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SINGULARLY PERTURBED DELAY

DIFFERENTIAL EQUATION∗
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Abstract The current paper is mainly concerned with the internal layers
for a quasi–linear singularly perturbed differential equation with time delays.
By using the method of boundary layer functions and the theory of contrast
structures, the existence of a uniformly valid smooth solution is proved, and the
asymptotic expansion is constructed. As an application, a concrete example
is presented to demonstrate the effectiveness of our result.
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1. Introduction
Delay differential equations (DDEs) arise naturally in just about every interaction
of the real world, and the original motivations for studying DDEs mainly come from
their application in feedback control theory. In the past several decades, DDEs have
been extensively used in control theory [2, 3, 5–7, 13], population dynamics [8, 22]
and many other scientific fields, where the delays naturally appear to account for
a variety of situations. Among them, singularly perturbed DDEs are particularly
relevant to describe lots of practical phenomena in many areas, see e.g., [1,4,10,18,
19] and the references therein.

The effective method to investigate singularly perturbed DDEs include multi–
scale method [9], the theory of boundary layer functions established by A. Vasil’eva
[21], etc. By the theory of boundary layer functions, Vasil’eva [20] firstly discussed
a kind of neutral type equation with small lag{

ẋ(t) = f(t, x(t), x(t− τ), ẋ(t− τ)),

x(t) = φ(t), 0 ≤ t ≤ τ,
(1.1)

wherein τ > 0 is sufficiently small and φ(t) is a given function, and the following
results are obtained
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(a) If f(t, x, y, z) does not depend on z, then for τ → 0, the solution of (1.1) tends
to a solution of initial problem

ẋ(t) = f(t, x(t)), x(0) = φ(0);

(b) Otherwise, then the author declared that the result in (a) is valid if∣∣∣∣∂f(t, x, y, z)∂z

∣∣∣∣ ≤ a < 1,

for all (t, x, y, z) in the region defined by φ(0).
Subsequently, Rožkov [14–17] generalized the results of singularly perturbed DDEs.

With the rapid development of boundary layer functions theory, it has been
applied to deal with the related problems of uniformly valid asymptotic solution for
Tikhonov systems [11, 12, 23, 24], among which, Ni & Lin [11] have studied a kind
of singularly perturbed DDEs with internal layers{

ε2y′′ = f (y(t), y(t− τ), t) , 0 ≤ t ≤ T,

y(t) = φ(t), −τ ≤ t ≤ 0, y(T ) = yT ,

where 0 < ε ≪ 1 is a small parameter, φ(t) ∈ C([−τ, 0]), τ > 0 is deviation
argument, τ < T < 2τ is positive constant. The author proved the existence
of uniformly valid asymptotic smooth solutions, and constructed their asymptotic
expansion with an internal transition layer.

Motivated by the above discussions, in this paper, we consider the following
quasi–linear singularly perturbed DDEs{

εy′′ = A(y(t), y(t− σ), t)y′ +B(y(t), y(t− σ), t),

y(t) = φ(t), −σ ≤ t ≤ 0, y(T ) = yT ,
(1.2)

where 0 < ε ≪ 1, σ > 0 is delay, φ(t) defined in [−σ, 0] is a smooth function, yT is
a given constant and for simplicity, we assume that T ∈ (σ, 2σ]. Furthermore, the
functions A, B are assumed to be sufficiently smooth on region

D = {(t, y) : 0 ≤ t ≤ T, y ∈ Iy},

wherein Iy represents the admissible range of y(t), and σ ∈ (0, T ) divides the domain
D into two parts

D1 = {(t, y) : 0 ≤ t ≤ σ, y ∈ Iy}, D2 = {(t, y) : σ ≤ t ≤ T, y ∈ Iy}.

In what follows, the authors are going to apply the boundary layer function method
and the theory contrast structures to study (1.2).

Throughout this paper, the notations with superscript “ ′ ” stand for the deriva-
tive of functions on the corresponding variable, and we always make the following
assumptions.

Assumption 1.1. There exists a unique solution ȳ = α1(t) of the Cauchy problem
on the interval [0, σ]

A(ȳ(t), φ(t− σ), t)ȳ′ +B(ȳ(t), φ(t− σ), t) = 0, ȳ(0) = φ(0),

while ȳ = α2(t) is the unique solution of the Cauchy problem on the interval [σ, T ]

A(ȳ(t), α1(t− σ), t)ȳ′ +B(ȳ(t), α1(t− σ), t) = 0, ȳ(T ) = yT .
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Remark 1.1. Assumption 1.1 applies the initial–boundary value conditions for
each cauchy problems, and the other cases will be discussed in further study.

Assumption 1.2. The following inequalities are guaranteed

A(α1(t), φ(t− σ), t) > 0, t ∈ [0, σ],

A(α2(t), α1(t− σ), t) < 0, t ∈ [σ, T ].

