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PERIODIC SOLUTION OF A STOCHASTIC
SIQR EPIDEMIC MODEL INCORPORATING
MEDIA COVERAGE*

Yanlin Ding!?, Xinzhi Ren', Cuicui Jiang® and Qianhong Zhang??

Abstract In this paper, we propose a stochastic SIQR epidemic model with
periodic parameters and media coverage. Firstly, we study that the stochastic
non-autonomous periodic system has a unique global positive solution. Sec-
ondly, by using the Khasminskii’s theory, we prove that this stochastic periodic
system has a nontrivial positive periodic solution. Then, we obtain the suf-
ficient condition for extinction of the disease. Finally, numerical simulations
are employed to illustrate our theoretical analysis.
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1. Introduction

In the study of epidemiology, mathematical models play an important role. Various
epidemic models have been proposed and explored extensively, and great progress
has been achieved in the studies of disease control and prevention [1,2,7,8]. Recently,
mathematical models have been widely used to analyze the mechanisms of infec-
tious diseases, such as polio, diphtheria, tuberculosis, tetanus, pertussis, measles,
hepatitis B, etc [3,11,12,14,27,30,40], and various epidemic models of population
dynamics have been proposed [6, 20, 28,31, 37,39]. For example, Nistal et al. [40]
studied the stability and equilibrium points of multistaged SI(n)R epidemic models.
Zhang et al. [39] investigated the asymptotic behavior of global positive solution
to a stochastic SIRS epidemic model incorporating media coverage and saturated
incidence rate. Ma et al. [20] considered an SIQR epidemic model with standard
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incidence rate and their model can be expressed as follows

as __ SI
G =A-B% —uS,
G =8N —(ptatd+yl,
9 =61 — (u+a+oQ,

4B — 4T +€Q — iR,

(1.1)

where S, I, R denote the number of susceptible, infective and removed, respectively,
() denotes the number of quarantined, N = S + I + Q + R denotes the number of
total population individuals. The parameter A denotes the recruitment rate of S
corresponding to births and immigration, S is the disease transmission coefficient
between compartments S and I, p denotes the natural death rate, v and € are
the recover rates from groups I,Q to R, § represents the removal rate from I, «
denotes the disease-caused death rate of I and (). All parameters are assumed to be
nonnegative and u, A > 0. Motivated by the system (1.1), liu et al. [15] developed
a stochastic multigroup SIQR epidemic model with standard incidence rates and
studied the existence of a stationary distribution of the positive solutions to the
model, and established sufficient conditions for extinction of the disease.

When an infectious disease emerges and prevails in a region, the primary task
of disease control units is to exert all efforts to prevent the spread of this disease.
One of the important prevention measures is educating people with the correct
preventive knowledge of the disease through mass media and other platforms at the
first opportunity [5]. Mass media including television, radio, newspaper, networks
and so on potentially affect the behavior of the people, which can be used to deliver
preventive healthcare messages for precaution and avoidance of negative behavior
as a result of panic and to present updated information about the disease. Thus,
media coverage is an urgent issue that needs attention [4,21,34]. And in recent
years, a significant number of epidemic models incorporating media coverage have
been proposed and discussed [4,5,17,22]. Cui et al. [4] developed an SIS model
to consider the impact of media and eduction on the spread of infectious disease.
Liu and Li [22] proposed a drug model to discuss the impact of media coverage
on the spread and control of drug addiction. In Ref. [17], Liu and Zhang consider
a SIS epidemic model on two patches incorporating media coverage. Recently,
many mathematical models have been proposed to investigate the impact of media
coverage on the transmission dynamics of infectious disease. Especially, Cui et al.
[4], Tchuenche et al. [32] incorporated a nonlinear function of the number infective
individuals in their transmission term to investigate the effects of media coverage on
the transmission dynamic where (37 is the contact rate before media alert, the terms
B2I/(m + I) measure the effect of reduction of the contact rate when infectious
individuals are reported in the media. Because the coverage report cannot prevent
disease from spreading completely, we have $; > P2 > 0. The half-saturation
constant m > 0 reflects the impact of media coverage on the contact transmission.
The function I/(m + I) is a continuous bounded function that takes into account
disease saturation or psychological effects [29]. Hence, considering the effects of
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media coverage on the transmission dynamic, model (1.1) can be modified as follows

98 = A— (B - 25) % - ps,

4= (B 2% - (wtats+)L,
G =0I—(p+a+teQ,

4R — 4T +€Q — pR.

