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Abstract In this research paper, a different semi-analytical analysis of mod-
ified magnetohydrodynamic Jeffery–Hamel flow is conducted via the newly
developed technique. We use the optimal iterative perturbation method with
multiple parameters to see the effects of the magnetic field and nanoparticle
on the Jeffery–Hamel flow. Comparing our new approximate solutions with
some earlier works proved the excellent accuracy of the newly proposed tech-
nique. Convergence analysis of the proposed method is also discussed and
error estimation is given to anticipate the accuracy of higher-order approxi-
mate solutions.
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1. Introduction

In 1915, George Barker Jeffery published a paper about the two-dimensional steady
motion of a viscous fluid [28]. After two years, another study about the spiral
movements of viscous liquids was carried out German scientist Georg Hamel [25].
The equations resulting from these studies were called as Jeffery – Hamel flows.
These flows can be counted as an exact similarity solution of the NavierCStokes
equations in the specific case of 2D flow through a channel with inclined plane walls
intersecting at a vertex with a point of supply or sink at the vertex [23]. There
are many researchers have struggled to obtain approximate solutions to Jeffery –
Hamel flow problem. Ganji et al. have used decomposition method to get analytical
solution to classical Jeffery – Hamel problem [24]. Adomian decomposition method
has been also used for analytical investigation of Jeffery – Hamel flow with high
magnetic field and nanoparticle by Rokni et al. [41]. Marinca and Herisanu have
implemented the optimal homotopy asymptotic method to deal with nonlinear flow
problem [35].

Due to the nonlinearity of most of the mathematical models such as Jeffery –
Hamel flows and other fluid mechanic problems, many different analytical and nu-
merical techniques are required to handle these types of equations. For instance, the
homotopy analysis method (HAM) is one of the most encountered techniques for
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solving nonlinear problems. Nonlinear fractional differential equations have been
safely solved by the HAM [38–40]. Deniz and Sezer have applied rational Chebyshev
collocation method to solve nonlinear heat transfer models. [20]. New approximate
solutions to electrostatic differential equations have been obtained by using opti-
mal homotopy asymptotic method [11]. Bildik and Deniz have revisited a model
of the polluted lakes system via new numerical scheme [8]. Many recent works of
fractional calculus have been considered via various numerical methods [2,3,31,37].
Fractional complex transform and (G’/G)-expansion method have been applied for
solving time-fractional differential equations [5]. Gner has found exact travelling
wave solutions to the space-time fractional Calogero-Degasperis equation using dif-
ferent analytical methods [26]. Perturbation iteration technique has been recently
constructed and used to solve many linear and nonlinear problems [9, 12, 13, 21].
Exact travelling wave solutions of reaction diffusion models of fractional order have
been obtained by Q-function method [14]. Fourth-order time-fractional partial dif-
ferential equations with variable coefficients have been numerically solved by Javidi
and Ahmad [29]. Yuan and Alam have implemented the optimal homotopy analysis
method based on particle swarm optimization to solve fractional-order differential
equation [42]. Recently, a new semi-analytical technique, namely the optimal it-
erative perturbation technique, has been established to deal with many types of
nonlinear differential equations [7, 10,15,17,22].

In the present research, the optimal iterative perturbation method (OIPM) with
multiple parameters have been applied to solve Jeffery – Hamel flow with high
magnetic field and nanoparticle. In accordance with this aim, we put forward a
new idea of convergence-control parameters in the perturbation iteration technique.
In order to optimally determine the convergence-control parameters, we make use
of the squared residual error. By solving the modified Jeffery – Hamel flow problem,
we see that obtained results are more accurate and impressive than those of many
other techniques in the literature.

The rest of the paper is organized as follows: Derivation of the considered prob-
lem is given in the next section. The new optimal iterative perturbation algorithm
(OIPA) is formed in section 3. Convergence analysis and error estimation of the
algorithms is given in Section 4. Section 5 is devoted to analyzing a comprehensive
illustration via new algorithms. Eventually, a general evaluation will be given in
the conclusion part.

