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EXPONENTIAL ATTRACTOR FOR
HINDMARSH-ROSE EQUATIONS IN

NEURODYNAMICS
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Abstract The existence of exponential attractor for the diffusive Hindmarsh-
Rose equations on a three-dimensional bounded domain in the study of neu-
rodynamics is proved through uniform estimates and a new theorem on the
squeezing property of the abstract reaction-diffusion equation established in
this paper. This result on the exponential attractor infers that the global
attractor whose existence has been proved in [22] for the diffusive Hindmarsh-
Rose semiflow has a finite fractal dimension.
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1. Introduction
The Hindmarsh-Rose equations for neuronal bursting of the intracellular mem-
brane potential observed in experiments were originally proposed in [14, 15]. This
mathematical model composed of three coupled ordinary differential equations has
been studied by numerical simulations and bifurcation analysis in recent years,
cf. [14, 15,17,20,29,38] and the references therein.

We shall study in this paper the global dynamics in terms of the existence of an
exponential attractor for the diffusive Hindmarsh-Rose equations:

∂u

∂t
= d1∆u+ ϕ(u) + v − w + J, (1.1)

∂v

∂t
= d2∆v + ψ(u)− v, (1.2)

∂w

∂t
= d3∆w + q(u− c)− rw, (1.3)

for t > 0, x ∈ Ω ⊂ Rn (n ≤ 3), where Ω is a bounded domain with locally Lipschitz
continuous boundary, J is a constant and the nonlinear terms

ϕ(u) = au2 − bu3, ψ(u) = α− βu2. (1.4)
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In this system (1.1)-(1.3), the variable u(t, x) refers to the membrane electric poten-
tial of a neuronal cell, the variable v(t, x) represents the transport rate of the ions
of sodium and potassium through the fast ion channels and is called the spiking
variable, while the variables w(t, x) represents the transport rate across the neu-
ronal cell membrane through slow channels of calcium and other ions and is called
the bursting variable.

All the involved parameters can be any positive constants except c (= uR) ∈ R,
which is a reference value of the membrane potential of a neuron cell. In the original
model of ODE [38], a set of the typical parameters are

J = 3.281, r = 0.0021, S = 4.0, q = rS, c = −1.6,

ϕ(s) = 3.0s2 − s3, ψ(s) = 1.0− 5.0s2.

We impose the homogeneous Neumann boundary conditions for the three compo-
nents,

∂u

∂ν
(t, x) = 0,

∂v

∂ν
(t, x) = 0,

∂w

∂ν
(t, x) = 0, t > 0, x ∈ ∂Ω, (1.5)

and the initial conditions to be specified are denoted by

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x), x ∈ Ω. (1.6)

1.1. The Hindmarsh-Rose Model in ODE
In 1982-1984, J.L. Hindmarsh and R.M. Rose developed a mathematical model to
describe dynamics of a neuron cell:

du

dt
= au2 − bu3 + v − w + J,

dv

dt
= α− βu2 − v,

dw

dt
= q(u− uR)− rw.

(1.7)

This neuron model was motivated by the discovery of neuron cells in the pond
snail Lymnaea which generated a burst after being depolarized by a short current
pulse. This model characterizes the phenomena of synaptic bursting, especially
chaotic bursting in the three-dimensional (u, v, w) space.

Neuronal signals are short electrical pulses called spikes or action potential. Neu-
rons exhibit bursts of alternating phases of rapid firing spikes and then quiescence.
Bursting constitutes biological mechanisms to modulate and set the pace for brain
functionalities and to communicate information with the neighbor neurons.

Bursting behaviors and patterns occur in a variety of excitable cells and bio-
systems such as pituitary melanotropic gland, thalamic neurons, respiratory pace-
maker neurons, and insulin-secreting pancreatic β-cells, cf. [2,4,7,15]. Synaptic cou-
pling of neurons through bio-electrical or biochemical signals has to reach certain
threshold for release of quantal vesicles and for possible synchronization [8, 25,27].

The mathematical analysis mainly using bifurcation analysis together with nu-
merical simulations of several models in ODEs on bursting behavior has been stud-
ied by many authors, cf. [1, 12,20,23,28,29,31,32,38].

The chaotic coupling exhibited in the simulations and analysis of this Hindmarsh-
Rose model in ordinary differential equations shows more rapid synchronization and
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more effective regularization of neurons due to lower threshold than the regular cou-
pling [31]. It was rigorously proved in [29,38] that chaotic bursting solutions can be
quickly synchronized and regularized when the coupling strength is large enough to
topologically change the bifurcation diagram based on this Hindmarsh-Rose model,
but the dynamics of chaotic bursting is highly complex to be investigated.

It is well known that Hodgkin-Huxley equations [16] (1952) provided a four-
dimensional model for the dynamics of membrane potential taking into account of
the sodium, potassium as well as leak ions current. It is a highly nonlinear system
if without simplification. FitzHugh-Nagumo equations [13] (1961-1962) provided a
two-dimensional model for excitable neurons with the membrane potential and the
ions current variable. This two-dimensional ODE model admits the exquisite phase
plane analysis showing spikes excited by supra-threshold input pulses and sustained
periodic spiking with refractory period, but the 2D nature of the FitzHugh-Nagumo
equations excludes any chaotic solutions and chaotic dynamics so that no chaotic
bursting can be generated.

