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EQUATION WITH TIME FRACTIONAL
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Abstract The aim of this letter is to apply the Lie group analysis method to
the Fisher’s equation with time fractional order. We considered the symmetry
analysis, explicit solutions to the time fractional Fisher’s(TFF) equations with
Riemann-Liouville (R-L) derivative. The time fractional Fisher’s is reduced to
respective nonlinear ordinary differential equation(ODE) of fractional order.
We solve the reduced fractional ODE using an explicit power series method.
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1. Introduction
Many phenomena in fluid mechanics, viscoelasticity, biology, physics, engineering
and other areas of science can be successfully modeled by the fractional partial
differential equations (FPDEs) in recent years. Several efficient methods have
been presented to solve fractional partial differential equations of physical inter-
est. It is necessary to point out that some methods to nonlinear FPDEs for con-
structing numerical, exact and explicit solutions, variational iteration method, frac-
tional difference method, differential transform method, homotopy perturbation
method, transform method, sub-equation method, Adomian decomposition method
[1,2,4,5,8,9,12,14–17,20,21,32,35,37,38] and so on. Recently, in [3,6,27,29,39], the
Lie symmetry analysis is effectively applied to FPDEs, and some investigations are
derived. Schrödinger equations, dynamics and rogue waves problems [22–25,36] are
also hot topic recently. In [33], the author studies the invariance properties of the
time fractional generalized fifth-order KdV equations by using the Lie group analy-
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sis method. At the same time, article [33] show that the FPDEs can be transformed
into a nonlinear ODE of fractional order.

The motivation of this paper is to extend the application of Lie group analysis
method to the nonlinear time-fractional Fisher’s equation

Dα
t u = uxx + 6u(1− u), (1.1)

where 0 < α ≤ 1,Dα
t = ∂αu/∂tα.When α = 1, Eq.(1.1) can be reduced to

Fisher’s equation of general meaning. Eq.(1) represents the evolution of the pop-
ulation due to the two competing physical processes, diffusion and nonlinear local
multiplication. And it also describes a prototype mode for a spreading name and a
model equation for the finite domain evolution of neutron population in a nuclear
reactor. S. Momani and Z. Odibat derived the numerical solution of Eq.(1.1) by
using Homotopy perturbation method in [18].

The paper is organized as follows. Riemann and Liouville definitions and for-
mulas are given in section 2. In Section 3, we give an account of Lie symmetry
analysis method for TFF briefly. In Section 4, we perform Lie group classification
on the TFF equation, and investigate the symmetry reductions of the TFF equa-
tion. Through the symmetry reduction, we transform the FPDE into the fractional
ordinary differential equations (FODE) with a new independent variable. In the
meantime, some exact solutions are obtained. In Section 5 contains discussion of
the obtained results.

2. Preliminaries
For the fractional derivative operators, there exist various definitions which are not
necessarily equivalent to each other. In this paper, we consider the most common
definition named after Riemann and Liouville, which is the natural generalization
of the Cauchy formula for the n-fold primitive of a function f(x). The Riemann-
Liouville(R-L) fractional derivative is defined as [28]:

Dα
t f =

{
dnf
dtn In−αf(t), 0 ≤ n− 1 < α < n,
dnf
dtn , α = n,

(2.1)

where n ∈ N , Iµf(t) is the R-L fractional integral of order µ , namely,

Iµf(t) =
1

Γ(µ)

∫ t

0

(t− ξ)
µ−α

f(ξ)dξ, µ > 0

I0f(t) = f(t),

and Γ(z) is the standard Gamma function.

Definition 2.1. The R-L fractional partial derivative is defined by

Dα
t f =

{
1

Γ(n−α)
∂

∂tn

∫ t

0
(t− ξ)

n−α−1
u(ξ, x)dξ, 0 ≤ n− 1 < α < n,

∂f
∂tn , α = n.

(2.2)

If it exists, where ∂n
t is the usual partial derivative of integer order n [3, 33].
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Some useful formulas and properties are given in [10], here we only motion the
following:

Dα
t t

γ =
Γ(γ + 1)

Γ(γ + 1− α)
tγ−α, γ > 0, (2.3)

Dα
t [u(t)v(t)] = u(t) Dα

t v(t) + v(t) Dα
t u(t), (2.4)

Dα
t [(f(u(t)))] = f ′

u[u(t)]D
α
t v(t) = Dα

uf [u(t)](u
′
t)

α. (2.5)

