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Abstract By the use of the weight coefficients, the idea of introduced param-
eters and Euler-Maclaurin summation formula, a reverse Hardy-Littlewood-
Pdlya’s inequality with parameters as well as the equivalent forms are pro-
vided. The equivalent statements of the best possible constant factor related
to a few parameters and some particular cases are given.
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1. Introduction

pr>1117+5—1am,b >0,0<>* ab, <ocoand 0 <> 7 bl < oo, then

we have Hardy-Hilbert’s inequality with the best possible constant factor W
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as follows:

and the following Hardy-Littlewood-Pdlya’s inequality:
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(1.2)

where, the constant factor pq is the best possible (cf [4], Theorem 315 and Theorem
341).

In 2006, by introducing a few parameters \; € (0,2](i = 1,2),\1 + A2 = X €
(0, 4], an extension of (1.1) was provided by [12] as follows:
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where, the constant factor B(Aq, A2) is the best possible (B(u,v) = [~ %dt

(u,v > 0) is the beta function). For A = 1, = %,)\2 = %, inequality (1.2)
reduces to (1.1); for p = ¢ = 2,A\; = Ay = 3, (1.3) reduces to Yang’s inequality
n [23]. Recently, applying (1.3), Adiyasuren et al. [1] provided a new Hilbert-type

inequality with the kernel m involving partial sums.

If f(z),9(y) > 0,0 < [;° fP(x)dz < coand 0 < [~ g?(y)dy < oo, then we have
the following Hardy-Hilbert’s integral inequality (cf. [4], Theorem 316):

% f(2)g(y) ™ o [ .
/0 /O ﬂdmdy<m(/o fP(z)dz) (/0 g% (y)dy)«, (1.4)

where, the constant factor = is the best possible. Inequalities (1.1), (1.2) and
(1.4) with their extensions and reverses play an important role in analysis and its
applications (cf. [2,3,5,6,13,15,19-21,24,28]).

In 1934, a half-discrete Hilbert-type inequality was given as follows (cf. [4],
Theorem 351): If K(¢)(t > 0) is decreasing, p > 1,% + % = 1,0 < ¢(s) =
JoT K@)t~ dt < 00, an > 0,0 < 307 aP < oo, then we have

n=1"n

/000 a:p_Z(Z K(nx)a,)Pdx < ¢*( )ZGZ- (1.5)

1
n=1 q
In the last ten years, some extensions of (1.5) with their applications and the reverses
were provided by [16-18,25, 26].

In 2016, by means of the technique of real analysis, Hong et al. [7] considered
some equivalent statements of the extensions of (1.1) with the best possible constant
factor related to a few parameters. The other similar works about (1.2), (1.4) and
(1.5) were given by [8-11,22,27].

In this paper, following the methods of [12] and [7], by the use of the weight
coefficients, the idea of introducing parameters and Euler-Maclaurin summation
formula, a reverse Hardy-Littlewood-Pdlya’s inequality with parameters as well as
the equivalent forms are provided in Lemma 2.2 and Theorem 3.1. The equivalent
statements of the best possible constant factor related to a few parameters and some
particular cases are considered in Theorem 3.2 and Remark 3.1.

2. Some lemmas
In what follows, we suppose that 0 < p < 1(q < 0),%

(0, 21N (0,A) (i =1,2). We also assume that a,,b, > 0
such that

= 1,A € (0,3, €

1
Ty
(m,mneN=1{1,2,---}),

(oo} (oo}
0< Z mp[lf(klkz+%”71aﬁl < ooand 0 < an“*(kzkur%)]*lb% < 00.
m=1 n=1
Lemma 2.1. Define the following weight coefficient:
o pha—1
w (Ao, m) := m* A2 Z (m e N). (2.1)

“— (max{m,n})*
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We have the following inequality:

0 < ka(A2)(1 — %)
< @ (aym) < ka(Ag) i= ﬁ (m € N). (2.2)