The Hindmarsh-Rose equations (1.7) generate a significant mathematical mech-
anism for rapid firing and chaotic busting in neurodynamics. This model reflects
possible lower down of the neuron firing threshold and allows for varying interspike
interval. Therefore, this 3D model is a suitable choice for the investigation of both
the regular bursting and the chaotic bursting when the biological parameters vary.
The study of dynamical properties of the Hindmarsh-Rose equations in the ODE
model and here the diffusive Hindmarsh-Rose equations in the PDE model will be
exposed to a wide range of applications in neuroscience.

The rest of Section 1 presents the formulation of the system (1.1)-(1.6) and the
relevant concepts together with the recent results in [22] on the existence of global
attractor for this diffusive Hindmarsh-Rise equations and the existing theory on ex-
ponential attractors. In Section 2, we shall prove a general theorem of the squeez-
ing property for the abstract reaction-diffusion equation on a multi-dimensional
bounded domain. In Section 3, the main result on the existence of exponential
attractor is established for the semiflow generated by the diffusive Hindmarsh-Rose
equations.

1.2. Formulation and Preliminaries
Neuron is a specialized biological cell in brain and central nervous system. In
general, neurons are composed of the central cell body containing the nucleus and
intracellular organelles, the dendrites, the axon, and the nerve terminals. The
dendrites are the short branches near the nucleus receiving incoming signals of
voltage pulses and the axon is a long branch to propagate outgoing signals.

Neurons are immersed in aqueous chemical solutions consisting of different chem-
ical ions electrically charged. The cell membrane is the conductor along which the
voltage signals travel. As pointed out in [18], neuron is a spatial-temporal dis-
tributed dynamical system.

From physical and mathematical viewpoint, it is reasonable and useful to con-
sider the diffusive (or partly diffusive) Hindmarsh-Rose model in partial differential
equations with the spatial variables x involved at least in R1. Here in the math-
ematical extent, we shall study the diffusive Hindmarsh-Rose equations (1.1)-(1.3)
on a bounded domain Ω of the space R3 and focus on the global longtime dynamics
of the solutions.
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We start with formulation of the aforementioned initial-boundary value problem
of (1.1)–(1.6) into an abstract evolutionary equation. Define the Hilbert space
H = [L2(Ω)]3 = L2(Ω,R3) and the Sobolev space E = [H1(Ω)]3 = H1(Ω,R3).
The norm and inner-product of H or L2(Ω) will be denoted by ∥ · ∥ and ⟨ ·, · ⟩,
respectively. The norm of E will be denoted by ∥ · ∥E . The norm of Lp(Ω) or
Lp(Ω,R3) will be dented by ∥ · ∥Lp if p ̸= 2. We use | · | to denote vector norm or
set measure in a Euclidean space.

The initial-boundary value problem (1.1)–(1.6) is formulated to be an initial
value problem of the evolutionary equation:

∂g

∂t
= Ag + f(g), t > 0,

g(0) = g0 = (u0, v0, w0) ∈ H.

(1.8)

Here the nonpositive self-adjoint operator

A =


d1∆ 0 0

0 d2∆ 0

0 0 d3∆

 : D(A) → H, (1.9)

where D(A) = {g ∈ H2(Ω,R3) : ∂g/∂ν = 0} is the generator of an analytic C0-
semigroup {eAt}t≥0 on the Hilbert space H due to the Lumer-Phillips theorem [26].
By the fact that H1(Ω) ↪→ L6(Ω) is a continuous imbedding for space dimension
n ≤ 3 and by the Hölder inequality, there is a constant C0 > 0 such that

∥ϕ(u)∥ ≤ C0(1 + ∥u∥3L6) and ∥ψ(u)∥ ≤ C0(1 + ∥u∥2L4) for u ∈ L6(Ω).

Therefore, the nonlinear mapping

f(u, v, w) =


ϕ(u) + v − w + J

ψ(u)− v,

q(u− c)− rw

 : E −→ H (1.10)

is locally Lipschitz continuous. We can simply write column vector g(t) as (u(t, ·),
v(t, ·), w(t, ·)) and write g0 = (u0, v0, w0). Consider the weak solution of this initial
value problem (1.8), cf. [5, Section XV.3], defined below.

Definition 1.1. A function g(t, x), (t, x) ∈ [0, τ ] × Ω, is called a weak solution to
the initial value problem (1.8), if the following conditions are satisfied:

(i) d
dt (g, ζ) = (Ag, ζ) + (f(g), ζ) is satisfied for a.e. t ∈ [0, τ ] and for any ζ ∈ E;

(ii) g(t, ·) ∈ L2(0, τ ;E) ∩ Cw([0, τ ];H) such that g(0) = g0.
Here (·, ·) stands for the dual product of E∗ and E, and Cw stands for the weakly
continuous functions valued in H. A function g(t, x), (t, x) ∈ [0, τ ] × Ω, is a strong
solution of this initial value problem (1.8) if it is a weak solution and satisfies the
regularity condition in (1.11) below on a time interval [0, τ ] and if the evolutionary
equation (1.8) is satisfied in the space H for almost every t ∈ (0, τ).
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The following result is shown in [22] on the global existence of weak solutions in
time to the initial value problem (1.8).