Definition 2.2. The generalized Leibnitz rule [19,26] defined by

Dα
t [u(t)v(t)] =

∞∑
n=0

α

n

Dα−n
t u(t)Dn

t v(t), α > 0, (2.6)

where α

n

 =
(−1)

n−1
αΓ(n− α)

Γ(1− α)Γ(n+ 1)
. (2.7)

Definition 2.3. In view of the generalization of the chain rule [13,33] for composite
functions

dmf (g (t))

dtm
=

m∑
k=1

k∑
r=0

k

r

 1

k!
[−g (t)]

r dm

dtm
[g(t)

k−r
]
dkf (g)

dtk
. (2.8)

3. Lie symmetry analysis to FPDEs
In this section, we consider the time-fractional differential equations as the form

Dα
t (u) = G (x, t, u, ux, uxx, ...) , (0 < α < 1), (3.1)

where u = u (x, t) , ux = ∂u/∂x , Dα
t u is a fractional derivative of u with respect to

t. According to the Lie theory, if Eq.(3.1) is a invariant under a one parameter Lie
group of point transformations

t∗= t+ετ(x, t, u)+O(ε2), x∗=x+ες(x, t, u)+O(ε2), u∗=u+εη(x, t, u)+O(ε2),

∂u∗

∂t∗
=

∂αu

∂tα
+ εη0α(x, t, u) + O(ε2),

∂u∗

∂x∗ =
∂u

∂x
+ εηx(x, t, u) + O(ε2),

∂2u∗

∂x∗2 =
∂2u

∂x2
+ εηxx(x, t, u) + O(ε2),

(3.2)

where ε ≪ 1 is a small parameter, and

ηx = Dx (η)− uxDx (ς)− utDx (τ) ,

ηxx = Dx (η
x)− uxtDx (τ)− uxxDx (ς) ,

ηxxx = Dx (η
xx)− uxxtDx (τ)− uxxxDx (ς) ,

ηxxxx = Dx (η
xxx)− uxxxtDx (τ)− uxxxxDx (ς) .

(3.3)
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Here Dx denotes total derivative

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ ..., (3.4)

the vector field associated with the above group of transformations can be written
as

V = ς(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (3.5)

If the vector field Eq.(3.5) generates a symmetry of Eq.(3.1),then must satisfy the
Lie’s symmetry condition

Pr(n)V∆
∣∣∣
∆=0

= 0, (3.6)

where ∆ = Dα
t −G (x, t, u, ux, uxx, ...) . Conversely, the corresponding group trans-

formations Eq.(3.2) to known operator Eq.(3.6) are found by solving the Lie equa-
tions

d (x̄ (ε))

dε
= ς (x̄ (ε) , t̄ (ε) , ū (ε)) , x̄ (0) = x,

d (ū (ε))

dε
= η (x̄ (ε) , t̄ (ε) , ū (ε)) , ū (0) = u.

(3.7)

It is not different to see that Eq.(3.2) conserve the structure of fractional derivative
infinitesimal operator Eq.(2.2). For the lower limit of the integral is fixed, it must
be in variant with respect to Eq.(3.2). Thus, we can arrive at

τ (x, t, u) |t=0 = 0. (3.8)

For R-L fractional time derivative [3, 6, 27,29,39], Eq.(3.8) can be changed into

η0α = Dα
t (η) + ςDα

t (ux)−Dα
t (ςux) +Dα

t (Dt (τ)u)−Dα+1
t (τu) + τDα+1

t (u) ,
(3.9)

with the help of the generalized Leibnitz rule Eq.(2.6), Eq.(3.9) can read as

η0α =Dα
t (η)−αDt (τ)

∂αu

∂tα
−

k∑
n=1

α

n

Dn
t (ς)D

α−n
t (ux)−

∞∑
n=1

 α

n+1

Dn+1
t (τ)Dα−n

t (u).

(3.10)
Furthermore, using the chain rule Eq.(2.8) and the generalized Leibnitz rule Eq.(3.10)
withf(t) = 1, we can arrive at

ηαt = ∂αη

∂tα
+ ηu

∂αu

∂tα
− u

∂αηu
∂tα

+

∞∑
n=1

α

n

 ∂nηu
∂tn

Dα−n
t (u) + µ, (3.11)

where

µ=

∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=o

α

n

 n

m

k

r

 1

k!

tn−α

Γ(n+1−α)
(−u)r ∂m

∂tm
(
uk−r) ∂n−m+kη

∂tn−m∂uk
.