2. Analysis of governing problem

In this section, the classical mathematical formulation of the Jeffery–Hamel equation
is revisited. These derivations have been reviewed by many researchers for reducing
the model into the classical nonlinear differential equations [30, 36]. Configuration
of the Jeffery–Hamel flow can be pictured as in Fig. 1. In this model, the fluid
pressure, the electromagnetic induction and the conductivity of the fluid will be
denoted as P,B0, σ respectively. In order to accomplish our purpose, we assume
that there is no change in the flow parameter and no magnetic field along the z-
direction of the cylindrical polar coordinates (r, θ, z). Therefore, our equations will
depend only on r and θ and can be showed in polar coordinates as:

ρnf
r

∂

∂r
(ru(r, θ)) = 0, (2.1)
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Figure 1. Configuration of the Jeffery–Hamel flow: The rigid walls are considered to be divergent if
α > 0 and convergent if α < 0.
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∂r
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∂θ2
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r2

]
− σB2

0

ρnfr2
u(r, θ),

(2.2)

0 = − 1

ρnfr

∂P

∂θ
+

2νnf
r2

∂u(r, θ)

∂θ
, (2.3)

where ρnf and νnf represent the fluid density and the coefficient of kinematic vis-
cosity, respectively. In 2009, Aminossadati and Ghasemi have given the effective
dynamic viscosity µnf , the kinematic viscosity νnf and the effective density ρnf of
the nanofluid for natural convection cooling of a localized heat source at the bot-
tom of a nanofluid-filled enclosure [4]. Taking φ as the solid volume fraction, these
parameters can be given as:

µnf =
µf

(1− φ)2.5
,

νnf =
νf
ρnf

,

ρnf = ρf (1− φ) + ρsφ.

(2.4)

Velocity parameter can be described as f(θ) = ru(r, θ) by knowing uθ = 0 for the
purely radial flow. Using dimensionless parameters,

S(x) =
f(θ)

fmax
where x =

θ

α
(2.5)

and eliminating P between Eqs. (2.2) and (2.3) gives the following nonlinear second
orde ordinary differential equation:

S′′′(x) + 2αReY ∗(1− φ)2.5S(x)S′(x) + (4− (1− φ)2.5Ha)α2S′(x) = 0 (2.6)
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where

Re =
αfmax
νf

=
rαUmax
νf

, (2.7)

Ha =

√
σ
B2

0

ρfνf
, (2.8)

Y ∗ =
ρs
ρf
φ+ (1− φ). (2.9)

The equations (2.7) and (2.8) are called as the Reynolds number and the Hartmann
number, respectively. The boundary conditions can also be simplified as

S(0) = 1, S′(0) = 0, S(1) = 0. (2.10)

3. Optimal iterative perturbation technique

Considering the Eq. (2.6), one can rewrite the main problem in a closed form as:

F (S′′′, S′, S, ε) = 0 (3.1)

where S = S(x) and ε is the perturbation parameter. In order to get optimal
iterative perturbation algorithms (OIPAs), we take the approximate solution with
one correction term in the perturbation straightforward expansion as

Sn+1 = Sn + ε(Sc)n (3.2)

where n ∈ N ∪ {0} and (Sc)n is the nth correction term of the iteration algorithm.
Upon substitution of (3.2) into (3.1) then expanding it in a Taylor series with nth
derivatives yields the OIPA-n s. Taking only first derivatives, we have OIPA-1 as

F + FS(Sc)nε+ FS′(S
′
c)nε+ FS′′′(S

′′′
c )nε+ Fεε = 0 (3.3)

where subscripts of F denotes partial differentiation and all derivatives and functions
are computed at ε = 0. We can reformulate the above algorithm as follows:

(
S
′′′

c

)
n

+
FS′

FS′′′

(
S
′

c

)
n

+
FS
FS′′′

(Sc)n = −
F
ε + Fε

FS′′′
. (3.4)