Theorem 1.1. For any given initial data g0 = (u0, v0, w0) ∈ H, there exists a
unique global weak solution g(t, g0) = (u(t), v(t), w(t)), t ∈ [0,∞), of the initial
value problem (1.8) for the diffusive Hindmarsh-Rose equations (1.1)-(1.3), which
continuously depends on the initial data and satisfies

g ∈ C([0,∞);H) ∩ C1((0,∞);H) ∩ L2
loc([0,∞);E). (1.11)

Every weak solution becomes a strong solution on the interval (0,∞).

The time-parametrized mapping {S(t)g0 = g(t, g0), t ≥ 0} is called the Hindmarsh-
Rose semiflow, which is a dynamical system on the space H.

1.3. Global Attractor and Exponential Attractor
We refer to [3, 5, 21, 24, 26, 30] for the basic concepts and results in the theory of
infinite dimensional dynamical systems, including the few listed here for clarity.

Definition 1.2. Let {S(t)}t≥0 be a semiflow on a Banach space X . A bounded set
B0 of X is called an absorbing set for this semiflow, if for any given bounded subset
B ⊂ X there is a finite time T0(B) ≥ 0 depending on B, such that S(t)B ⊂ B0 for
all t ≥ T0(B).

Definition 1.3 (Global Attractor). A set A in a Banach space X is called a
global attractor for a semiflow {S(t)}t≥0 on X , if the following two properties are
satisfied:

(i) A is a nonempty, compact, and invariant set in the space X .
(ii) A attracts any given bounded set B ⊂ X in the sense

distX (S(t)B,A ) = sup
x∈B

inf
y∈A

∥S(t)x− y∥X → 0, as t→ ∞.

Global attractor characterizes qualitatively the longtime, asymptotic, and global
dynamics of all the solution trajectories of a PDE system. As specified in [5, 24,
26, 30] as well as in [34, 35], global attractor is a depository (usually fractal finite-
dimensional) of all the permanent regimes including chaotic structures of an infinite-
dimensional dynamical system. Global dynamic patterns are also important in
neural field and neural network theories [6, 12]. For the autocatalytic reaction-
diffusion systems [34–37], it is proved that global attractors exist.

Recently in [22], the two authors and J. Su proved the following theorems on
the (H,E) absorbing property of the Hindmarsh-Rose semiflow and the existence
of a global attractor for the diffusive Hindmarsh-Rose equations (1.8).

Theorem 1.2. For any given bounded set B ⊂ H, there exists a finite time TB > 0
such that for any initial state g0 = (u0, v0, w0) ∈ B, the weak solution g(t) =
S(t)g0 = (u(t), v(t), w(t)) of the initial value problem (1.8) uniquely exists for t ∈
[0,∞) and satisfies

∥(u(t), v(t), w(t))∥E ≤ Q, for t ≥ TB , (1.12)

where Q > 0 is a constant independent of any bounded set B in H, and the finite
TB > 0 only depends on the bounded set B.
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Theorem 1.3 (Global Attractor for Diffusive Hindmarsh-Rose Equations). For
any positive parameters d1, d2, d3, a, b, α, β, q, r, J and for any c ∈ R, there exists a
global attractor A in the space H = L2(Ω,R3) for the Hindmarsh-Rose semiflow
{S(t)}t≥0 generated by the weak solutions of the diffusive Hindmarsh-Rose equations
(1.8). Moreover, the global attractor A is an (H,E)-global attractor.

Global attractor for an infinite-dimensional dynamical systems generated by
evolutionary PDE may exhibit slow convergence rate and complicated behavior in
attraction of solution trajectories. The notion of exponential attractor was intro-
duced in [9].

Definition 1.4 (Exponential Attractor). Suppose that X is a Banach space and
{S(t)}t≥0 is a semiflow on X. A subset E ⊂ X is called an exponential attractor
for this semiflow if the following three conditions are satisfied:

1) E is a compact set in X with finite fractal dimension.
2) E is positively invariant with respect to the semiflow {S(t)}t≥0 in the sense

S(t)E ⊂ E for all t ≥ 0.

3) E attracts all the solution trajectories exponentially with a uniform rate σ > 0
in the sense that for any given bounded set B ⊂ X there is a constant C(B) > 0
and

distX(S(t)B,E ) ≤ C(B)e−σt, t ≥ 0.

If there exists an exponential attractor E (may not be unique) as well as a global
attractor A for a semiflow in a Banach space X, then it is always true that

A ⊂ E .

Consequently, the global attractor must have a finite fractal dimension as a subset
of the exponential attractor.

There are two approaches in terms of sufficient conditions for construction of
an exponential attractor. The first approach is the squeezing property which was
introduced in the book [9] and expounded in [21]. The second approach is the
compact smoothing property introduced by Efendiev-Miranville-Zelik [10,11]. Con-
ceptually, the two properties are essentially equivalent when the phase space is a
Hilbert space. From the application viewpoint, the squeezing property fits more to
the semilinear reaction-diffusion equations. The second approach has been exploited
in proving the existence of exponential attractors for quasilinear reaction-diffusion
systems [33].

The following definition of squeezing property [19,21] for a mapping means that
either the mapping (which can be a snapshot of a semiflow at any time t∗ > 0)
is either a contraction or that higher modes are dominated by lower modes with
respect to a finite-rank orthogonal projection.