In general, α1(σ−) ̸= α2(σ+), for the sake of definiteness, assume that α2(σ) <
α1(σ). Our focus is attracted to the study of existence of an asymptotic expansion
to a solution of problem (1.2) in the class C1[0, T ]∩

(
C2(0, σ) ∪ C2(σ, T )

)
, with an

internal transition layer localized in a neighbourhood of the point t = σ, namely, a
solution close to the function α1(t) on the left of this neighborhood and the function
α2(t) on the right of this neighborhood, which varying from α1(t) to α2(t) swiftly
near t = σ, see Fig. 1. It is found from Assumption 1.1 that there is no boundary
layers for system (1.2) on the considered domain.
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Figure 1. Internal transition layer phenomenon of system (1.2) localized in a neighbourhood of t = σ,
herein, ȳ(∓) denote the regular parts of the asymptotic solution and Q(∓) denote the internal layers.

Introducing auxiliary system (which is an analog of Tikhonov associated system,
ref. [21, p21–27]) to the original problem by making a variable change z = dy

dt , then
the following auxiliary system is obtained

dz̃

dτ
= A(ỹ, ȳ0, σ)z̃,

dỹ

dτ
= z̃, −∞ < τ < +∞. (1.3)

Obviously, the points (α1,2(σ), 0) on the phase plane (ỹ, z̃) are equilibrium points
of system (1.3), and the characteristic equations

λ (A(α1,2, ȳ0, σ)− λ) = 0

have eigenvalues
λ1 = 0, λ2 = A(α1,2, ȳ0, σ) ̸= 0. (1.4)

Dividing the first equation in (1.3) by the second equation, the first–order differential
equation

dz̃

dỹ
= A(ỹ, ȳ0, σ) (1.5)

can be arrived for the functions z̃(ỹ). According to (1.4) and (1.5), we find for
ỹ ∈ (α2(σ), α1(σ)),
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(i) there exists an unstable manifold Wu leaving from the point (α1(σ), 0) and

Wu : z̃(−) =

∫ ỹ

α1(σ)

A(u, φ(0), σ)du := Φ(−)(ỹ), (1.6)

(ii) there exists a stable manifold W s entering into the point (α2(σ), 0) and

W s : z̃(+) =

∫ ỹ

α2(σ)

A(u, α1(0), σ)du := Φ(+)(ỹ). (1.7)

We suppose that the following condition hold

Assumption 1.3. On phase plane (ỹ, z̃), there hold {ỹ = p} ∩ Φ(∓) ̸= ∅ for all
p ∈ (α2(σ), α1(σ)).

Assumption 1.4. The following compatibility condition holds for σ∫ α1(σ)

α2(σ)

A(u, φ(0), σ)du = 0.

Remark 1.2. Assumption 1.4 needs certain requirements and it can always be
realized in several cases, which can be seen in Example 4.1.

The remainder part of this paper is organized as follows. Sect. 2 is devoted
to algorithm of construction for the asymptotic expansions which are established
by the method of boundary layer functions and the theory of contrast structures.
And the main result for the existence of solutions and estimation of remainder are
presented in Sect. 3. Whereafter in Sect. 4, a concrete quasi–linear singularly
perturbed delay differential equation and a series of numerical simulations for some
given small parameter ε are carried out to demonstrate the effectiveness of our
result.

2. Algorithm of Constructing the Asymptotic Ex-
pansions

The asymptotic expansion to a solution of problem (1.2) is constructed separately
on D1,2 (namely, the left problem and the right problem respectively), denote it
by y(−)(t, ε) on D1 and y(+)(t, ε) on D2 respectively, and the functions y(−)(t, ε)
and y(+)(t, ε) are sewn smoothly, as well as their derivatives z(−) := y′(−) and
z(+) := y′(+) at the point t = σ,

y(−)(σ, ε) = y(+)(σ, ε) = p(ε), z(−)(σ, ε) = z(+)(σ, ε) = z(ε), (2.1)

the values p(ε) and z(ε) are unknown and will be determined in the process of
constructing the asymptotic expansions of solution of problem (1.2) and are sought
in the form of expansions in powers of ε in the following

p(ε) = p0 + εp1 + · · · , z(ε) = ε−1z−1 + z0 + εz1 + · · · , (2.2)

and problem (1.2) is separated into the left problem P (−): (t, y) ∈ D1,{
εy′′(−) = A

(
y(−), y(−)(t− σ), t

)
y′(−) +B

(
y(−), y(−)(t− σ), t

)
,

y(−)(0, ε) = φ(0), y(−)(σ, ε) = p(ε),
(2.3)
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and the right problem P (+): (t, y) ∈ D2,{
εy′′(+) = A

(
y(+), y(+)(t− σ), t

)
y′(+) +B

(
y(+), y(+)(t− σ), t

)
,

y(+)(σ, ε) = p(ε), y(+)(T, ε) = yT .
(2.4)

Problems (2.3)–(2.4) for second–order ordinary differential equations are equivalent
to the following respective problems for systems of first–order equations{

εz′(−) = A
(
y(−), y(−)(t− σ), t

)
z(−) +B

(
y(−), y(−)(t− σ), t

)
, y′(−) = z(−),

y(−)(0, ε) = φ(0), y(−)(σ, ε) = p(ε),
(2.5)

and{
εz′(+) = A

(
y(+), y(+)(t− σ), t

)
z(+) +B

(
y(+), y(+)(t− σ), t

)
, y′(+) = z(+),

y(+)(σ, ε) = p(ε), y(+)(T, ε) = yT .
(2.6)