In epidemiology models, many authors only considered the constant coefficients
in models and neglected the time-dependent factors. However, the time-dependent
factors play a very important role in the spread of infectious disease and the fluc-
tuation has often been observed in the incidence of many infectious diseases. In
particular, the periodic fluctuations are very common in the transmission of infec-
tious diseases. Therefore, it is more realistic to assume that the coefficients are
time-dependent or periodic (see [10, 36]).

In addition, real life is full of randomness and stochasticity, epidemic models are
always affected by the environmental noise in an ecosystem. Therefore, numerous
scholars have used stochastic differential equations to study the dynamic behaviors
of stochastic biological mathematical models (see [13,18,19, 25,26, 33,35, 38]). For
example, scholars obtained thresholds of the stochastic system which determine the
extinction and persistence of the epidemic in [25,33]. Lin et al. [19] prove that
there is one nontrivial positive periodic solution of this stochastic model. Based on
the discussion above, in this paper, we consider a stochastic non-autonomous SIQR
model with periodic coefficients

as(t) = (M) = (B1() — ZLHD) SO — u(1)S(1)] dt + o1 (4)S(4)dBy (1),
ar(e) = [(B() — 2P ) S — (u(t) + a(t) + 5(6) + (D)) at

+O’2(t)[(t>d82(t>, (13)
4Q() = [S(OI(1) = (u(t) + a(t) + e(1)QL) | dt + o5()Q)dBa(),
AR(t) = [1(®)1() + e()Q() = p(t)R(1)|dt + o4(t) R(E)ABa(t).

Where B;(t)(i = 1,2, 3,4) are independent Brownian motions and o;(¢)(i = 1, 2, 3,4)
are the coefficients of the effects of environmental stochastic perturbations on S(t),
I(t), Q(t), R(t). The parameter functions A(t), £1(¢), B2(t), m(t), u(t), a(t), (), v(t),
e(t) and o;(t)(i = 1,2,3,4) are positive and continuous periodic functions with pos-
itive periodic T.

Throughout this paper, we assume that (Q, {F};>0,P) is a complete probability
space with a filtration {F};> satisfying the usual conditions. Let B;(t)(i = 1,2,3,4)
be Brownian motions defined on this probability space. Also, let Ri ={X e
RY2; > 0,1 < i <4} and X(¢) = (S(t),1(t),Q(t), R(t)). If f(t) is an integral
function on [0, 4+00), define (f); = %fg f(s)ds,t > 0. If f(t) is a bounded function
on [0, +00), define f' = infie(o 00y f(t) and f* = sup,e(o 400y (1)-

The objectives of this paper are as follows. In this paper, we will study the
influence of media coverage on the spread of infectious disease by investigating a
stochastic SIQR epidemic model incorporating media coverage. From a mathemat-
ical point of view, the existence of unique global positive solution of this stochastic
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system will be studied to show that the system is meaningful in biology. And then,
in order to obtain the conditions for the disease to persist or extinct, we will s-
tudy the existence of nontrivial periodic solutions and the extinct condition of the
disease.

The rest of the paper is organized as follows. In Section 2, we show that there
exists a unique global positive solution of system (1.3). In Section 3, we verify that
there is a nontrivial positive periodic solution of system (1.3). In Section 4, we
establish sufficient conditions for extinction of system (1.3). In Section 5, we give
two examples to support the theoretical prediction.

2. Existence and uniqueness of the global positive
solution

In this section, we use the Lyapunov function method to prove that the solution
of system (1.3) is global and positive.

Theorem 2.1. For any initial value (S(0),1(0), Q(0), R(0)) € R, there is a unique
positive solution (S(t),I(t), Q(t), R(t)) of system (1.3) ont > 0 and the solution will
remain in R with probability one, namely, (S(t), 1(t),Q(t), R(t)) € RL for allt >0
almost surely.