Definition 1.5 (Sqeezing Property). Let H be a Hilbert space and {S(t)}t≥0 be a
semiflow on H whose norm is ∥·∥. Let S = S(t∗) for some fixed t∗ ∈ (0,∞). If there
is a positively invariant set Z ⊂ H with respect to this semiflow and there exist a
constant 0 < δ < 1 and an orthogonal projection P from H onto a finite-dimensional
subspace of PH ⊂ H, such that either

∥Su− Sv∥ ≤ δ∥u− v∥, for any u, v ∈ Z,
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or
∥(I − P )(Su− Sv)∥ ≤ ∥P (Su− Sv)∥, for any u, v ∈ Z,

then we say that the mapping S has the squeezing property and the affiliated
semiflow {S(t)}t≥0 has the squeezing property on the set Z.

Definition 1.6 (Fractal Dimension). The fractional dimension of a bounded subset
M in a Banach space is defined by

dimf M = lim sup
ε→0+

logNε[M ]

log(1/ε)

where Nε[M ] is the infimum number of open balls with the radius ε for a covering
of the set M .

The following theorem states sufficient conditions for the existence of an expo-
nential attractor with respect to a semiflow on a Hilbert space. Its proof is seen
in [21, Theorems 4.4 and 4.5].

Theorem 1.4. Let {S(t)}t≥0 be a semiflow on a Hilbert space H with the following
conditions satisfied:

1) The squeezing property is satisfied for S = S(t∗) at some t∗ > 0 on a compact,
positively invariant, and absorbing set M ⊂ H.

2) For all t ∈ [0, t∗], the mapping S(t) :M →M is Lipschitz continuous and the
Lipschitz constant K(t) : [0, t∗] → (0,∞) is a bounded function.

3) For any g ∈M , the mapping S(·)g : [0, t∗] →M is Lipschitz continuous and
the Lipschitz constant L(g) :M → (0,∞) is a bounded function.

Then there exists an exponential attractor E in the space H for this semiflow.
Moreover, for any θ ∈ (0, 1), the fractal dimension of the exponential attractor E
has the estimate

dimF (E ) ≤ N max

{
1,

log(2
√
2L/θ + 1)

− log θ

}
(1.13)

where N is the rank of the spectral projection associated with the squeezing property
of the mapping S(t∗) and L is the Lipschitz constant of the mapping S(t∗) on the
positively invariant absorbing set M .

2. Squeezing Property for Reaction-Diffusion Sys-
tems

The approach to proving the squeezing property for an evolutionary PDE is to study
the difference of two solutions, w(t) = g(t)− h(t), and conduct estimates to bound
the time derivatives of the lower and higher modes, d∥Pw∥2/dt and d∥Qw∥2/dt.

Consider a general system of reaction-diffusion equations in the form of an evo-
lutionary equation on a real Hilbert space H = L2(Ω,Rd) and Ω ⊂ Rd (d ≥ 3) is a
higher dimensional bounded Lipschitz domain,

dg

dt
+Ag = f(g) (2.1)
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where f ∈ C1(Rd,Rd) is a nonlinear vector function and the differential operator
A : D(A) → H is a densely defined, nonnegative self-adjoint operator with com-
pact resolvent so that its spectrum set consists of a nonnegative sequence of the
eigenvalues {λm} with finite multiplicities for λm > 0, and λm → ∞ as m→ ∞.

Assume that the weak solution g(t) of the evolutionary equation (2.1) exists on
the time interval [0,∞) for any initial data g0 ∈ H, such that

g ∈ C([0,∞),H) ∩ L2
loc([0,∞), E) (2.2)

where E = H1(Ω,Rd) whose norm is defined by ∥u∥2E = ∥∇u∥2 + ∥u∥2. Suppose
that there exists a positively invariant, closed and bounded set M ⊂ E for the
solution semiflow such that

∥f(g)− f(g̃)∥H ≤ C∥g − g̃∥E , for any g, g̃ ∈M, (2.3)

where the positive Lipschitz constant C = C(M) > 0, and

⟨f(g)− f(g̃), g − g̃⟩H ≤ C∗∥g − g̃∥2H , for any g, g̃ ∈M, (2.4)

where C∗ > 0 is a constant independent of M .
Let the complete set of the orthonormal eigenvectors of A : D(A) → H asso-

ciated with the eigenvalues {λi} (each repeated to the respective multiplicity for
λi > 0) be {ei}, Aei = λiei and λi ≤ λi+1 → ∞ as i → ∞. Let Pm : H →
Span {e1, ..., em} and Qm = I − Pm be the orthogonal spectral projections. Then

∥p∥E =

(
m∑

k=1

|⟨p, ek⟩|2λk

) 1
2

≤
(
λ

1
2
m + 1

)
∥p∥H , p ∈ PH,

∥q∥E =

( ∞∑
k=m+1

|⟨q, ek⟩|2λk

) 1
2

≥
(
λ

1
2
m+1 + 1

)
∥q∥H , q ∈ QH,

We shall briefly write P = Pm and Q = Qm = I − Pm.
We now prove a theorem on the squeezing property for the abstract reaction-

diffusion equation (2.1) on a higher dimensional bounded domain.

Theorem 2.1. Under the assumptions (2.2), (2.3) and (2.4), there exists an integer
m ≥ 1 sufficiently large such that the squeezing property is satisfied on the compact,
positively invariant set M ⊂ H with respect to the projection mapping P = Pm for
the solution semiflow of the reaction-diffusion system (2.1).