(3.12)
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It should be noted that we have µ = 0 when the infinitesimal η is linear of the
variable u , because of the existence of the derivatives ∂kη

∂uk , k ≥ 2 in above expres-
sion.Summarizing the reasonings above, we obtain the explicit form of ηα,t

ηα,t =
∂αη

∂tα
+ (ηu − αDt (τ))

∂αu

∂tα
− u

∂αηu
∂tα

+ µ

+

∞∑
n=1

[

α

n

∂αηu
∂tα

−

 α

n+1

Dn+1
t (τ)]Dα−n

t (u)−
∞∑

n=1

α

n

Dn
t (ς)D

α−n
t (ux).

(3.13)

According to the Lie theory, we have

Theorem 3.1. The function u = ϕ(x, t) is an invariant solution of Eq.(3.1) if and
only if
(i)Vϕ = 0 ⇔

(
ς(x, t, u) ∂

∂x + τ(x, t, u) ∂
∂t + η(x, t, u) ∂

∂u

)
ϕ = 0,

(ii)u = ϕ(x, t) is the solution of FDPE Eq.(3.1).

4. The time fractional Fisher’s equation
In the preceding section, we have given some definitions and formulas of Lie symme-
try analysis method on the FPDEs. In this section, we will deal with the invariance
properties of the TFF equation. Then we give some exact and explicit solutions to
the TFF equation.

4.1. Lie symmetry of time fractional Fisher’s equation
By the Lie group theory, we can derive the corresponding system of symmetry
equations as

η0α − ηxx − 6η + 12uη = 0. (4.1)

Solving Eq.(3.1) with the help of Eq.(3.3), we can arrive at

ςu = τu = ςt = τx = ςxx = ηuu = 0,
∂αη

∂tα
− u

∂αηu
∂tα

− ηxx − 12uη = 0,

2ςx − ατt = 0, ηxu − 2ςxx = 0,α

n

 ∂n
t (ηu)−

 α

n+ 1

Dn+1
t (τ) = 0, for (n = 1, 2).

(4.2)

Then we can get
ς = c1x+ c2, τ =

2c1
α

t, η = −c1u, (4.3)

where c1 and c2 are arbitrary constants. Furthermore, the corresponding operator
can be arrived at

V = (c1x+ c2)
∂

∂x
+

2c1t

α

∂

∂t
+ c1u

∂

∂u
. (4.4)
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Similarly, the Lie algebra of infinitesimal symmetries of Eq.(1.1) is spanned by the
two vector fields

V1 =
∂

∂x
, V2 = x

∂

∂x
+

2t

α

∂

∂t
− u

∂

∂u
. (4.5)

It is easy to check that the vector fields are closed under the Lie bracket, respec-
tively,

[V1,V2] = V1, [V2,V1] = −V1. (4.6)

In order to get the similarity variables for V2 , we have to solve the corresponding
characteristic equations

dx

x
=

αdt

2t
=

du

−u
. (4.7)

Thus, we derive group-invariant solution and group-invariant as follow

θ = xt−
α
2 , u = t−

α
2 g (θ) . (4.8)

It is not difficult to see that Eq.(1.1) is reduced to a nonlinear ordinary differential
equation (NODE). We have a theorem as follow.

Theorem 4.1. The TFF equation Eq.(1.1) can be reduced into a NODE of frac-
tional order by the transformation Eq.(4.8) as follow(

P
1− 3α

2 ,α
2
α

g
)
(θ) = gθθ + 6g − 6g2, (4.9)

with the Erdelyi-Kober (EK) fractional differential operator P τ,α
β of order [36]

(
P τ2,α
β g

)
:=

n−1∏
j=0

(
τ2 + j − 1

β
θ
d

dθ

)(
Kτ2+α,n−α

β g
)
(θ) , (4.10)

n =

{
[α] + 1, α ̸= N,
α α ∈ N,

(4.11)

where

(
Kτ2,α

β g
)
:=

{
1

Γ(α)

∫∞
1

(u− 1)
α−1

u−(τ2+α)g
(
θu

1
β

)
du, α > 0,

g (θ) , α = 0.
(4.12)

is the EK fractional integral operator [11,34].

The theorem 2 has been proved in [33], here omit.