Proof. Note that the coefficients of the model (1.3) are locally Lipschitz condi-
tions, then for any given initial value (S(0),1(0), Q(0), R(0)) € R%, there is a unique
positive local solution (S(t), I(t), Q(t), R(t)) on t € [0, 7.), where 7 is the explosion
time [23]. To demonstrate that this solution is global, we only need to prove that
Te = 00 a.8.

Let ko > 0 be sufficiently large for any initial value S(0),(0),Q(0) and R(0)
lying within the interval [1/kg, ko]. For each integer k > kg, define the following
stopping time

7o =inf {t € [0,7) : min{S(t), I(t), Q(t), R(t)} < %or max{S(t), I(t), Q(¢), R(t)} > k}

where we set inf ) = co (as usual () denotes the empty set). Clearly, 7 is increasing
as k — 0o. Let 7o = limy_, o Tk, hence 7o, < 7, a.s. Next, we only need to verify
Too = 00 a.s. If this statement is false, then there exist two constants T > 0 and
e € (0,1) such that P{roc < T} > e. Thus there is an integer k1 > ko such that
P{r, <T} >e¢, forall k > k.

Define a C?-function V : Ry — Ry as follows

V(SJ.Q,R):5’—0L—(L111§—i-1'—1—lnI—i—Q—1—an—|—R—1—lnR7
a

the nonnegativity of this function can be obtained from x —1 —Inz > 0,z > 0, and
the parameter a will be determined later.
Applying Ito’s formula yields

V(S,1,Q,R) = LVdt + (S — a)o1 ()dBi (t) + (T — 1)oa(t)dBs(t)
+(Q — 1)o3(t)dBs(t) + (R — 1)o4(t)dBa(t),
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where
) 2 ao?

LV = (1 - E) [A(t) (51(15) - nﬁﬁ?f?&)) S(tz)\?(t) B “(t)s(t)} + Q(t)

H= (B0 - nfégtll %) S(t])vl O () +a(t) + 60 + )10

0'2 0—2
+ 22(t) (- $>[5<t>f(t> — (ult) + alt) + ()R] + 32@
1 Ui(t)
H1 - )OI + Q) - nRE)] + 7

which implies that

LV = A(t) — (51(15) -

Ba(t)1(t)
(o) - ) T I(t))

+I(t)
—(u(t) + a(t) +6(t) + v (8) (1) — (61(75) - nfégt)f (It()t)) S]E;)
+(u(t) + a(t) + 6(t) + (1) — (u(t) + alt) + e(£)Q(t) + 6(t)I(t) — I(Cg)(i()t)
I(t)~(t)

Q)e(t)  aci(t)  o3(t)  o3(t)  oi(t)
RO T2 o T

< At + LD 5 () 1 ap(t) — (ult) + a(8) 1) + 3u(t) + 2a(t) + (1

- N
2 9 2 2
aci(t)  o5(t)  o3(t)  oi(t)
2 + 2 + 2 + 2

afBy .

%)I—i—au“—i—Su”—&—Qa“—&—e“—i—’y“—i—é“

aa%“ + a%“ + 03“ + 02“
5 .

+y(t) +0(t) +

<AY— (4 +al -

l l u
Choose a = % such that p! +of — % =0, then
1

ao%“ + U%“ + J%“ + 02“
2

LV < A"+ apu” +3p" + 20" + € + 4" + 6" + =K,

where K is a positive constant.
The remainder of the proof follows as that in [24]. The proof is completed. O

3. Existence of nontrivial T-periodic solution

In this section, we verify that the model (1.3) admits at least one nontrivial
positive T-periodic solution.
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Definition 3.1 ( [9]). A stochastic process r(t) = r(t,w)(—o0 < t < 400) is said
to be periodic with period T if for every finite sequence of numbers 1, ts, - - - , ¢, the
joint distribution of random variables r(t1 +h), r(ta+h), - - - ,7(t,+h) is independent
of h, where h = kT, k=+1,42,---.

Consider the following periodic stochastic equation
dz(t) = f(t,z(t))dt + g(t, z(t))dB(t),z € R"™, (3.1)

where function f(¢) and g(t) are T-periodic in t.