An initial function S0 satisfying the prescribed condition(s) must be selected to
obtain the first correction term from the following algorithm:(

S
′′′

c

)
0

+
FS′

FS′′′

(
S
′

c

)
0

+
FS
FS′′′

(Sc)0 = −
F
ε + Fε

FS′′′
. (3.5)

One can use the above equation to get the approximate results in the desired limits.
To start the iteration procedure, a first trial function u0 is selected appropriately
according to the prescribed conditions. The first correction term (uc)0 can be
computed from the algorithms (3.4) by using u0 and given condition(s). Then the
first approximate solution u1 is obtained by using (uc)0 and so on. To get better
and more effective approximations, we propose a new approach to these algorithms.
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Based on the idea of HAM [38–40], we insert a convergence-control parameters
P0, P1, P2, ... into Eq. (3.2) and then construct new components, defined by

S1(x;C0) = S0 + C0(Sc)0,

S2(x;C1) = S1 + C1 (Sc)1 ,

...

Sm(x;Cm−1) = Sm−1 + Cm−1(Sc)m−1.

(3.6)

In order to obtain the optimum values of these paramters, we make use of the similar
strategy mentioned by Marinca et al [33,34]. Substituting the approximate solution
Sm into the Eq.(3.1), we will get the following residual:

R(x,C0, . . . , Cm−1) = F ((Sm)′′′, (Sm)′, Sm) . (3.7)

It is clear that, when R(x,C0, . . . , Cm−1) = 0 then the approximation Sm is the
exact solution of the problems. Generally such case will not arise for nonlinear
equations, but one can minimize the functional

J(C0, . . . , Cm−1) =

b∫
a

R2(x,C0, . . . , Cm−1)dx (3.8)

where a and b are elected from the domain of the problem. Optimum values of
C0, C1, . . . can be optimally defined from the conditions JC0

= JC1
= ... = JCm−1

.

4. Convergence analysis and error estimate

We now investigate the convergence of the proposed optimal iterative perturbation
technique with the aid of some theorems. New approximate solution obtained by
OIPM are considered in a different way as follows:

D0 = S0, Dn+1 = Cn (Sc)n . (4.1)

Correspondingly, other OIPM solutions can be determined as:

S0 = D0,

S1 = S0 + C0 (Sc)0 = D0 +D1,

S2 = S1 + C1 (Sc)1 = D0 +D1 +D2,

S3 = S2 + C2 (Sc)2 = D0 +D1 +D2 +D3,

...

Sn+1 = Sn + Cn (Sc)n = D0 +D1 +D2 + · · ·+Dn+1 =
∑n+1
i=0 Di.

(4.2)

Therefore, one can represent the approximate solution of the problem as:

S(x) = lim
n→∞

Sn+1(x) =

∞∑
i=0

Di. (4.3)
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Theorem 4.1. Let us assume that B denotes a Banach space and

A : B → B (4.4)

is a kind of nonlinear mapping and also we suppose that

‖A [y]−A [ȳ]‖ ≤ β ‖y − ȳ‖ , y, ȳ ∈ B, (4.5)

for β < 1 , where β is some constant. Then, the mapping A has a unique fixed
point. Additionally, the following sequence

Sn+1 = A [Sn] , (4.6)

with an arbitray selection of S0 ∈ B, converges to the fixed point of the mapping A
and

‖Sr − Ss‖ ≤ ‖S1 − S0‖
r−2∑
j=s−1

βj . (4.7)

Banach fixed point theorem may be used to derive the following theorem

Theorem 4.2. Let B represents a Banach space designated with an appropriate
norm ‖.‖ over which the series

∑∞
i=0Di is defined and let us assume that the initial

mapping S0 = D0 falls inside the ball of the exact solution S(x). So, the solution∑∞
i=0Di converges if there is a β such that

‖Dn+1‖ ≤ β ‖Dn‖ . (4.8)

Proof. To prove the above theorem, let us first define a sequence as:

A0 = D0,

A1 = D0 +D1,

A2 = D0 +D1 +D2,

...