To describe the behavior of solution in a neighborhood of the transition layer point
in detail, we introduce a stretched variable τ = t−σ

ε , and the asymptotic expansions
of the solutions to systems (2.5)–(2.6) are constructed in the following forms

y(∓)(t, ε) = ȳ(∓)(t, ε) +Q(∓)y(τ, ε), z(∓)(t, ε) = z̄(∓)(t, ε) +Q(∓)z(τ, ε), (2.7)

in which

ȳ(∓)(t, ε) = ȳ
(∓)
0 (t) + εȳ

(∓)
1 (t) + · · · , z̄(∓)(t, ε) = z̄

(∓)
0 (t) + εz̄

(∓)
1 (t) + · · · , (2.8)

represent the regular part of the asymptotic solution (2.7), which mainly reflects
the behavior of the solution outside of the internal layers, and

Q(∓)y(τ, ε) = Q
(∓)
0 y(τ) + εQ

(∓)
1 y(τ) + · · · ,

Q(∓)z(τ, ε) = ε−1Q
(∓)
−1 z(τ) +Q

(∓)
0 z(τ) + εQ

(∓)
1 z(τ) + · · ·

(2.9)

denote the internal layer part of the asymptotic solution (2.7). The internal layer
functions are required to satisfy

lim
τ→∓∞

Q
(∓)
k y(τ) = 0, k ≥ 0,

lim
τ→∓∞

Q
(∓)
k z(τ) = 0, k ≥ −1.

Rewriting the sewing conditions (2.1) with regards to the expansions (2.2), (2.8)–
(2.9) give

ȳ
(−)
0 (σ) + εȳ

(−)
1 (σ) + · · ·+Q

(−)
0 y(0) + εQ

(−)
1 y(0) + · · ·

=ȳ
(+)
0 (σ) + εȳ

(+)
1 (σ) + · · ·+Q

(+)
0 y(0) + εQ

(+)
1 y(0) + · · · (2.10)

=p0 + εp1 + · · · ,

and

z̄
(−)
0 (σ) + εz̄

(−)
1 (σ) + · · ·+ ε−1Q

(−)
−1 z(0) +Q

(−)
0 z(0) + εQ

(−)
1 z(0) + · · ·

=z̄
(+)
0 (σ) + εz̄

(+)
1 (σ) + · · ·+ ε−1Q

(+)
−1 z(0) +Q

(+)
0 z(0) + εQ

(+)
1 z(0) + · · · (2.11)

=ε−1z−1 + z0 + εz1 + · · · .



Internal layers for a singularly perturbed DDE 1671

2.1. Regular parts
According to the standard Vasil’eva boundary layer functions method, the equations
for the terms of the regular part can be obtained by substituting the expressions
(2.8) for the functions ȳ(∓)(t, ε) and z̄(∓)(t, ε) into the system of equations

εz′(∓) = A
(
y(∓), y(∓)(t− σ), t

)
z(∓) +B

(
y(∓), y(∓)(t− σ), t

)
, y′(∓) = z(∓),

and into the additional conditions at t = 0 and t = T in problems (2.5) and (2.6)
respectively, and by equating the coefficients of like powers of ε on both sides of the
obtaining equations. Then the functions y(∓)

k (t) are determined for each k = 0, 1, · · ·
as the solutions of Cauchy problems for first–order differential equations, after which
the expressions for their derivatives z

(∓)
k (t) can be found.

Indeed, the following Cauchy problem in the zeroth order expansion is obtained

0 = A
(
ȳ
(−)
0 (t), φ(t− σ), t

)
ȳ
′(−)
0 +B

(
ȳ
(−)
0 (t), φ(t− σ), t

)
, ȳ

(−)
0 (0) = φ(0),

0 = A
(
ȳ
(+)
0 (t), α1(t− σ), t

)
ȳ
′(+)
0 +B

(
ȳ
(+)
0 (t), α1(t− σ), t

)
, ȳ

(+)
0 (T ) = yT .

There exist solutions of these problems by Assumption 1.1. Taking

ȳ
(−)
0 (t) = α1(t), ȳ

(+)
0 (t) = α2(t),

then from y′(∓) = z∓, we get

z̄
(−)
0 (t) = α′

1(t), z̄
(+)
0 (t) = α′

2(t).

The regular terms ȳ
(−)
k (t), (k ≥ 1) are determined as the solutions of the problems

A(t)
dȳ

(−)
k

dt
= −

[
∂A

∂y
(t)α′

1(t) +
∂B

∂y
(t)

]
ȳ
(−)
k + F

(−)
k (t), ȳ

(−)
k (0) = 0,

therein the elements of A(t), ∂A
∂y (t), ∂B

∂y (t) are calculated at the point (α1(t), φ(0), t),
and the functions F

(−)
k (t) are expressed recursively through ȳ

(−)
j (t) and z̄

(−)
j (t),

0 ≤ j ≤ k − 1. Clearly, the following explicit expressions are obtained

ȳ
(−)
k (t) =

∫ t

0

exp

[
−
∫ t

s

(
∂A

∂y
(η)α′

1(η) +
∂B

∂y
(η)

)(
A(η)

)−1
dη

]
F

(−)
k (s)

A(s)
ds

for ȳ
(−)
k (t) and then z̄

(−)
k = ȳ

′(−)
k .