Lemma 3.1 ( [9]). Assume that system (3.1) admits a unique global solution. Sup-
pose further that there exists a function V (t,z) € C? in R which is T-periodic in t
and satisfies the following conditions

(Ay): inf) >k V(t,2) = o0 as R — oo;

(As): LV (t,z) < —1 outside some compact set, where the operator L is given
by

LV (t,x) = Vi(t,z) + Vu(t,x) f(t,z) + %trace(gT(t, ) Ve (8, 2)g(t, x)).

Then the system (3.1) has a T-periodic solution.
Define a parameter

(A(Br = B2))T

Ry = bl 2 .
N(p+F)rlp+atdi+y+F)r

Theorem 3.1. IfR; > 1, then there exists a nontrivial positive T-periodic solution
of model (1.3).

Proof. Define a C?-functionV : [0, +00) x R4 — R:

V(S,I,Q,R) = M(Vi(S,I) + w(t)) + Va(S,I,Q, R) 4+ V5(S) + Vi(Q) + Vs(R),
1

Vi(S,I) = —CiInS — ColnI,V5(S,I,Q, R) = m(S+I+Q+R)9“,
V3(S) = —IHS, V4(Q) = _an7‘/5(R) = —1DR7
where
C = <A>;E aCQ = <A>T 52 )
(n+ )T (n+a+td+vy+F)r
. 24!
0 1
0< <m1n{ ’(Uf\/ag\/ag\/ai)“}’

and K, > 0 satisfies the following condition
—MN+C < =2,

where
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1
('~ 20(0% V 03 V 03 v o)) (5" H 4 19 1. QP B

1

2

and

sup

C = {
(S.1,Q,R)ERY
o 4 g2t 4 g3 }

+D +3u" +a" + €' + 5

where
1 1
{A”(S +1+Q+R)’ — (' = 00T Va3 vaivad))

D = sup
(8,1,Q,R)ERY
><(S+I+Q+R)"+1}.
Obviously, V(S,I,Q, R) is a T-periodic function in ¢ and satisfies
lim inf V(S,1,Q,R) = oo,
k—+00,(S,1,Q,R)ER% \Us
where Uy, = (1/k, k) x (1/k, k) x (1/k, k) x (1/k, k) and k > 1 is a sufficiently large

number. Therefore, the condition (A;) in the Lemma 3.1 holds.
Next we prove that the condition (A4s) in Lemma 3.1 holds. By the Ité’s formula,

we obtain
i =2 [am - (30 - ﬂfégt)ff) ST ys) + G0
0_2
—%[ Bi(t) - T}ﬁigtfj)sjg — (u(t) + a(t) +0(t) + v(t))I} + Ll 22(t)
< 920 G 50— ey + AL 4 u(utn + D)
o3(t)

+Co(p(t) + at) + () +v(t) +

< -2/ S 5,y () + SO
o5(t

+Co(p(t) + aft) + () +v(t) +

C18:1(H)1
& pyfry + 20T
o1 (t)
2

where By(t)=-2y/ XG0 (8, (1) — B (1) +C1 (u(t)+

)+ Co(p(t) + a(t)+0(t) +

2

(1) + 1),
Define the T-periodic function w(t)
W' (t) = (Bo)T — Bo(t).

Therefore
L(Vi +(0) < (Boyr + SO
(A(Br — B2))T )% B 1) n C18:1(t)1
T<M+O¢+5+’Y+%§>T N

< _2<A>T((N<u N %%>
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1 C t)1
— —2(M)p(RF —1) + 16]1V()
s, GBI
R

Similarly, we can obtain
UG:@+I+Q+prw—u@5—ww+ﬂﬁmf+®—u@R

%e(s FI4Q+ RN o3(1)S? + o301 + a2(1)Q? + 03 (1)R?)