Proof. For two solutions g(t) and h(t) of (2.1) in the positively invariant set M ,
the difference ξ(t) = g(t)− h(t) satisfies the equation

dξ

dt
+Aξ = f(g)− f(h), t ≥ 0. (2.5)

Write p(t) = Pξ(t) and q(t) = Qξ(t) so that ξ(t) = p(t) + q(t) is an orthogo-
nal decomposition of ξ(t). Note that the closed and bounded set M ⊂ E in the
assumptions (2.3) and (2.4) must be a compact set in the space H.

Step 1. Take L2 inner-product ⟨(2.5), p(t)⟩ and note that AP = PA on D(A)
and P 2 = P . We have

1

2

d

dt
∥p(t)∥2 + ∥∇p∥2 = ⟨f(g)− f(h), p⟩ ≥ −C∥ξ∥E∥p∥ ≥ −C(λ

1
2
m + 1)∥ξ∥∥p∥
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due to the Lipschitz condition (2.3). Then

1

2

d

dt
∥p(t)∥2 ≥ −λm∥p∥2 − C(λ

1
2
m + 1)(∥p∥+ ∥q∥)∥p∥

= −(λm + C(λ
1
2
m + 1))∥p∥2 − C(λ

1
2
m + 1)∥p∥∥q∥.

(2.6)

On the other hand, we take the inner product ⟨(2.5), q(t)⟩ and obtain

1

2

d

dt
∥q(t)∥2 ≤ −λm+1∥q∥2 + C(λ

1
2
m + 1)(∥p∥+ ∥q∥)∥q∥

≤ −(λm − C(λ
1
2
m + 1))∥q∥2 + C(λ

1
2
m + 1)∥p∥∥q∥.

(2.7)

We choose m sufficiently large such that

λm − C(λ
1
2
m + 1) > 2C(λ

1
2
m + 1). (2.8)

Let S = S(1) for t∗ = 1. Then either

∥(I − P )(Sg − Sh)∥ ≤ ∥P (Sg − Sh)∥, i.e. ∥q(1)∥ ≤ ∥p(1)∥,

or otherwise

∥(I − P )ξ(1)∥ = ∥Qξ(1)∥ > ∥Pξ(1)∥, i.e. ∥q(1)∥ > ∥p(1)∥. (2.9)

Below we consider the case that (2.9) occurs. By the choice (2.8), we have

(λm − C(λ
1
2
m + 1))∥Qξ(1)∥ > 2C(λ

1
2
m + 1)∥Pξ(1)∥.

Namely,
(λm − C(λ

1
2
m + 1))∥q(1)∥ > 2C(λ

1
2
m + 1)∥p(1)∥. (2.10)

The continuity of ξ(t) in H implies that the strict inequality as above holds for t in
a small neighborhood of t∗ = 1. There are two possibilities to be considered.

Step 2. The first possibility is that

(λm − C(λ
1
2
m + 1))∥q(t)∥ > 2C(λ

1
2
m + 1)∥p(t)∥ (2.11)

holds for all t ∈
[
1
2 , 1
]
. Then

(λm − C(λ
1
2
m + 1))∥q(t)∥ − C(λ

1
2
m + 1)∥p(t)∥

>
1

2
(λm − C(λ

1
2
m + 1))∥q(t)∥ > λm

3
∥q(t)∥, for t ∈ [1/2, 1],

(2.12)

where we used (2.10) in the first inequality and (2.8) in the second inequality of
(2.12). Then (2.7) becomes

d

dt
∥q∥2 ≤ − 2

3
λm∥q∥2, t ∈ [1/2, 1].

Integrating this inequality over the time interval [ 12 , 1], we obtain

∥q(1)∥2 ≤ e−λm/3 ∥q(1/2)∥2.
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Since ∥ξ(1)∥2 = ∥p(1)∥2 + ∥q(1)|2 ≤ 2∥q(1)∥2 due to (2.9), it infers that

∥ξ(1)∥ ≤
√
2 ∥q(1)∥ ≤

√
2 e−λm/6∥q(1/2)∥ ≤

√
2e−λm/6∥ξ(1/2)∥. (2.13)

On the other hand, taking the inner product ⟨(2.5), ξ(t)⟩ and using the monotone
property (2.4), we can get

1

2

d

dt
∥ξ∥2 ≤ d

dt
∥ξ∥2 + ∥∇ξ∥2 ≤ ⟨f(g)− f(h), g − h⟩ ≤ C∗∥g − h∥2 = C∗∥ξ∥2.

Integrate the above inequality over the time interval [0, t], we get

∥g(t)− h(t)∥ ≤ eC
∗t∥g0 − h0∥, for any t ≥ 0. (2.14)

It yields, in particular,
∥ξ(1/2)∥ ≤ eC

∗/2∥ξ(0)∥. (2.15)

Then (2.13) and (2.15) give rise to the inequality

∥Sg0 − Sh0∥ = ∥S(1)g0 − S(1)h0∥ = ∥ξ(1)∥ ≤ δ∥ξ(0)∥ = δ∥g0 − h0∥ (2.16)

with
0 < δ =

√
2 e−λm/6 eC

∗/2 < 1 (2.17)

provided that m is large enough so that λm is large enough. Thus it is proved that
for this first possibility the squeezing property is satisfied by the mapping S and by
the solution semiflow {S(t)}t≥0 of the reaction-diffusion system (2.1).