Similarly, the regular terms ȳ
(+)
k (t), (k ≥ 1) are determined as the solutions of

the problems

Ã(t)
dȳ

(+)
k

dt
= −

[
∂Ã

∂y
(t)α′

2(t) +
∂B̃

∂y
(t)

]
ȳ
(+)
k + F

(+)
k (t), ȳ

(+)
k (T ) = 0,

herein the elements of Ã(t), ∂Ã
∂y (t), ∂B̃

∂y (t) are calculated at the point (α2(t), α1(0), t),
and the functions F

(+)
k (t) are expressed recursively through ȳ

(+)
j (t) and z̄

(+)
j (t),

0 ≤ j ≤ k − 1. Clearly, the following explicit expressions are obtained

ȳ
(+)
k (t) =

∫ t

T

exp

[
−
∫ t

s

(
∂Ã

∂y
(η)α′

2(η) +
∂B̃

∂y
(η)

)(
Ã(η)

)−1

dη

]
F

(+)
k (s)

Ã(s)
ds

for ȳ
(+)
k (t) and then z̄

(+)
k = ȳ

′(+)
k .
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2.2. Internal transition layer parts
The coefficients Q

(∓)
k y(τ), k = 0, 1, · · · , and Q

(∓)
k z(τ), k = −1, 0, 1, · · · , can be

obtained by substituting the expansions (2.9) into the systems of equations

dQ(∓)z

dτ
=A

(
ȳ(∓)(τε+ σ) +Q(∓)y, ȳ(∓)(τε), τε+ σ

)(
z̄(∓)(τε+ σ) +Q(∓)z

)
−A

(
ȳ(∓)(τε+ σ), ȳ(∓)(τε), τε+ σ

)
z̄(∓)(τε+ σ)

+B
(
ȳ(∓)(τε+ σ) +Q(∓)y, ȳ(∓)(τε), τε+ σ

)
−B

(
ȳ(∓)(τε+ σ), ȳ(∓)(τε), τε+ σ

)
,

dQ(∓)y

dτ
= εQ(∓)z.

(2.12)
Equating the coefficients of ε0 in the second equations in (2.12) and in conditions
(2.10) as well as the coefficients of ε−1 in the second equations in (2.12), the following
problems for the leading terms of the expansions (2.9) can be obtained

dQ
(−)
−1 z

dτ
= A

(
α1(σ) +Q

(−)
0 y, φ(0), σ

)
Q

(−)
−1 z,

dQ
(−)
0 y

dτ
= Q

(−)
−1 z,

Q
(−)
0 y(0) = p0 − α1(σ), Q

(−)
0 y(−∞) = 0,

(2.13)

for τ ≤ 0 and
dQ

(+)
−1 z

dτ
= A

(
α2(σ) +Q

(+)
0 y, α1(0), σ

)
Q

(+)
−1 z,

dQ
(+)
0 y

dτ
= Q

(+)
−1 z,

Q
(+)
0 y(0) = p0 − α2(σ), Q

(+)
0 y(+∞) = 0.

(2.14)

for τ ≥ 0, respectively. Making variable changes

ỹ
(∓)
0 (τ) = α1,2(σ) +Q

(∓)
0 y(τ), (2.15)

then problems (2.13)–(2.14) are written as
dQ

(−)
−1 z

dτ
= A

(
ỹ
(−)
0 , φ(0), σ

)
Q

(−)
−1 z,

dỹ
(−)
0

dτ
= Q

(−)
−1 z, τ ≤ 0,

ỹ
(−)
0 (0) = p0, ỹ

(−)
0 (−∞) = α1(σ),

(2.16)

and 
dQ

(+)
−1 z

dτ
= A

(
ỹ
(+)
0 , α1(0), σ

)
Q

(+)
−1 z,

dỹ
(+)
0

dτ
= Q

(+)
−1 z, τ ≥ 0,

ỹ
(+)
0 (0) = p0, ỹ

(−)
0 (+∞) = α2(σ).