A®)(S+I+Q+R)! - (t)(S+I+Q+R)9+1+%0(S+I+Q+R)9+1
CHOMNORE (O O)

A +1+Q+ B — (u(t) — 30o3(0) v 3(6) v 03(1) v 03(1))
x(S+I+Q+R)9+1

- l(ﬂ - 59(01 Vs Voj Vai)u)(sgﬂ + 10T 4 QU 4 RO,

2
1 Bo(t)I \ SI
LVs = -5 [A() - (A1) - o +I)W _

< —%+ ﬁlj(vt)fw(tw@

X

IN
)

v, — 7% [50)T(0) ~ (u(1) + alt) + e(t)@(D)] +

)
= 5(3[ + (u(t) + alt) +€(t) + 7i (")

and

Therefore

LV(S,1,Q,R) = ML(V; +w(t)) + LV2 + LV3 + LV, + LVs

C1511 Bl otv 0

S b S 4D
) S+ N T ot
1

1
-3 (Ml—*ﬁ(of Voivolv Ui)u) (S* 4 1041 4 QO+ 4 ROH)

M(=\+

lI 2u 2u

_fﬁ‘,uz “!‘74’74’}1 +a® + e
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BT Al o St o3
=—-MA\ M 1)—— —_ = — —
+—= (Cl+)5+3 +5 Q+a+e+2
1
5 (W = 3003V BV oV o)) (U + I 4 QU 4 RO
lI O_iu
—— 4+ —+D.
R + 2 +

Now, we construct a compact subset U such that (A3) in Lemma 3.1 holds.
Define the following bounded closed set

1

1 1 1
UZ{(S,I,Q,R)GRiEﬁségﬁﬁfﬁE,ESQSE,ESRSE},

where £ > 0 is a sufficiently small number. In the set Ri \ U, we can choose ¢
sufficiently small such that

Al
- —+E<-L, (3.2)
—M/\+ﬁ (MCy+1)+C < -1, (3.3)
6[
~ L4 E<-, (3.4)
€
!
—%+E<—1, (3.5)
1/, 1 )L
—Z<u—§9(01\/02\/03\/04 )T—l—FS—l, (3.6)
1 1 1
—Z(MZ—iﬁ(Ul\/UQ\/%\/% ">—+G<—1 (3.7)
ef
1 1 v
_ Z(”l — 50003 Va3vaival) ) S HH <L (3.8)
1 1 1

where E,C, F,G, H,J are positive constants which can be found below. For the
sake of convenience, we divide into eight domains

:{(SIQR)GR1:0<S<E}, UQ:{(S,I,Q,R)6R1:0<I<5}7

S.I,Q.R) € R* - I>O,O<Q<62},
}

S,I,Q,R) € R, :1>0,0<R<e*,

o= {(

= {(

{SIQR )eRL S>§}, Uﬁz{(S,I,Q,R)eRi:I>§},
{SIQR )eRL: Q>8i2}, Usz{(s,I,Q,R)eRi:R>Ei2}.

Next we will prove that LV (S,I,Q,R) < —1 on Ri \ U, which is equivalent to
proving it on the above eight domains.
Case 1. If (S,1,Q, R) € Uy, one can see that

u 2u 2u 2u
s I

Al
N (MC1+1) = = +3p R s Sy ) EEE
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1 1
-5 ('ul _ 59(0-% Vi O’% v 032, vV UZ)H> (SGJrl + 7o+1 + Q0+1 + R0+1)
Al
<-Z+E
Al
- (3.10)
where
ur u O.%u u 2u 2u
E = sup { (MCy+1) +3u" + — +a" + € +3 4 p4 T
(S,1,Q,R)ERY 2 2 2

1 1
,i(ﬂl _ 59(0% VoZvolv Ji)u)(50+1 Iy L R9+1)}'

By (3.2), we have LV < —1 for all (S,I,Q,R) € U;.
Case 2. If (S,1,Q, R) € Us, one can see that

Al o?

2u 2u

V(S,I,Q,R) < v (MCy+1)+3u"+ T Ltat et +7+%+D
1
-5 (Ml _ 79(05 v a% vV a§ V. ai)“) (59+1 + 70+ 4 Q("H + RGH)
5?1
< MM+ 5= (MO + 1) +C
S—MA+%$MHL+U+C, (3.11)
where
1 1
C = sup {—f(ul—fﬁ(crf Vo2V aiVed)) (S0t + 10 QO RO
(S.1,Q,R)ER 2 2
2u 2u 2u
+D+3W+a“+a“+%}.
By (3.3), we have LV < —1 for all (S,I,Q, R) € U,.
Case 3. If (S,1,Q, R) € Us, one can see that
5lI ur 2u 2u 2u
V(S,1,Q,R) < —5+&(M01+1)+3u +— 2 +a" + €'+ 7 + % +D
1 1
75(#} _ 50(0-% Vi O.g Vi O.g Vi 0_2)1},) (59+1 + 19+1 + Q9+1 + R9+1)
St
<—-——+FE
Q
5l
<-Z+E. (3.12)