Proof. For fixed m € N, we set function g,,(t) := i (t > 0). We find

max{m,t})>

a1
——,0 <t <m,
gmt) = Az—A—1
t2TAT > m,
Ao —2
) Qa2 = 1o <t < m,
Im(t) =

A2 — A= D)tr2=A=2 ¢ >,

In the following, we divide two cases of A2 to obtain (2.2).
(i) For A2 € (0,1] N (0, A), by the decreasingness property of series, we obtain

wr(A2,m) < m)‘_>‘2/ gm (t)dt
0

m t>‘271 [e'e]
A—Ao Aoa—A—1 _
—m [/0 — dt+/ P21 — ki (),

m

wx(Ag,m) > m)‘f)‘Z/ gm (t)dt
1

T e . ool
= ) G

N
:k})\(Ag)*m 2 o m)\ dt

A— Ao
=kx(A2)(1 — e ) > 0.

In this case, (2.2) follow.
(ii) For A2 € (1,4]N(0,A), by using Euler-Maclaurin summation formula (cf.
[26]), for p(t) =t — [t] — 3, we find

>t = [ onit+ gon @1 + [ ot

m (D) dt + = gm (O[T )t 2 4dt
[ a0+ ganorr+ 222 [

(t)
m 1 m /\271 9 —2m
[ om0+ GOl + ot S
m 1
/ I (Bt + g () (1< Ao < 2,0 < & < 1),
1
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o 1 A—A—1
o e

12 m
00 1 D VR |
< /m gm (t)dt + igm(t)‘m + 12mA—Aa+2

(A <A 0<e<]),
and then it follows that

> o0 1 Ao —A—1
S om(m) < [ gndt + 500+ 122
n=1 1

2 12mA—A2+2

= /00 Im (£)dt — hy (N, A2),
0

where, for A < 3, Xy < 2, h(\2) := 12 — 10X\ + )3,

1 1 Ao —A—1
B (0 Aa) :/ g ()t = Sgm(1) — S22
0

12m>\7>\2+2
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AomA  2mA 12mAr e t2
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X 2 12 VX = 122m>’
Since A'(Az) := —10 42X < 0 (A2 € (1, 4]), we find
h(A h(11/8 1
h(AAg) > Q2 PAL/S) >0,

12Xom* = "12X9m> 256 9mA
and then we obtain

> [eS]
w (Ao, m) = m* A2 Z gm(n) < m =22 / gm (t)dt
n=1 0

A
A(e) Xo(A = A2)
On the other hand, we find
m m dt m T =t
Zg /1 g(O)d + Zgm (T + 25 P2y
> m dt m - 1- 2 )
e 1 A—A—1
m = [ om(Odt+ om0l + g e
m 2 12
n= m+1
o0 1 Oo
> Gm (t)dt + =gm (t)[n

m 2

A2—1 _

and then for me - s> 2m)‘ 12m% (A2 < 2), we find

> g > [ an(Ode+ om(1) + ot (1= )

2 12mA
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> 1 Ao —1 e
> /1 gm(t)dt + (m — W) > /1 gm(t)dt > 0.

Hence, in view of the result of the case (i), for Ay € (1, X]N(0,\), we still have
(2.2).
The lemma is proved. [

Lemma 2.2. We have the following reverse Hardy-littlewood-Polya’s inequality with
parameters:

1 1 = A= _(Azha Ay 1
> kL (2)ky ALY (1= S ymPlt =+ 53001 4

AmAz
% {Z ndlt=(
n=1

Proof. In the same way of obtaining (2.2), for n € N, we have the following
inequality of the weight coefficient:

m=1

A=
q

Iy (2.3)

A— N\ )
AnAt

& A1—1

< wa(Ar,n) i=n "M Z n
m

— (max{m,n})*

0 < ka(A)(1—

D S
A — A1)

By the reverse Holder’s inequality (cf. [14]), we obtain

< kx(\1) = (n € N). (2.4)