(2.17)

Up to notation, systems (2.16) and (2.17) coincide with the associated system (1.3),
hence, as was shown in Sect. 1, the functions

Q
(−)
−1 z(τ) =

∫ ỹ
(−)
0

α1(σ)

A(s, φ(0), σ)ds, Q
(+)
−1 z(τ) =

∫ ỹ
(+)
0

α2(σ)

A(s, α1(0), σ)ds (2.18)
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are defined for α2(σ) ≤ ỹ
(∓)
0 ≤ α1(σ). It follows from the sewing conditions in (2.11)

in the order of ε−1 in view of the conditions at τ = 0 in problems (2.16)–(2.17) that∫ p0

α1(σ)

A(s, φ(0), σ)ds =

∫ p0

α2(σ)

A(s, α1(0), σ)ds = z−1. (2.19)

It is worthy to be noted that p0 is unknown which will be determined later.
Back to systems (2.16)–(2.17) and (2.18), the Cauchy problem for the functions

ỹ
(∓)
0 (τ) are obtained as

dỹ
(−)
0

dτ
=

∫ ỹ
(−)
0

α1(σ)

A(u, φ(0), σ)du, ỹ
(−)
0 (0) = p0, (2.20)

and

dỹ
(+)
0

dτ
=

∫ ỹ
(+)
0

α2(σ)

A(u, α1(0), σ)du, ỹ
(+)
0 (0) = p0, (2.21)

by virtue of Assumptions 1.2–1.3, there exist ỹ
(∓)
0 (τ) as solutions of (2.20)–(2.21)

respectively. Once the expressions for the functions ỹ
(∓)
0 (τ) have been obtained,

then Q
(∓)
0 y(τ) can be obtained by (2.15) and then Q

(∓)
−1 z(τ) =

dQ
(∓)
0 y(τ)
dτ .

Lemma 2.1. Under Assumptions 1.1–1.3, Q
(∓)
0 y(τ) satisfy the exponential esti-

mates ∣∣Q(∓)
0 y(τ)

∣∣ ≤ C1 exp(−κ|τ |),
∣∣Q(∓)

−1 z(τ)
∣∣ ≤ C2 exp(−κ|τ |),

where C1, C2, κ > 0 are positive constants.

The proof of Lemma 2.1 is similar to the proof in [11], which is omitted here.
With regards to the functions Q

(−)
k y(τ) and Q

(−)
k−1z(τ), k ≥ 1, can be obtained

by the following systems

dQ
(−)
k−1z

dτ
= A

(
α1(σ) +Q

(−)
0 y, φ(0), σ

)
Q

(−)
k−1z(τ)

+Ay

(
α1(σ) +Q

(−)
0 y, φ(0), σ

)
Q

(−)
−1 z(τ)Q

(−)
k y(τ) +G

(−)
k−1(τ),

dQ
(−)
k y

dτ
= Q

(−)
k−1z(τ),

Q
(−)
k y(−∞) = 0, Q

(−)
k y(0) = pk − ȳk(σ),

(2.22)

wherein G
(−)
k−1(τ) are known functions with respect to Q

(−)
j y(τ), 0 ≤ j ≤ k − 1 and

Q
(−)
j z(τ), −1 ≤ j ≤ k − 2.

Since
d

dτ

[
A
(
α1(σ) +Q

(−)
0 y, φ(0), σ

)
Q

(−)
k y

]
=A

(
α1(σ) +Q

(−)
0 y, φ(0), σ

) dQ
(−)
k y

dτ

+Ay

(
α1(σ) +Q

(−)
0 y, φ(0), σ

) d
(
α1(σ) +Q

(−)
0 y

)
dτ

Q
(−)
k y
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=A
(
α1(σ) +Q

(−)
0 y, φ(0), σ

)
Q

(−)
k−1z(τ)

+Ay

(
α1(σ) +Q

(−)
0 y, φ(0), σ

)
Q

(−)
−1 z(τ)Q

(−)
k y(τ),

thereby, we have

dQ
(−)
k−1z

dτ
=

d

dτ

[
A
(
α1(σ) +Q

(−)
0 y, φ(0), σ

)
Q

(−)
k y

]
+G

(−)
k−1(τ).

That is to say, the functions {Q(−)
k y,Q

(−)
k−1z} are satisfied

dQ
(−)
k−1z

dτ
=

d

dτ

[
A
(
α1(σ) +Q

(−)
0 y, φ(0), σ

)
Q

(−)
k y

]
+G

(−)
k−1(τ),

dQ
(−)
k y

dτ
= Q

(−)
k−1z(τ),

Q
(−)
k y(−∞) = 0, Q

(−)
k y(0) = pk − ȳ

(−)
k (σ).

By Liouville formula and variation of constants formula, it follows that

Q
(−)
k y(τ) =

(
pk − ȳ

(−)
k (σ)

) z̃(−)
−1 (τ)

z̃
(−)
−1 (0)

+ z̃
(−)
−1 (τ)

∫ τ

0

J (−)(ν)

[z̃
(−)
−1 (ν)]2ϑ(−)(ν)

dν, (2.23)

herein

J (−)(ν) =

∫ ν

−∞
z̃
(−)
−1 (s)ϑ(−)(s)G

(−)
k−1(s)ds,

ϑ(−)(τ) = exp

[
−
∫ τ

0

A
(
α1(σ) +Q

(−)
0 y(ν), φ(0), σ

)
dν

]
.

Homoplastically, we have

Q
(+)
k y(τ) =

(
pk − ȳ

(+)
k (σ)

) z̃(+)
−1 (τ)

z̃
(+)
−1 (0)

+ z̃
(+)
−1 (τ)

∫ τ

0

J (+)(ν)

[z̃
(+)
−1 (ν)]

2ϑ(+)(ν)
dν, (2.24)

where

J (+)(ν) =

∫ ν

∞
z̃
(+)
−1 (s)ϑ

(+)(s)G
(+)
k−1(s)ds,

ϑ(+)(τ) = exp

[
−
∫ τ

0

A
(
α2(σ) +Q

(+)
0 y(ν), α1(0), σ

)
dν

]
.