By (3.4), we have LV < —1 for all (S,1,Q, R) € Us.
Case 4. If (S,1,Q, R) € Uy, one can see that

lI Bu[ 2 2u 2u
V(S,I,Q,R) < §+#(MCI+1)+3;L +IL tatet + - +7+D
1

—3 (,u - 59(01 VoaVaiVv 04)u) (ST 4 10T 4 Ot 4 ROTL)
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AT
I 4F
R+

’)/l
< - + E. (3.13)

IA

By (3.5), we have LV < —1 for all (S,1,Q, R) € Uy.
Case 5. If (S,1,Q, R) € Us, one can see that

2u 2u 2u
V(S.1,Q,R) < bil N MOy +1) 43" + = 2 +a¥ +¢€" +7+%+D
1 1
GG AT AL [COSE S AR AR
Leg 1o o o, o0, av)gotr , Bid u
S—Z<,u —59(0'1\/0'2\/0'3\/0'4) )S +W(MCI+1)+3M
1 1
—§(ul —0ivaivaive )“)(19+1 + QY +a +€e"+ D
1 1 gu o2 o2u
i Joetvetveguedy)son e o
1 1
< —z(ul 59(01 V02 \/03 Vo )u>59+1 + F
ey 1 L1
< _1<M 59(01 V‘72 VU?, \/04) )69+1 + F, (3.14)
where
ufr 2u 2u
= sup {&(Mcl+1)+3u"+a“+6“+D+—+Ui+Ui
(s.r.Qmert ¢ N 2 "2 T2
1 1
—§(ul — 59(0% VoiVaoiV Ui)") (171 4 Q1)
1 1
—1<ul - 59(0% VoiVoiV 03)")59“}.
By (3.6), we have LV < —1 for all (S,1,Q, R) € Us.
Case 6. If (S,1,Q, R) € Us, one can see that
2u 2u 2u
V(S,1,Q,R) < pil (MC +1) 4+ 3t + = 2 + ot + e +7+%+D
1 1
—g(ul - 50(01 Vv 02 vV 03 v 04)“>(SG+1 + 10 L 4 R‘Hl)
1 1
< —Z(,ul —iﬂ(af\/ag\/ag\/ai)“>fe+l bl (MC +1) +3p®
1 1
—§<,ul —59(01 \/02\/03\/04)“)(Se+1 R9+1)—|—a +e*+D
1 1 “ o 02u 0.2u
—Z<,U/l—§9(0'%VO'§\/O'§\/O'z) )I9+1+%+%+%
1 1
< —Z<,ul - 59(0% VoaVaiVv oi)“)IO'H +G
Lea 1 21
< _Z(” 59(01 Vo3V a3Vay) )59“ + G, (3.15)
where
_ /811« 2u 2u
G=  sup {T(M01+1)+3u +a¥ + € +D+7+7+7

(S,1,Q,R)ER}
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1 1
—= (ul — —0(oiVosVaiV ai)“) (SO+ 4 ROTY)
2 2

Lo Lo o, 2, 2, 2641

—4(u 20(01 Vao;VosVoi) )I }

By (3.7), we have LV < —1 for all (S,1,Q, R) € Us.