© 1 n(G2=1)/p m1—1)/q

N - Z—:1 (max{m,n})* [m(kl D/q" Hn(M 1/p bn]
0o oo pra—1 N
2 {Z_: z_:l max{m n})A mAi—D-1) m}
0o 0o m,\1,1 .
a1
<{)_ Z max{m n})> ne-1(a- ok
n=1m=1

AAQ
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x{zwx A1, 1) T3 "1}

Then by (2.2) and (2.4), for 0 < p < 1,¢q < 0, we have (2.3).
The lemma is proved. O

Remark 2.1. By (2.3), for Ay + A2 = A € (0, 11](C (0,3]), A € (0, 2] N (0,A) (i =
1,2),we find

0< Z mPU=2)=1gP < o0 and 0 < ZnQ(l_)‘2)_1b% < 00,

m=1 n=1
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and the following inequality:

m=1 :1
A e A o .
mP=A) 1P 15 ] a(1=A2)=1pa)g, 2.5
/\1)\2 MEZ: AmA 2) z:: ( )
Lemma 2.3. The constant factor x5~ in (2.5) is the best possible.

Proof. For any 0 < & < pA;1, we set
G = mM T F b, = n*2 =i (m,n e N).

such that (2.5) is valid when replacing

If there exists a constant M > YT A , /\3‘/\2

by M, then in particular, substitution of a,, = a,, and En = b, in (2.5), we have

m=1n=1
= A 1L ~and
> MY (1= o ymr TG o[y a0 s (26)
m=1 n=1

By (2.5) and the decreasingness property of series, we obtain

_ 0o A %) 0o
T> MO om™ =5 3 m= )4 3 =
m=1 m=1 n=2

Q=

> M(/loo 2==dz — O(1))5 (1 + /100 Y ldy)

By (2.4), setting

~ € 11
A=A ——€(0,—)N (0, A
1 1 pe(’S) (a)a

0<//\\25:/\2+]%:)\—3\\1</\,

we find
DD aaed PRI SPNCHNRES
1= n™2Te n = wx(A1,n)n™°"
)\ )
n=1 m=1 (max{m’n}) n=1
A = >
<=1+ *5*1)<AA(1+/ y==dy)
Al)\Q n=2 112 1
= (e+1)
e(A—2)(A2+ %)

Then we have

(e+1)>el > M(1—eO(1))7 (e + 1)a.

A
(A= 2)(A2+3)
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For ¢ — 0T, we find o )\ > M. Hence, M = ﬁ is the best possible constant
factor in (2.5).
The lemma is proved. O

Setting /\1 A= ’\2 + ’\1 Xz = ’\%q’\l + %, we find

~ =~ - A A A=A A A
M+ =2 2 L2 =24 2=
q q p p g
and we can rewrite (2.3) as follows:
= i i majgnnn}
m=1 n:l
k%()\z)k%O\ )[i(l A /\2) p(1-X1)— %i (1=2a)=1pa ] (2.7)
A A = )\m)\z —~ .

Lemma 2.4. If inequality (2.7) is valid with the best possible constant factor

1 1
kL (A2)k{ (A1), then for X — X1 — Ao € (—pA1, p(A — A1), we have A — A — Ag =0,
namely, X = A1 + Aa.

Proof. For A — A1 — A2 € (—pA1,p(A — A1), we obtain

A= A
2+—31<A0<A2—A X < A

0< A=
Hence, we have k(A1) = 5 (A/\ %, = ﬁ e R, = (0,00).
1 1 1172

If the constant factor k7 ()\g)k (A1) in (2.7) is the best possible, then in view of
(10), we have the following inequality:

K Ok (A1) > k().