Similarly, we have

Lemma 2.2. Under Assumptions 1.1–1.3, Q
(∓)
k y(τ) satisfy the exponential esti-

mates ∣∣Q(∓)
k y(τ)

∣∣ ≤ Ck1 exp(−κ|τ |),
∣∣Q(∓)

k−1z(τ)
∣∣ ≤ Ck2 exp(−κ|τ |),

where Ck1, Ck2, κ > 0 are some positive constants.
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2.3. Coefficients pk in expansion (2.3)
From (2.19), we have∫ p0

α1(σ)

A(s, φ(0), σ)ds =

∫ p0

α2(σ)

A(s, α1(0), σ)ds. (2.25)

Hence

G(p) ≡
∫ p0

α2(σ)

A(s, φ(0), σ)ds−
∫ p0

α1(σ)

A(s, α1(0), σ)ds

=

∫ α1(σ)

α2(σ)

A(s, φ(0), σ)ds = 0,

this actually is Assumption 1.4 with respect to σ and hence we cannot obtain p0 by
G(p) = 0. Thus we pay attention to {Q(−)

0 z, Q(−)
1 y}, it is obtained that

dQ
(−)
0 z

dτ
= A

(
α1(σ) +Q

(−)
0 y, φ(0), σ

)
Q

(−)
0 z + f

(−)
1 (τ),

dQ
(−)
1 y

dτ
= Q

(−)
0 z,

Q
(−)
1 y(0) = p1 − ȳ

(−)
1 (σ), Q

(−)
1 y(−∞) = 0,

(2.26)

wherein

f
(−)
1 (τ) =

{
Ay(α1(σ) +Q

(−)
0 y, φ(0), σ)

[
α′
1(σ)τ + ȳ

(−)
1 (σ) +Q

(−)
0 y

]
+
[
Aφ(α1(σ)+Q

(−)
0 y, φ(0), σ)φ′(0)+At(α1(σ)+Q

(−)
0 y, φ(0), σ)

]
τ
}
Q

(−)
−1 z

+
[
A(α1(σ) +Q

(−)
0 y, φ(0), σ)−A(α1(σ), φ(0), σ)

]
z̄
(−)
0 (σ)

+B(α1(σ) +Q
(−)
0 y, φ(0), σ)−B(α1(σ), φ(0), σ).

It is easy to find that f (−)
1 (τ) is irrelevant to Q

(−)
0 z,Q

(−)
1 y, p1, and the first equation

of (2.26) can be rewritten as

dQ
(−)
0 z

dτ
=

d

dτ

[
A
(
α1(σ) +Q

(−)
0 y, φ(0), σ

)
Q

(−)
1 y

]
+ f

(−)
1 (τ),

consequently, it implied

Q
(−)
0 z(τ) = A

(
α1(σ) +Q

(−)
0 y, φ(0), σ

)
Q

(−)
1 y +

∫ τ

−∞
f
(−)
1 (s)ds,

sequentially, we get

Q
(−)
0 z(0) = A

(
p0, φ(0), σ

)[
p1 − ȳ

(−)
1 (σ)

]
+

∫ 0

−∞
f
(−)
1 (s)ds.

Similarly, it can be obtained

Q
(+)
0 z(0) = A

(
p0, α1(0), σ

)[
p1 − ȳ

(+)
1 (σ)

]
+

∫ 0

+∞
f
(+)
1 (s)ds,
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where

f
(+)
1 (τ)=

{
Ay(α2(σ) +Q

(+)
0 y, α1(0), σ)

[
α′
2(σ)τ + ȳ

(+)
1 (σ) +Q

(+)
0 y

]
+
[
Aφ(α2(σ)+Q

(+)
0 y, α1(0), σ)α

′
1(0)+At(α2(σ)+Q

(+)
0 y, α1(0), σ)

]
τ
}
Q

(+)
−1 z

+
[
A(α2(σ) +Q

(+)
0 y, α1(0), σ)−A(α2(σ), α1(0), σ)

]
z̄
(+)
0 (σ)

+B(α2(σ) +Q
(+)
0 y, α1(0), σ)−B(α2(σ), α1(0), σ).

For the sake of convenience, define

f̃1(s) =

{
f
(−)
1 (s), s ∈ (−∞, 0],

f
(+)
1 (s), s ∈ [0,+∞),

according to (2.19), it can be achieved

α′
2(σ)− α′

1(σ) =

[
A
(
p0, φ(0), σ

)[
p1 − ȳ

(−)
1 (σ)

]
+

∫ 0

−∞
f
(−)
1 (s)ds

]
−
[
A
(
p0, α1(0), σ

)[
p1 − ȳ

(+)
1 (σ)

]
+

∫ 0

+∞
f
(+)
1 (s)ds

]
=A
(
p0, α1(0), σ

)[
ȳ
(+)
1 (σ)− ȳ

(−)
1 (σ)

]
+

∫ +∞

−∞
f̃1(s)ds.