Case 7. If (S,1,Q, R) € Uy, one can see that

ur 2u 2u 2u
V(S,LQ,R)SBJIV (MCy+1) + 3p" + —~ 2 + ot + e +7+%+D
1 1
_§(Ml _ 59(0% Volvaly Ji)u)(sa-i-l § IO+ 4 QO+ 4 RO
1 1
S_Z(NZ_§9(01VU2V03VU4 u)Q0+1 MC1+1)+3M
1 1
—5(,ul 59(01 V02V03Va4 “) S‘ngl Ia+1 )+a*+e“+D
1 1 u 0.2u 0.2u
—z(ul 50(01 Vo3 VosVal) >Q9+1 +%+%
1 1
< —1<,ul 59(01 VoiVasVal “)QGH +H
1 1 o
< _Z(Ml _ 59(01 Vo3 VosVod) ) 20 T (3.16)
where
uI 2u 2u 2u
H= sup {ﬂ (MCy1 4+ 1)+ 3u" +a" + € +D+—+Ui+gi
(S.1,Q.R)ERY 2 2 2
1 1
—5 (i = 5003 Va3 v e v e ) (sHH 4 1)
1 1
—Z(,ul — 59(0% Voiv O'g vV Ui)“) Q‘9+1}.
By (3.8), we have LV < —1 for all (S,1,Q, R) € Us.
Case 8. If (S,1,Q, R) € U, one can see that
ﬁu 2u 2u 0.2u
V(S,1,Q,R) < —=(MCy+1) +3u" + == +a" + ¢ +7+§+D
1 1
—§(Ml B 59(0% Vo2V o \/ai)“)(SeH § IO QO+ 4 RO
< Y- Lorvervazvedy) R 1+ P ey 1) 4
A G o3 Vo3V oy) +N( 1+1) +3u
1 1
_5('”[ - 50(01 VosVosVo )“)(S(’Jr1 I 4 a4+ €+ D
1 1 u 02u o.2u O_Zu
—1 (i = 30V aE v R Ve R + T B T
1 1
< *Z(,ul — 50(0% Vaivoiv 02)“>R0+1 +J
1 1 N1
< *Z(Ml = 0ot Vo3 Va3 val) )62(9“) +J, (3.17)
where
J = su { iLI(MC’ +1)+3u" +a" + € +D+L2u_~_ﬁ+7
- , N ! s 2 T T

(S,1,Q,R)ERY
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1 1
—5( - 59(0% VoaVaoiV Uz)“) (SO 4 19

1 1
_Z( P 59(0% VosVaoiV Uf)“)ROH}.

By (3.9), we have LV < —1 for all (S,I,Q, R) € Us.
Therefore, we have proof that for a sufficiently small € > 0,

LV(S,1,Q,R) < —1,(S,1,Q,R) € Ry \ U.

Hence, (Ag) in Lemma 3.1 holds. This completes the proof of Theorem 3.1. O

4. Extinction of model (1.3)

In this section, we investigate the conditions for the extinction of model (1.3).

Lemma 4.1 ([16]). Let M ={M;}+ > 0 be a real-valued continuous local martingale
vanishing t = 0. Then

. . M,
tli}rg(}(M7 M>t =00 a.s. = tll)rgo W =0 a.s.
and also
M, M M,
lim sup (M, M), <oo as.= lim—"=0 as.
t—o0 t t—ro0

Define a parameter

Au u
Ry = b g
Npt{p+a+0+v+ F)r

Theorem 4.1. Let(S(t),1(t), Q(¢), R(t) be a solution of model (1.3) with initial
value (S(0),1(0),Q(0), R(0) € RL. If Ry < 1, then the disease I goes to extinction
exponentially with probability one, i.e.,

lim I(t) =0 a.s.

t—o0
and also
li S<Au li t)= lim R(t) =0
A yre L O) = g R =0 as

Proof. From model (1.3), we have

SO=50)_ ), — (- LI, (s, o W 2ESBL)
and
1O _ gy~ LSt b)), 4 P50,
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Then
1) ; 10 | 5) ; SO _ (M) = (wS)e = (n+a+ 35+ 7))
5 o1(5)S(5)dBi (s fo 02(s)1(s)dBa(s)
t t

<A — () — (W +al + 6! +vl)<f>

fO dBl 0'2 fO dB2
t t

It is easy to obtain

ﬂ_ul+al+§l+'yl

> Ml Ml <I>t +H(t)7 (41)

where

ot J§S(s)dBi(s)  o¥ [f1(s)dBa(s)  I(t)—I(0) 4 SW=5(0)
H(t) = L + L _ ¢ i
I I

According to Lemma 4.1, we have

lim H(t) =0 a.s. (4.2)

t—o00

By the Ito’s formula, we obtain

A1) y5 (tj)vf(” — (ult) + a(t) + 8(t) + () I(t)