An = D0 +D1 +D2 + · · ·+Dn.

(4.9)

We must now to show that {An}∞n=0 is a Cauchy sequence in B. In order to achieve
that, we consider

‖An+1 −An‖ = ‖Sn+1‖ ≤ β ‖Sn‖ ≤ β2 ‖Sn−1‖ ≤ · · · ≤ βn+1 ‖D0‖ . (4.10)

For every n, k ∈ N,n ≥ k , we have

‖An −Ak‖ = ‖(An −An−1) + (An−1 −An−2) + · · ·+ (Ak+1 −Ak)‖
≤ ‖An −An−1‖+ ‖An−1 −An−2‖+ · · ·+ ‖Ak+1 −Ak‖
≤ βn ‖D0‖+ βn−1 ‖D0‖+ · · ·+ βk+1 ‖D0‖

=
1− βn−k

1− β
βk+1 ‖D0‖ .

(4.11)

Since it is known that 0 < β < 1 , one can easily get from (4.11)

lim
n,k→∞

‖An −Ak‖ = 0. (4.12)

Finally, {An}∞n=0 is a Cauchy sequence in B and this implies that the series solution
(4.2) is convergent. This completes the proof.
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Theorem 4.3. If S0 = D0 falls inside the ball of the solution S(x) then An =∑n
i=0Di remains inside that ball, too.

Proof. Assume that

D0 ∈ Br(S) (4.13)

where

Br(S) = {D ∈ A| ‖S −D‖ < r} (4.14)

is the ball of D(x). From the hypothesis S = lim
n→∞

An =
∑∞
i=0Di and using

Theorem 4.2, we get

‖S −An‖ ≤ βn+1 ‖D0‖ < ‖D0‖ < r (4.15)

where β ∈ (0, 1) and n ∈ N.

Theorem 4.4. Let us now suppose that
∑∞
i=0Di , i.e. the approximate OIPM

solution, is convergent to the desired solution S(x). If the truncated series
∑k
i=0Di

is utilized as an approximation to the (3.1), then the maximum error can be obtained
as,

Ek(x) ≤ βk+1

1− β
‖D0‖ . (4.16)

Proof. By using the Eq.(4.11), one can get

‖An −Ak‖ ≤
1− βn−k

1− β
βk+1 ‖D0‖ (4.17)

for n ≥ k. By knowing

S(x) = lim
n→∞

An(x) =

∞∑
i=0

Di (4.18)

one can write ∥∥∥∥∥S(x)−
k∑
i=0

Di

∥∥∥∥∥ ≤ 1− βn−k

1− β
βk+1 ‖D0‖ (4.19)

and also it can be rewritten as

Ek(x) =

∥∥∥∥∥S(x)−
k∑
i=0

Di

∥∥∥∥∥ ≤ βk+1

1− β
‖D0‖ (4.20)

since 1− βn−k < 1. Here β is chosen as β = max {βi, i = 0, 1, . . . , n} where

βi =
‖Dn+1‖
‖Dn‖

. (4.21)
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Figure 2. Errors for fifth order OIPM solu-
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Figure 3. Numerical results and the second

order approximation for α =
π

20
, Ha = 0, φ =

0.01, Re = 100.

5. Applications

In this section, we try to find new approximate solutions to modified Jeffery–Hamel
flow equation by using perturbation algorithms. Firstly, the Eq. (2.6) with pertur-
bation parameter can be written as :

F (S′′′, S′, S, ε) =S′′′n (x) + 2εαReY ∗(1− φ)2.5Sn(x)S′n(x)

+ ε(4− (1− φ)2.5Ha)α2S′n(x) = 0.
(5.1)

With the aid of the Eqs. (3.2) and (3.4) and setting ε = 1 one can get the following
algorithm:

(Sc)
′′′
n = −

(
S′′′n + 2αReY ∗(1− φ)2.5Sn(x)S′n(x) + (4− (1− φ)2.5Ha)α2S′n(x)

)
.