Let

H(p) =A (p, α1(0), σ)
[
ȳ
(+)
1 (σ)− ȳ

(−)
1 (σ)

]
+ α′

1(σ)− α′
2(σ) +

∫ +∞

−∞
f̃1(s)ds, (2.27)

then H(p) is a function with respect to p.
Below, the assumption about H(p) is presented.

Assumption 2.1. There exists a solution p = p0 for H(p) = 0, and dH(p0)

dp
̸= 0.

The sewing conditions for determining coefficients pk take the following form
d

dt
ȳ
(−)
k−1(σ) +

d

dτ
Q

(−)
k y(0) =

d

dt
ȳ
(+)
k−1(σ) +

d

dτ
Q

(+)
k y(0), k ≥ 1,

in other word, the sewing conditions write

z̄
(−)
k−1(σ) +Q

(−)
k−1z(0) = z̄

(+)
k−1(σ) +Q

(+)
k−1z(0), k ≥ 1. (2.28)

Recall (1.6)–(1.7), which yield

Φ(−)(p0) =

∫ p0

α1(σ)

A(u, φ(0), σ)du, Φ(+)(p0) =

∫ p0

α2(σ)

A(u, φ(0), σ)du. (2.29)

Combining Eqs. (2.23), (2.24), (2.28), (2.29) with dQ
(∓)
k y

dτ = Q
(∓)
k−1z(τ),

dȳ
(∓)
k

dt =

z̄
(∓)
k (t), which leads to[

dΦ(−)(p0)

dp0
− dΦ(+)(p0)

dp0

]
pk
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=
dȳ

(+)
k

dt
(σ)−

dȳ
(−)
k

dt
(σ)− dΦ(+)(p0)

dp0
ȳ
(+)
k +

dΦ(−)(p0)

dp0
ȳ
(−)
k

−
∫ 0

−∞
z̃
(−)
−1 (0)z̃

(−)
−1 (s)g

(−)
k−1(s)ds+

∫ 0

∞
z̃
(+)
−1 (0)z̃

(+)
−1 (s)g

(+)
k−1(s)ds

=ȳ
′(+)
k (σ)− ȳ

′(−)
k (σ) + Ψ,

that is

dH(p0)

dp
pk = ȳ

′(+)
k (σ)− ȳ

′(−)
k (σ) + Ψ,

where Ψ is relevant to pi (i = 0, 1, · · · , k − 1), thus Assumption 2.1 implies the
existence and uniqueness of pk.

3. Main Result
This section is devoted to the existence of solutions and estimation of remainder,
the main result is presented as follows.

Theorem 3.1. Under Assumptions 1.1–2.1, Eqs. (1.2) has a smooth asymptotic
solution, it takes the following expressions for 0 < ε ≪ 1 and τ = (t− σ)/ε

y(t, ε) =


n+1∑
k=0

εk
[
ȳ
(−)
k (t) +Q

(−)
k y(τ)

]
+O

(
εn+2

)
, 0 ≤ t ≤ σ,

n+1∑
k=0

εk
[
ȳ
(+)
k (t) +Q

(+)
k y(τ)

]
+O

(
εn+2

)
, σ ≤ t ≤ T.

Proof. The solution of equations (1.2) can be compounded by the smooth solution
of the left problem P (−): (t, y) ∈ D1,{

εy′′(−) = A
(
y(−), y(−)(t− σ), t

)
y′(−) +B

(
y(−), y(−)(t− σ), t

)
,

y(−)(0, ε) = φ(0), y(−)(σ, ε) = p̄(ε),
(3.1)

and the right problem P (+): (t, y) ∈ D2,{
εy′′(+) = A

(
y(+), y(+)(t− σ), t

)
y′(+) +B

(
y(+), y(+)(t− σ), t

)
,

y(+)(σ, ε) = p̄(ε), y(+)(T, ε) = yT ,
(3.2)

here p̄(ε) = p0 + εp1 + ε2p2 + · · ·+ εn+1(pn+1 + δ) and δ is a parameter.
The solutions y(∓)(t, ε) for (3.1)–(3.2) have already been constructed in Sect. 2

respectively, and y(∓)(t, ε) take the following forms for τ = (t− σ)/ε

y(−)(t, ε) =

n+1∑
k=0

εk
[
ȳ
(−)
k (t) +Q

(−)
k y(τ)

]
+O

(
εn+2

)
, 0 ≤ t ≤ σ,

y(+)(t, ε) =

n+1∑
k=0

εk
[
ȳ
(+)
k (t) +Q

(+)
k y(τ)

]
+O

(
εn+2

)
, σ ≤ t ≤ T.
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From the boundary value conditions of systems (3.1)–(3.2), y(∓)(t, ε) is found to be
continuous at the point t = σ. To sew smoothly at t = σ, we need

y′(−)(σ, ε) = y′(+)(σ, ε).