By the reverse Holder’s inequality, we obtain

A=Xg

LS|
~ A=) N /Oo wr Ta
ka(h) = & + 2o du
S R Al A S STRIE

> 1 Adgo1 a1
~ | i

(max{1,u})

00 AAel o0 w1
= [/0 (max{l,u})kdu] [/0 (maX{l,u})Adu}
= k{ (A2)k3 (A1) (2.8)

D=
Q=

Hence, k} (A2)ky (M) = kx (A1), namely, (2.8) keeps the form of equality.
We observe that (2.8) keeps the form of equality if and only if there exist con-
stants A and B, such that they are not all zero and (cf. [14])

Auvr 227l = Byt ae. in Ry

Assuming that A # 0, we have u} 1742 = % a.e. in Ry, and then A—A; — X2 =0,
namely, A = A\ 4+ Ao
The lemma is proved. O
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3. Main results and some particular inequalities

Theorem 3.1. Inequality (2.3) is equivalent to the following inequalities:

- PP+ 31 dm %
{Z [Z (max{m,n})* ) }

(1 )\ AQ _ A—Ag )\71 _ 1
)\2 Al {Z 1 — )\mx2 [1 ( pf'f‘ a )] 10121}1” (31)
A=Xo >\1
ee] mq( +i)_1 [ee] b )
=1 [ eIl
Z (1 T 2 Gt}
> K 0wk 0w) an G (3.2)

If the constant factor in (2.3) is the best possible, then so is the constant factor in
(3.1) and (3.2).

Proof. Suppose that (3.1) is valid. By the reverse Holder’s inequality, we have

I:i[ e

n=1 m=

Z >\ >\1+>\2)] 1bq}q (33)

ﬁ_,’_%) Am ][n;_()\ )\1+)\2)b }

« (max{m, n})*

| V

Then by (3.1), we obtain (2.3). On the other hand, assuming that (2.3) is valid, we

set
o0

(5 +32)-1 am -1
bu = n" [Z (max{mm})A]p men:

m=1

If J; = oo, then (3.1) is naturally valid; if J; = 0, then it is impossible to make
(3.1) valid, namely, J; > 0. Suppose that 0 < J; < oco. By (2.3), we have

00 > an[1*<“q“+%>1*1b% =Ji=1

n=1

1 1 > A=A (A=A Ay PR
>k§(/\2)k§(/\1){2(1— )\m;)mp[l R S D

m=1

J = {anu—(%%n—lbz}w

1 1 i A— A\ _(Az22 A1y 1
k)’:()\Q)k;()\l){Z(l— /\mAQQ)mI)[l (=2+H)] 1a£1}p’

m=1

namely, (3.1) follows, which is equivalent to (2.3).
Suppose that (3.2) is valid. By the reverse Holder’s inequality, we have

> A=A 1 1 (A2 n
[=3 105 2)rmi = a,)
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A G DI N
xl e 5|
(1 - >\7,L)\§ )p n=1 (max{m,n})
230~ Sy G R g g (3.4

Then by (3.2), we obtain (2.3). On the other hand, assuming that (2.3) is valid, we
set

A=Xo | Ap
mQ(TJF*)*l 0 b

Ay = [ - 1971, m e N.
(1—3=qz)at ; (max{m,n})*

If J; = oo, then (3.2) is naturally valid; if Jo = 0, then it is impossible to make
(3.2) valid, namely, Jy > 0. Suppose that 0 < Jy < oco. By (2.3), we have

A=A -
00> 3 (1= LT — g~ 1
m=1
> kY (ki (M) T4 1{an[1 CFH 3131/,
n=1
m

1 1
> kL (A2)ky (A {an[l (AL +32)] 1bq}1/q
n=1

namely, (3.2) follows, which is equivalent to (2.3). Hence, inequalities (2.3), (3.1)
and (3.2) are equivalent.