Step 3. The second possibility is that (2.11) does not hold for all t ∈ [1/2, 1].
Then there is a time 1

2 < t0 < 1 such that (2.11) is valid for t ∈ (t0, 1] and

(λm − C(λ
1
2
m + 1))∥q(t0)∥ = 2C(λ

1
2
m + 1)∥p(t0)∥. (2.18)

Define a function

Φ(t) = (∥p(t)∥+ ∥q(t)∥) exp
(

λm∥q(t)∥
Cm(∥p(t)∥+ ∥q(t)∥)

)
(2.19)

where Cm = C(λ
1
2
m + 1). From (2.6) and (2.7), since 1

2
d
dt∥p(t)∥

2 = ∥p(t)∥ d
dt∥p(t)∥

and similarly for ∥q(t)∥, we have

d

dt
∥p∥ ≥ −(λm + C(λ

1
2
m + 1))∥p∥ − C(λ

1
2
m + 1)∥q∥,

d

dt
∥q∥ ≤ −(λm − C(λ

1
2
m + 1))∥q∥+ C(λ

1
2
m + 1)∥p∥.

Then

d

dt
Φ(t)=exp

[
λm∥q∥

Cm(∥p∥+∥q∥)

] [
d

dt
(∥p∥+∥q∥)+(∥p∥+∥q∥) d

dt

(
λm∥q∥

Cm(∥p∥+∥q∥)

)]
.

(2.20)
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Since the exponential factor is positive, in order to know the sign of the derivative
d
dtΦ(t), we only need to estimate the second factor on the right-hand side of (2.20):

d

dt
(∥p∥+ ∥q∥) + (∥p∥+ ∥q∥) d

dt

(
λm∥q∥

Cm(∥p∥+ ∥q∥)

)
=
d

dt
∥p∥+ d

dt
∥q∥+ λm

Cm

d

dt
∥q∥ − λm∥q∥

Cm(∥p∥+ ∥q∥)

(
d

dt
∥p∥+ d

dt
∥q∥
)

=
d

dt
∥q∥

[
1 +

λm
Cm

− λm∥q∥
Cm(∥p∥+ ∥q∥)

]
− d

dt
∥p∥

[
λm∥q∥

Cm(∥p∥+ ∥q∥)
− 1

]
=
d

dt
∥q∥

[
1 +

λm∥p∥
Cm(∥p∥+ ∥q∥)

]
− d

dt
∥p∥

[
λm∥q∥

Cm(∥p∥+ ∥q∥)
− 1

]
≤ (−(λm − Cm)∥q∥+ Cm∥p∥)

[
1 +

λm∥p∥
Cm(∥p∥+ ∥q∥)

]
+ ((λm + Cm)∥p∥+ Cm∥q∥)

[
λm∥q∥

Cm(∥p∥+ ∥q∥)
− 1

]
= − (λm − Cm)∥q∥ − λm(λm − Cm)∥p|∥q∥

Cm(∥p∥+ ∥q∥)
+ Cm∥p∥+ λm∥p∥2

∥p∥+ ∥q∥

+
λm(λm + Cm)∥p∥∥q∥

Cm(∥p∥+ ∥q∥)
− (λm + Cm)∥p∥+ λm∥q∥2

∥p∥+ ∥q∥
− Cm∥q∥

= − λm∥q∥ − λm∥p∥+ 2λm∥p∥∥q∥
∥p∥+ ∥q∥

+
λm∥p∥2

∥p∥+ ∥q∥
+

λm∥q∥2

∥p∥+ ∥q∥

= − λm∥q∥ − λm∥p∥+ λm(∥p∥2 + ∥q∥2 + 2∥p∥∥q∥)
∥p∥+ ∥q∥

= 0.

(2.21)

Hence we obtain
d

dt
Φ(t) ≤ 0, for t ∈ [t0, 1].

It follows that
Φ(1) ≤ Φ(t0). (2.22)

At t = 1, ∥q(1)∥ = ∥Qξ(1)∥ > ∥Pξ(1)∥ = ∥p(1)∥ by (2.9). Then from (2.19) we
see that

Φ(1) ≥ ∥q(1)∥ exp
(
λm∥q(1)∥
2Cm∥q(1)∥

)
= ∥q(1)∥eλm/(2Cm). (2.23)

At t = t0, (2.18) indicates that

(λm − Cm)∥q(t0)∥ = 2Cm∥p(t0)∥

and then
2Cm(∥p(t0)∥+ ∥q(t0)∥) = (λm + Cm)∥q(t0)∥.

Thus,

Φ(t0) =
λm + Cm

2Cm
∥q(t0)∥ exp

(
2λm

λm + Cm

)
. (2.24)
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Note that t0 ∈ (1/2, 1]. Put together (2.22), (2.23) and (2.24). We use the Lipschitz
continuous dependence on initial data to obtain

∥q(1)∥ ≤ exp

(
− λm
2Cm

)
Φ(1) ≤ exp

(
− λm
2Cm

)
Φ(t0)

= exp

(
− λm
2Cm

)
λm + Cm

2Cm
exp

(
2λm

λm + Cm

)
∥q(t0)∥.