To this end, taking

I(p, ε) = y′(−)(σ, ε)− y′(+)(σ, ε),

from Sect. 2, we get

I(p, ε) = εn+1

[
ȳ
′(−)
k (σ)− ȳ

′(+)
k (σ) +

d

dτ
Q

(−)
k+1y(0)−

d

dτ
Q

(+)
k+1y(0)

]
+O(εn+2)

= εn+1δ[A(α1(σ), φ(0), σ)−A(α2(σ), α1(0), σ)] +O(εn+2),

which shows that if δ takes opposite sign for 0 < ε ≪ 1, then I(p, ε) is. According
to intermediate value theorem, there exists p∗ ∈ [pn+1 − δ, pn+1 + δ] such that
I(p∗, ε) = 0, which allows a smooth solution y(t, ε) of system (1.2) compounded by
y(−)(t, ε) and y(+)(t, ε).

4. Application
A concrete example is presented to demonstrate the effectiveness of the main result.

Example 4.1. Consider a second–order quasi–linear singularly perturbed delay
differential equation in the following form (0 < ε ≪ 1){

εy′′ =
[
y + y(t− 1)− 2t

]
y′, 0 ≤ t ≤ 2,

y(t) = t+ 2, −1 ≤ t ≤ 0, y(2) = −2.
(4.1)

In what follows, the first–order smooth asymptotic solution with internal transition
layers are constructed and the effects of parameter ε are shown in several figures by
choosing some fixed values of ε.

For ε = 0, the first equation of (4.1) degenerates into[
y + y(t− 1)− 2t

]
y′ = 0.

By the method of steps, it can be found

α1(t) = 2, for 0 ≤ t ≤ 1,

and

α2(t) = −2, for 1 ≤ t ≤ 2,

where α1,2(t) are solutions of Cauchy problems in Assumption 1.1. It is found that
there takes place an internal transition phenomenon for system (4.1) on the interval
[0,2] (See Fig. 2) and easy to verify that system (4.1) satisfy Assumptions 1.2–1.3
well. From (2.27), with a simple computation, it can be obtained

H(p) =

∫ +∞

−∞
f̃1(s)ds,
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−1

0

1

2

t

ȳ
(t
)

φ(t)

α1(t)

α2(t)

Figure 2. Internal transition phenomena of system (4.1).

where f̃1(s) has presented in Subsect. 2.3, which yields

H(p) =

∫ p

2

ln
(2 + s)(2− p)

(2− s)(2 + p)
ds−

∫ p

−2

ln
(2 + s)(2− p)

(2− s)(2 + p)
ds

=−
∫ 2

−2

ln
(2 + s)(2− p)

(2− s)(2 + p)
ds

=− 4 ln
2− p

2 + p
.

Obviously, H(p) = 0 has a solution p = 0 and dH(0)
dp = −1 ̸= 0, which means that

Assumption 2.1 is fulfilled well.
Introducing a stretched variable τ = (t−1)/ε, according to Theorem 3.1, system

(4.1) has a uniformly valid asymptotic solution

y(t, ε) =

 y(−)(t, ε) = 2 +Q
(−)
0 y(τ) +O(ε), t ∈ [0, 1],

y(+)(t, ε) = −2 +Q
(+)
0 y(τ) +O(ε), t ∈ [1, 2],

(4.2)

where Q
(∓)
0 y(τ) stand for the zeroth order internal transition layers.

Taking Q
(∓)
−1 z(τ) =

dQ
(∓)
0 y(τ)
dτ , it can be found from (2.16)–(2.17) immediately

dQ
(−)
−1 z

dτ
=
[
2 +Q

(−)
0 y

]
Q

(−)
−1 z(τ),

dQ
(−)
0 y

dτ
= Q

(−)
−1 z(τ), τ ≤ 0,

Q
(−)
0 y(−∞) = 0, Q

(−)
0 y(0) = −2,

and 
dQ

(+)
−1 z

dτ
=
[
− 2 +Q

(+)
0 y

]
Q

(+)
−1 z(τ),

dQ
(+)
0 y

dτ
= Q

(+)
−1 z(τ), τ ≥ 0,

Q
(+)
0 y(+∞) = 0, Q

(+)
0 y(0) = 2.
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It is obtained that

Q
(−)
0 y(τ) = − 4 exp (2τ)

1 + exp (2τ)
, τ ≤ 0,

and

Q
(+)
0 y(τ) =

4

1 + exp (2τ)
, τ ≥ 0.

Therefore, the asymptotic solution of (4.1) takes the following form

y(t, ε) =


2− 4 exp (2(t− 1)/ε)

1 + exp (2(t− 1)/ε)
+O(ε), t ∈ [0, 1],

−2 +
4

1 + exp (2(t− 1)/ε)
+O(ε), t ∈ [1, 2].

In the following, we give the graphics of the first–order smooth asymptotic solution
y1(t, ε) for some given ε, see Fig. 3.

0 0.5 1 1.5 2

−2

−1

0

1

2

t

y 1
(t
)

ε = 0.01
ε = 0.05
ε = 0.10
ε = 0.20

Figure 3. The graphics of the first–order smooth asymptotic solution y1(t, ε) for some given ε.
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