(5.2)
One can start with the following trial function

S0 = 1− x2 (5.3)

which satisfies the boundary conditions (2.10). Substituting S0 into Eq. (5.2) gives
a first-order problem:

(Sc)
′′′
0 = 2xα2

(
4−Ha(1− φ)2.5

)
+ 4Rex

(
1− x2

)
Y ∗α(1− φ)2.5. (5.4)

which has solution as:

(Sc)0 = −0.0333333


10.x2α2 − 10.x4α2 − 5.Rex4Y ∗α(1. − 1.φ)2.5+

1.Rex6Y ∗α(1. − 1.φ)2.5 + 2.5Hax4α2(1. − 1.φ)2.5+

4.Rex2Y ∗α(1. − 1.φ)5/2 − 2.5Hax2α2(1. − 1.φ)5/2

 .

(5.5)
Therefore, first order approximate solution will be in the following form:

S1 =1−x2−0.0333333C0


10.x2α2 − 10.x4α2 − 5.Rex4Y ∗α(1. − 1.φ)2.5+

1.Rex6Y ∗α(1. − 1.φ)2.5 + 2.5Hax4α2(1. − 1.φ)2.5+

4.Rex2Y ∗α(1. − 1.φ)5/2 − 2.5Hax2α2(1. − 1.φ)5/2

 .

(5.6)
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With the solution (5.6) and proceeding as in the Section 3, second order approximate
solutions can be obtained as:

S2 = S1 − 6.105006× 10−6C1×

54600.x2α2 − 54600.x4α2 + 21840.Rex2Y ∗α
√

1. − 1.φ−

13650.Hax2α2
√

1. − 1.φ− 27300.Rex4Y ∗α(1. − 1.φ)2.5

+5460.Rex6Y ∗α(1. − 1.φ)2.5 + 13650.Hax4α2(1. − 1.φ)2.5−

43680.Rex2Y ∗α
√

1. − 1.φφ− 54600.x2α2C0 + 6.89394HaRe2x12Y ∗2α4(1. − 1.φ)7.5C2
0

+27300.Hax2α2
√

1. − 1.φφ+ 21840.Rex2Y ∗α
√

1. − 1.φφ2−

13650.Hax2α2
√

1. − 1.φφ+ 13650.Hax2α2
√

1. − 1.φC2
0

+54600.x4α2C0 + 1412.67Re2x2Y ∗2α2C0 − 1950.HaRex2Y ∗α3C0

+10920.x2α4C0 + 682.5Ha2x2α4C0−

18200.x4α4C0 + 7280.x6α4C0 − 21840.Rex2Y ∗α
√

1. − 1.φC0+

7800.Rex2Y ∗α3
√

1. − 1.φC0 − 7280.Rex4Y ∗α3
√

1. − 1.φC0−

5460.Hax2α4
√

1. − 1.φC0 + 4550.Hax4α4
√

1. − 1.φC0+

347.569Ha2Rex2Y ∗α5
√

1. − 1.φφ3C2
0 − 201.992HaRe2x2Y ∗2α4

√
1. − 1.φφC2

0+

1213.33HaRe2x6Y ∗2α4(1. − 1.φ)2.5φ3C2
0 − 577.121Re2x2Y ∗2α4φ4C2

0+

397.222HaRex2Y ∗α5φ4C2
0 − 735.424Re3x2Y ∗3α3

√
1. − 1.φφ4C2

0+

1009.96HaRe2x2Y ∗2α4
√

1. − 1.φφ4C2
0 − 347.569Ha2Rex2Y ∗α5

√
1. − 1.φφ4C2

0−

606.667HaRe2x6Y ∗2α4(1. − 1.φ)2.5φ4C2
0 + 115.424Re2x2Y ∗2α4φ5C2

0−

79.4444HaRex2Y ∗α5φ5C2
0 + 441.255Re3x2Y ∗3α3

√
1. − 1.φφ5C2

0−

605.977HaRe2x2Y ∗2α4
√

1. − 1.φφ5C2
0 + 208.542Ha2Rex2Y ∗α5

√
1. − 1.φφ5C2

0+

121.333HaRe2x6Y ∗2α4(1. − 1.φ)2.5φ5C2
0 − 147.085Re3x2Y ∗3α3

√
1. − 1.φφ6C2

0

+27.5758Re2x12Y ∗2α4(1. − 1.φ)5.C2
0 − 303.333HaRex6Y ∗α5(1. − 1.φ)5.C2

0

+162.5HaRex8Y ∗α5(1. − 1.φ)5.C2
0 − 101.111HaRex10Y ∗α5(1. − 1.φ)5.C2

0

+97.0667Re3x6Y ∗3α3(1. − 1.φ)7.5C2
0 + · · ·



.

(5.7)
and so on. To get more accurate results, one needs to continue iterating. In order
to find optimum values of C0, C1, we can use the following resual

Res(x;C0, C1) = F ((S2)′′′, (S2)′, S2)

= S′′′2 + 2αReY ∗(1− φ)2.5S2S
′
2 + (4− (1− φ)2.5Ha)α2S′2

(5.8)

for second order iteration. Using the idea at the end of the section 3 with the
following equation:

J(C0, C1) =

1∫
0

Res2(x;C0, C1)dx (5.9)

one gets C0 = 1.00546, C2 = 0.800122 for α =
π

36
, Ha = 0, Re = 50 and φ = 0.

Replacing the obtained paramters into the Eq. (5.7) results in the second order
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OIPM solution. It should be noted here that, one can also use only one single
convergence-control parameter to get approximations. However, CPU times spent
for multiple parameters are less than single parameter.
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Figure 4. Numerical results and the second order approximation for α =
π

20
, Ha = 0, φ = 0.02

Re = 110.

It is clear from the figure 2 that, new approximate solutions agree very well with
the numerical results. Even for the fifth order OIPM solutions, absolute errors are
very less. Furthermore, as it is shown in Figures 3–9, numerical data for optimal
iterative perturbation technique is compared with Runge–Kutta Method for differ-
ent Reynold number, Hartman number, φ and α. According to these figures, one
can conclude that OIPM can be selected as a reference method to solve the the
Jeffery–Hamel flow with high magnetic field and nanoparticle. One can also easily
analyze the effects of Reynolds number and steep angle of the channel on velocity
profile of fluid.

6. Results and discussion

In this research paper, we modify the classical perturbation iteration method by
adding multiple parameters into the iterations. Then, we apply optimal iterative
perturbation technique to deal with the third order nonlinear differential equation
that governs the Jeffery–Hamel flow with high magnetic field and nanoparticle prob-
lem. In comparison with the other well known numerical techniques, we see that
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Figure 5. Numerical results and the third order approximation for Re = 130, φ = 0.015 and α =
π
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Ha = 100
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Figure 6. Numerical results and the third order approximation for Re = 130, φ = 0.015 and α =
π
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Figure 7. Numerical results and the second order approximation for Re = 110, φ = 0.01, Ha = 0,

α =
π
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Figure 8. Numerical results and the second order approximation for Re = 100, Ha = 1000, φ = 0.05,

α = −
π
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Figure 9. Numerical results and the second order approximation for Re = 100, Ha = 1000, φ = 0.02,

α = −
π

120

the OIPM yields better results and can be implemented without any restrictive
assumptions. Figures also proves the accuracy of the proposed method.With the
help of these graphics, we show that increasing Reynolds numbers leads to adverse
pressure gradient which cause velocity reduction near the walls. Moreover, it is
also seen that increasing Hartmann number will lead to backflow reduction and
high Hartmann number (Ha) is needed to reduction of backflow in greater angles
or Reynolds numbers (Re). Finally, we can say that the results obtained in this
work affirm the notion that the OIPM is an effective and powerful technique for
finding approximate solutions for nonlinear differential equations which have great
significance in different fields of science and engineering.
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