4.2. Exact and explicit solutions of the time-fractional Fisher’s
equation

We investigate the exact analytic solutions via power series method [7] and symbolic
computations [31] for Eq.(1.1). Furthermore, we analyze the convergence of the
power series solutions. Set

g (θ) =
∞∑

n=0

anθ
n, (4.13)
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from Eq.(4.12), we can have

g′ =

∞∑
n=0

nanθ
n−1, g′′ =

∞∑
n=0

n(n− 1)anθ
n−2. (4.14)

Substituting Eqs.(4.13) and (4.14) into Eq.(4.9), we obtain

ηα,t =
∂αη

∂tα
+ (ηu − αDt (τ))

∂αu

∂tα
− u

∂αηu
∂tα

+ µ

+

∞∑
n=1

[

α

n

∂αηu
∂tα

−

 α

n+1

Dn+1
t (τ)]Dα−n

t (u)−
∞∑

n=1

α

n

Dn
t (ς)D

α−n
t (ux).

(4.15)
∞∑

n=0

Γ
(
2 + (−α

2 ) +
nα
2

)
Γ
(
2− α+ (−α

2 ) +
nα
2

)anθn −
∞∑

n=0

(n + 2)(n+ 1)an+2θ
n

− 6

∞∑
n=0

anθ
n + 6

∞∑
n=0

anθ
n

∞∑
n=0

anθ
n = 0.

(4.16)

Comparing coefficients in Eq.(4.15) when n = 0 , we get

a2 =
1

2

(
Γ
(
2 + (−α

2 )
)

Γ
(
2− α+ (−α

2 )
)a0 − 6a0 + 6a0

2

)
, (4.17)

when n ≥ 1 ,we have

an+2=
1

(n+2)(n+1)

{
Γ
(
2+(−α

2 )+
nα
2

)
Γ
(
2−α+(−α

2 )+
nα
2

)an+6

∞∑
k=0

akan−k−6an

}
. (4.18)

Thus, each coefficient an(n ≥ 1) for Eq.(4.13) are found by the arbitrary constants
ai(i = 0, 1, 2). This means that the exact power series solution for Eq.(4.9) exists
and its coefficients depend on the Eqs.(4.16) and (4.17).Therefore, it is obvious that
the power series for Eq.(4.9) is an exact power series solution. Hence, the power
series solution for Eq.(4.9) can be represented in the form:

g(θ) =a0 + a1θ + a2θ
2 +

∞∑
n=1

an+2θ
n+2

=a0 + a1θ +
1

2

(
Γ
(
2 + (−α

2 )
)

Γ
(
2− α+ (−α

2 )
)a0 − 6a0 + 6a0

2

)
θ2

+

∞∑
n=1

1

(n+2)(n+1)

{
Γ
(
2+(−α

2 )+
nα
2

)
Γ
(
2−α+(−α

2 )+
nα
2

)an+6

∞∑
k=0

akan−k−6an

}
θn+2.

Consequently, we acquire the explicit power series solution for Eq.(1.1) as

u(x, t) =a0t
−α

2 + a1xt
−α + a2x

2t−
3α
2 +

∞∑
n=1

an+2x
n+2t−

α(n+3)
2

=a0 + a1xt
−α +

1

2

(
Γ
(
2 + (−α

2 )
)

Γ
(
2− α+ (−α

2 )
)a0 + 6a0 − 6a0

2

)
x2t−

3α
2



Lie symmetry analysis to Fisher’s equation . . . 2065

+

∞∑
n=1

1

(n+ 2)(n+ 1)

{
Γ
(
2 + (−α

2 ) +
nα
2

)
Γ
(
2− α+ (−α

2 ) +
nα
2

)an + 6

∞∑
k=0

akan−k − 6an

}
× xn+2t−

α(n+3)
2 .

Remark 4.1. Above all, we could obtain power series solutions for some NFEDs.
To the best of our knowledge, the solutions obtained in this paper have not been
reported in previous literature. Thus, these solutions are new.

Remark 4.2. Besides the Riemann-Liouville definition of fractional derivatives,
there are several other different definitions, such as the modified Riemann-Liouville(m-
RL) derivative [6], the Grünwald-Letnikov(G-L) derivative and Caputo’s fractional
derivative [19,26], and so on.

5. Concluding remarks
In this research, we considered the symmetry analysis, explicit solutions to the
time fractional Fisher’s equations with Riemann-Liouville derivative. The time
fractional Fisher’s was reduced to a nonlinear ordinary differential equation(ODE)
of fractional order. The reduced fractional ODE was solved using an explicit power
series method. To summarize, Lie group analysis method is successfully to study
the symmetry properties of Fisher’s equation with time fractional order. However,
the obtained point transformation groups of Eq.(1.1) are narrower than those for
Fisher’s equation for general meaning. It is shown that the technique introduced
here is effective and easy to implement. This problem can be considered further.
Acknowledgements. The authors are grateful to the referees and editors for their
valuable comments and suggestions that improved the presentation of this paper.
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