≤ exp

(
− λm
2Cm

)
λm + Cm

2Cm
e2 ∥q(t0)∥

≤ exp

(
− λm
2Cm

)
λm + Cm

2Cm
e2 ∥ξ(t0)∥.

(2.25)

According to the solution expression of the evolutionary equation (2.5),

ξ(t) = e−Atξ(0) +

∫ t

0

e−A(t−s)(f(g(s))− f(h(s))) ds t ≥ 0.

By using the Lipschitz condition (2.3) and the fact that e−At is a contraction semi-
group, we can deduce that

∥ξ(t)∥ ≤ ∥e−At∥L(H)∥ξ(0)∥+
∫ t

0

∥e−A(t−s)∥L(H)∥f(g(s))− f(h(s))∥ ds

≤∥ξ(0)∥+
∫ t

0

C∥g(s)− h(s)∥E ds ≤ ∥ξ(0)∥+
∫ t

0

C∥ξ(s)∥E ds, t ≥ 0.

(2.26)

Then the Gronwall inequality applied to (2.26) shows that

∥ξ(t)∥ ≤ ∥ξ(0)∥ eCt, t ≥ 0.

Substitute this inequality at t0 into (2.25) to obtain

∥q(1)∥ ≤ exp

(
− λm

2Cm

)
λm + Cm

2Cm
e2 ∥ξ(t0)∥

≤ exp

(
− λm

2Cm

)
λm + Cm

2Cm
e2+C ∥ξ(0)∥.

Since ∥p(1)∥ < ∥q(1)∥, we end up with

∥ξ(1)∥ ≤
√
2 exp

(
− λm

2Cm

)
λm + Cm

2Cm
e2+C∥ξ(0)∥.

For m sufficiently large, we can assert that

0 < δ =
√
2 exp

(
− λm

2Cm

)
λm + Cm

2Cm
e2+2C

=
√
2

(
λm

2C(λ
1
2
m + 1)

+
1

2

)
exp

(
− λm

2C(λ
1
2
m + 1)

)
e2+2C < 1.

We have proved that

∥Sg0 − Sh0∥ = ∥ξ(1)∥ ≤ δ∥ξ(0)∥ = δ∥g0 − h0∥, for any g0, h0 ∈M. (2.27)
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Finally (2.16) and (2.27) show that, in any case as we have treated in Step 2
and Step 3, if the spectral number m of the finite-rank orthogonal projection Pm

on the space H is chosen to be large enough, then the squeezing property holds
for the Hindmarsh-Rose semiflow {S(t)}t≥0 generated by the equation (2.1) on this
compact, positively invariant set M ⊂ H. The proof is completed.

3. The Existence of Exponential Attractor
In this section, we shall prove the main result on the existence of exponential at-
tractor for the solution semiflow of the diffusive Hindmarsh-Rose equations.

Having proved the new result on squeezing property in Theorem 2.1, it suffices
to check the two conditions (2.3) and (2.4) in Theorem 2.1 are satisfied by the
Hindmarsh-Rose semiflow.

Theorem 3.1. Under the same assumptions as in Theorem 1.3, the Nemytskii
operator f defined by (1.10) satisfies the E to H Lipschitz condition

∥f(g)− f(g̃)∥H ≤ CE(M)∥g − g̃∥E , for any g, g̃ ∈M, (3.1)

on any given positively invariant and bounded set M ⊂ E, where CE(M) > 0 is a
constant only depending on M . Moreover, f satisfies the monotone property that
there exists a constant C∗ > 0 independent of M and

⟨f(g)− f(g̃), g − g̃⟩ ≤ C∗∥g − g̃∥2, for any g, g̃ ∈M. (3.2)

Proof. First we prove the claim (3.2). For any g = (u, v, w) and g̃ = (ũ, ṽ, w̃)
in the set M and denote the three components of f by f1, f2, f3. For the first
component f1, we have

⟨f1(g)− f1(g̃), u− ũ⟩ = ⟨f1(u, v, w)− f1(ũ, ṽ, w̃), u− ũ⟩

≤ ⟨ϕ(u)− ϕ(ũ), u− ũ⟩+ ⟨v − ṽ, u− ũ⟩+ ⟨w − w̃, u− ũ⟩

≤ a⟨u2 − ũ2, u− ũ⟩ − b⟨u3 − ũ3, u− ũ⟩+ ∥v − ṽ∥∥u− ũ∥+ ∥w − w̃∥∥u− ũ∥

≤ a

∫
Ω

|u(x)− ũ(x)|2(u(x) + ũ(x)) dx

− b

∫
Ω

|u(x)− ũ(x)|2(u2(x) + u(x)ũ(x) + ũ2(x))dx

+ ∥u− ũ∥2 + ∥v − ṽ∥2 + ∥w − w̃∥2

≤ 2a2

b

∫
Ω

|u(x)− ũ(x)|2 dx+ ∥u− ũ∥2 + ∥v − ṽ∥2 + ∥w − w̃∥2

− b

4

∫
Ω

|u(x)− ũ(x)|2(u2(x) + ũ2(x)) dx,

(3.3)

where we used

a(u(x) + v(x)) ≤ b

4
(u2(x) + ũ2(x)) +

2a2

b
.



