists an integer l > 0 such that, for any k ≥ l, d(gk(a), gk(yj(k))) < 1

t ε
for yj(k) ∈ Sj(j ∈ {1, 2, · · · , t}). Consequently, d(gk(yi(k)), gk(yj(k))) < ε for any
integer k ≥ l and any i, j ∈ {1, 2, · · · , t}. So, g is strongly accessible.

Since g2|[0,a] and g2|[a,1] are topologically mixing, g2|[0,a] and g2|[a,1] are topo-
logically mixing too. This means that for any ε > 0 and any nonempty open subsets
S1, S2, · · · , St ⊂ κ([0, 1]), there exists an integer l > 0 such that, for any k ≥ l,

dH(gk({a}), gk(yj(k))) <
1

st
ε

for yj(k) ∈ Sj(j ∈ {1, 2, · · · , t}). Consequently, d(gk(yi(k)), gk(yj(k))) < ε for any
integer k ≥ l and i, j ∈ {1, 2, · · · , t}. So, g is strongly accessible.

For a topologically transitive map g on the interval [0, 1], are g and g chaotic in
the strong sense of Kato? The following Theorem will discuss this question.

Theorem 4.9. Let g : [0, 1]→ [0, 1] be a topologically transitive map. a ∈ (0, 1) is
a fixed point of g, and g2|[0,a] and g2|[a,1] are topologically mixing. If

λN (g2|[0,a]) = λN (g2|[a,1])

for any integer N > 0, then g is chaotic in the strong sense of Kato.
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Proof. By Theorem 4.1, it is enough to prove that g is TMS. By [16] and the
hypothesis,

λN (g2|[0,a]) = rN (g2|[0,a]) and λN (g2|[a,1]) = rN (g2|[a,1])

for every integer N > 0. Clearly,

λN (g) = min{λN (g2|[0,a]), λN (g2|[a,1])}

and
rN (g) = max{rN (g2|[0,a]), rN (g2|[a,1])}

for every integer N > 0. Since

λN (g2|[0,a]) = λN (g2|[a,1]),

by Theorem 4.2, g is chaotic in the strong sense of Kato.
In [10], R. Gu proved that a continuous self-map g on a compact metric space

(Y, d) is chaotic in the sense of Kato if and only if g is Kato chaotic in we-topology.
Inspired by this result, the following will show that a continuous self-map g on a
compact metric space (Y, d) is collectively accessible (or strongly accessible) if and
only if so is g in we-topology.

Theorem 4.10. For a continuous self-map g on a compact metric space (Y, d), it
is collectively accessible if and only if so is g in we-topology.

Proof. Let s, t be two given integers. Assume that g is a collectively accessible
continuous self-map on a compact metric space (Y, d) in we-topology, and that

Ũj and Ṽh are nonempty open subsets in the we-topology of κ(Y ) for any j ∈
{1, 2, · · · , s}, any h ∈ {1, 2, · · · , t} and ε > 0. By Lemma 3.1 in [11], for any
k ∈ {1, 2, · · · , s} and any h ∈ {1, 2, · · · , t}, there exist nonempty open subsets

Ai,k, Bj,h ⊂ Y satisfying Ũk =
⋃
i

Ai,k and Ṽh =
⋃
j

Bj,h. Fixed Aik,k and Bjh,h for

any k ∈ {1, 2, · · · , s} and any h ∈ {1, 2, · · · , t}. Since g is collectively accessible
in we-topology, then there exist aik,k ∈ Aik,k (k ∈ {1, 2, · · · , s}), bjh,h ∈ Bjh,h
(h ∈ {1, 2, · · · , t}) and an integer m ≥ 0 such that one of the following holds:

(1) there is a k0 ∈ {1, 2, · · · , s} such that

d(gm(aik0
,k0), gm(bjh,h)) < ε

for any h ∈ {1, 2, · · · , t}.
(2) there is an h0 ∈ {1, 2, · · · , t} such that

d(gm(aik,k), gm(bjh0
,h0

)) < ε

for any k ∈ {1, 2, · · · , s}.
Clearly, {aik,k} ∈ e(Aik,k) ⊂ Ũk and {bjh,h} ∈ e(Bjh,h) ⊂ Ṽh for any k ∈

{1, 2, · · · , s} and any h ∈ {1, 2, · · · , t}. Also, one has that

dH(gm({aik0
,k0}), gm({bjh,h})) = d(gm(aik0

,k0), gm(bjh,h)) < ε

for any h ∈ {1, 2, · · · , t} or

dH(gm({aik,k}), gm({bjh0
,h0

)}) = d(gm(aik,k), gm(bjh0
,h0

)) < ε

for any k ∈ {1, 2, · · · , s}. Thus, g is collectively accessible in we-topology.
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Theorem 4.11. For a continuous self-map g on a compact metric space (Y, d), it
is strongly accessible if and only if so is g in we-topology.

Proof. Let s be a given integer. Assume that g is a strongly accessible map on
a compact metric space (Y, d) in we-topology, Ũj(j ∈ {1, 2, · · · , s}) are nonempty
open subsets in the we-topology of κ(Y ), and ε > 0. By Lemma 3.1 in [11], for
any k ∈ {1, 2, · · · , s} there are nonempty open subsets Ai,k, Bj,h ⊂ Y satisfying

Ũk =
⋃
i

Ai,k. Fixed Aik,k for any k ∈ {1, 2, · · · , s}. Since g is strongly accessible in

we-topology, there exist aik,k ∈ Aik,k (k ∈ {1, 2, · · · , s}) and an integer m ≥ 0 such
that

d(gm(aik,k), gm(ajh,h)) < ε

for any k, h ∈ {1, 2, · · · , s}. Clearly, {aik,k} ∈ e(Aik,k) ⊂ Ũk for any k ∈ {1, 2, · · · , s}.
Also, one has that

dH(gm({aik,k}), gm({ajh,h})) = d(gm(aik,k), gm(ajh,h)) < ε

for any k, h ∈ {1, 2, · · · , s}. Thus, g is strongly accessible in we-topology.

Remark 4.1. (1) Let g be a collectively Kato chaotic map on a compact metric
space (Y, d) in we-topology. Is collectively Kato chaotic g in we-topology? (2)
Assume that g is a continuous self-map on a compact metric space (Y, d), and that
g is collectively Kato chaotic in we-topology. Is collectively Kato chaotic g in we-
topology?(3) Let g be a continuous self-map on a compact metric space (Y, d) and g
be chaotic in the strong sense of Kato we-topology. Is g chaotic in the strong sense
of Kato in we-topology? (4) Let g be a continuous self-map on a compact metric
space (Y, d) and g be chaotic in the strong sense of Kato we-topology. Is g chaotic
in the strong sense of Kato in we-topology?
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[6] J. S. Cánovas and M. R. Maŕın, Chaos on MPE-sets of duopoly games, Chaos,
Soliton. Fract., 2004, 19(1), 179–183.



2504 R. Li, T. Lu, G.Chen & X.Yang
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