If the constant factor in (2.3) is the best possible, then so is the constant factor

n (3.1) and (3.2). Otherwise, by (3.3) (or (3.4)), we would reach a contradiction
that the constant factor in (2.3) is not the best possible.
The theorem is proved. O

Theorem 3.2. The following statements (i), (i), (iii) and (iv) are equivalent:

(i) Both k:E(/\g)k‘E()\l) and k,\(@ + ﬁ) are finite and independent of p, g;
(ii) k ()\g)k (A1) is expressible as a single integral:

A=A

A=y N\ /°° e
k + = T _du
T T T e )

1 1
(iil) &£§ (A2)ky (A1) in (2.3) is the best possible constant factor;
(iV) If\— /\1 — )\2 € (fp)\l,p()\ - /\1))7 then \ = )\1 + /\2.
If the statement (iv) follows, namely, A = A1 + A2, then we have (2.5) and the
following equivalent inequalities with the best possible constant factor )\1’\—)\2:

oo oo
{ § np>\2 1 §
n=1

m=1

S L Y

max{m n})A

oo

—A)— 1
)\1>\2 Z /\m 2 mP=) 1ag1]p’ (3.5)

m=1
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qul 1 e 1
{Z )\mw) ; max{m n})A s
)\1);\2 Z”q(l ], (3.6)

Proof. (i) => (ii). By (i), we have

k‘f(/\z)kg()q) = lim lim k7 (/\2)k§(>\1) :k)\(/\g),
p—1— ¢q——00
/w(ﬂ + ﬁ) = lim lm /{A()‘ — A2 + ﬁ)
p q p—=17 g =00 p q

=ka(A = X2) = ka(A2),

1 1
namely, ky (A2)ky (A1) is expressible as a single integral k)\(% + )‘71)

1 1

(i) => (iv). If kf (A2)ky (M) = ka(2=22 4 22), then (2.8) keeps the form of
equality. In view of the proof of Lemma 4, it follows that A = A\; + As.

(Z’U) => (Z) A=+ )\2, then

A— Ao A1
+ 24 =k (),
’ q) A(A1)

B Oa)kf (A1) = ka

which are finite and independent of p,q. Hence, it follows that (i) <=> (i) <=>
(iv).
(#i7) => (iv). By Lemma 2.4, we have A = A1 + \o.
1 1

(tv) => (i4i). By Lemma 2.3, for A = A + Ao, k{ (A2)k (A1) is the best possible
constant factor in (2.3). Therefore, we have (iii) <=> (iv).

Hence, the statements (i), (ii), (iii) and (iv) are equivalent.

The theorem is proved. O
Remark 3.1. For \; = 2 < &\ =2 < U > 1141 =10< )<
L min{r,s}) in (2.5), (3.5) and (3.6), we have the following equivalent inequali-
ties with the best possible constant factor Z2:

zs,
0o 00 ambn
mzzh; (max{m,n})*
o0 (3.7)
DY (- — et znqu» gt
{Zn% i (max{az n}))‘] V> %[Z(l_ mlr) PI-2-1p 1% (3.8)
.- m* 1 — bn 1Ts N N
{mz::l (1— 17 ya—1 [; (max{m,n})k]q}q > 7[; =< lbq]rz (3.9)

In particular, (i) for A = 1, we have the following equivalent inequalities:

3 5 ety > P a0

m=1n=1 =1
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> P > QA 1 > 1 3 1
Do n Y P e[y (1 —)m ], (3.11)
n=1 m=1 maX{m’ n} m=1 rms
oo m%71 o0 N
@ > sy naTH Ty 3.12
{m:1 (1 r7rlzé )q_l [nzl max{m ’I’L} } ILZI ( )
(i) for A\=4L, r =5 we have the following equivalent inequalities

4. Conclusions

In this paper, by the use of the weight coefficients, the idea of introduced parame-
ters and Euler-Maclaurin summation formula, a reverse Hardy-Littlewood-Pdlya’s
inequality with parameters and the equivalent forms are given in Lemma 2.2 and
Theorem 3.1. The equivalent statements of the best possible constant factor related
to a few parameters, and some particular cases are considered in Theorem 3.2 and
Remark 3.1. The lemmas and theorems provide an extensive account of this type
of inequalities.
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