am1() = {2510 -

m(t) + I(t)
_o3(t)
: }dt + 0o (t)dBs(t)
t)S 5
< (P05 ey 4 a(t) +60) + 90 - 2DVt + oa()aBa(e). (43)
Integrating (4.3) from 0 to ¢t and dividing ¢ on both sides, we get
InI(t)—InI(0) _ (B1(t)S): fo o2(s)dBa(s)
< £ -
; <y —(tati+y+ 2 2 .
Br(S)e % fo 02(5)dBa( )
< J0 "AA AN
SN —(ptat+do+y+ 2 ;
Together with (4.1), we have
Ini(t) _ prrAY pl+al 4+ +4 a3
t —F[ 2 <I>t+H(t)}*<,u+Oé+5+’Y+?>t
+f0 o2(s)dBa(s) N In 7(0)
t t
o BtA"  BEH() fo 02(5)dBs(s)
< Nu =y <u+a+5+7+ 2 "
IO (4.4)

t
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Taking the limit superior of both of (4.4) and using Lemma 4.1, which together

with (4.2), we can obtain

InI(t TAY o3
0 b —(utatdi+ty+ Fhr

‘L%>T ( Bt _ 1)

0.2
2 NpHp+a+6+~v+ Z)r
2

=<u+a+5+’y+%

lim su
t—>+ocp t NM

=(p+a+d+vy+

)T(Re — 1)
< 0.
which implies lim I(¢) =0 a.s.
t—oo
From (4.1), it is easy to get that

. <8
tlirgo<s>t - /,Ll ’

From the third and fourth equations of model (1.3), it is easy to obtain that
lim Q(t) = O,tlgglo R(t)=0

t—o0

This completes the proof. O
5. Numerical simulations

In this section, we give two examples to support the theoretical prediction.

Example 5.1. In model (1.3), let A(¢t) =1+ 0.1sinnt, B1(t) = 0.8 + 0.15sin7t,
Bo(t) = 0.4 + 0.05sinwt, m(t) = 1+ sinwt, u(t) = 0.5+ 0.Isinnt,d(t) = 0.2 +
0.1sinwt,e(t) = a(t) = 0.25 + 0.1sin7t,y(t) = 0.15 + 0.1sinnt, o1(t) = 02(t) =
o3(t) = o4(t) = 0.01 + 0.005sin7t, N = 1 and the initial value are taken as
(5(0),1(0),Q(0), R(0)) = (1.5,0.9,0.26,1.01).Then by calculation, we have

<A(ﬁ1 —52)>T
N(u+%%>T<ﬂ+a+5+’Y+%§>T

R, = ~ 177> 1.

In other words, the condition in Theorem 3.1 holds. Hence, the stochastic model
(1.3) has a positive periodic solution ( see Figure 1).

Example 5.2. In model (1.3), let A(¢t)=140.1sin ¢, 1 (t)=0.340.1sin7t, B2(t) =
0.14-0.05sin7t, m(t) = 1+sinwt, u(t) = 0.540.1sinwt, 6(t) = 0.24+0.1sinwt, €(t) =
a(t) = 0.25 4+ 0.1sinnwt,y(t) = 0.15 + 0.1sin7t, 01 (t) = o2(t) = 03() = 04(t)
0.1+ 0.05sin7t, N = 10 and the initial value are taken as (S(0), I(0), Q(0), R(0)) =

(0.8,0.5,0.4,0.2). Note that
Ry = A"y — ~0.05< 1.
Npt{p+a+6+v+ 2)r

That is, the condition in Theorem 4.1 holds. Hence, the disease I(t) will die out
almost surely (see Figure 2).
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Figure 1. The stochastic model (1.3) has a positive periodic solution.

(a) is the deterministic model

(1.3), (b) is the stochastic model (1.3), (¢) is phase portrait of S(¢) and I(¢) in the stochastic model,(d)
is phase portrait of S(¢) and Q(t) in the stochastic model, (e) stands for the phase portrait of (a) and

(5)-
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Figure 2. The disease I(t) will die out almost surely. (a) is the deterministic model (1.3), (b) is the
stochastic model (1.3), (¢) is phase portrait of S(¢) and I(t) in the stochastic model,(d) is phase portrait

of S(t) and Q(t) in the stochastic model, (e) stands for the phase portrait of (a) and (b).
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