Hindmarsh-Rose Equations 2049

For the second component f2, we conduct the estimate

⟨f2(g)− f2(g̃), v − ṽ⟩ = ⟨f2(u, v, w)− f2(ũ, ṽ, w̃), v − ṽ⟩

≤ ⟨ψ(u)− ψ(ũ), v − ṽ⟩+ ∥v − ṽ∥2

=β

∫
Ω

(u(x)− ũ(x))(u(x) + ũ(x))(v(x)− ṽ(x)) dx+ ∥v − ṽ∥2

≤ b

8

∫
Ω

|u(x)− ũ(x)|2|u(x) + ũ(x)|2 dx+
2β2

b
∥v − ṽ∥2 + ∥v − ṽ∥2

≤ b

4

∫
Ω

|u(x)− ũ(x)|2(u2(x) + ũ2(x)) dx+

(
1 +

2β2

b

)
∥v − ṽ∥2.

(3.4)

For the third component f3, we have

⟨f3(g)− f3(g̃), w − w̃⟩ = ⟨f3(u, v, w)− f3(ũ, ṽ, w̃), w − w̃⟩

≤ q∥u− ũ∥∥w − w̃∥+ r∥w − w̃∥2 ≤ q∥u− ũ∥2 + (q + r)∥w − w̃∥2.
(3.5)

Summing up (3.3), (3.4) and (3.5), then two integral terms with plus and minus
signs respectively on the right-hand side of (3.3) and (3.4) being cancelled out, we
obtain

⟨f(g)− f(g̃), g − g̃⟩ = ⟨f1(g)− f1(g̃), u− ũ⟩

+ ⟨f2(g)− f2(g̃), v − ṽ⟩+ ⟨f3(g)− f3(g̃), w − w̃⟩

≤
(
1 +

2a2

b

)
∥u− ũ∥2 + ∥v − ṽ∥2 + ∥w − w̃∥2

+

(
1 +

2β2

b

)
∥v − ṽ∥2 + q∥u− ũ∥2 + (q + r)∥w − w̃∥2

=

(
1 + q +

2a2

b

)
∥u− ũ∥2 +

(
2 +

2β2

b

)
∥v − ṽ∥2 + (1 + q + r)∥w − w̃∥2

≤C∗ (∥u− ũ∥2 + ∥v − ṽ∥2 + ∥w − w̃∥2) = C∗ ∥g − g̃∥2.

(3.6)

Thus the inequality (3.2) is satisfied by f on the set M with a uniform coefficient

C∗ = max

{
1 + q +

2a2

b
, 2 +

2β2

b
, 1 + q + r

}
. (3.7)

Next we prove the E to H Lipschitz condition (3.1) of the Nemytskii operator
f . Due to the Sobolev embedding E = H1(Ω,R3) ↪→ L6(Ω,R3) ↪→ L4(Ω,R3), there
are positive constants δ1 and δ2 such that

∥ · ∥L4(Ω) ≤ δ1∥ · ∥H1(Ω) and ∥ · ∥L6(Ω) ≤ δ2∥ · ∥H1(Ω).

Since M is an invariant and bounded set in E, we define

N1 = max
g∈M

∥u∥L4 , N2 = max
g∈M

∥u∥L6 .
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Then

∥f(g)− f(g̃)∥2H = ∥f1(g)− f1(g̃)∥2 + ∥f2(g)− f2(g̃)∥2 + ∥f3(g)− f3(g̃)∥2

≤ (a∥u2 − ũ2∥+ b∥u3 − ũ3∥+ ∥v − ṽ∥+ ∥w − w̃∥)2

+ (β∥u2 − ũ2∥+ ∥v − ṽ∥)2 + (q∥u− ũ∥+ r∥w − w̃∥)2

≤ 4(a2∥u2 − ũ2∥2 + b2∥u3 − ũ3∥2 + ∥v − ṽ∥2 + ∥w − w̃∥2)

+ 2(β2∥u2 − ũ2∥2 + ∥v − ṽ∥2) + 2(q2∥u− ũ∥2 + r2∥w − w̃∥2)

= (4a2 + 2β2)∥u2 − ũ2∥2 + 4b2∥u3 − ũ3∥2 + 2q2∥u− ũ∥2

+ 6∥v − ṽ∥2 + (4 + 2r2)∥w − w̃∥2.

(3.8)

The Hölder inequality implies that

∥u2 − ũ2∥2 = ∥(u− ũ)(u+ ũ)∥2 =

∫
Ω

|u(x)− ũ(x)|2|u(x) + ũ(x)|2 dx

≤∥u− ũ∥2L4∥u+ ũ∥2L4 ≤ 4 δ21N
2
1 ∥u− ũ∥2H1(Ω)

and

∥u3 − ũ3∥2 = ∥(u− ũ)(u2 + uũ+ ũ)2∥2

=

∫
Ω

|u(x)− ũ(x)|2|u2(x) + u(x)ũ(x) + ũ2(x)|2 dx

≤
(∫

Ω

|u(x)− ũ(x)|6 dx
)1/3(∫

Ω

|u2(x) + u(x)ũ(x) + ũ2(x)|3 dx
)2/3

= ∥u− ũ∥2L6∥u2 + uũ+ ũ2∥2L3 ≤ δ22∥u− ũ∥2H1∥2u2 + 2ũ2∥2L3

≤ δ22∥u− ũ∥2H1 · (4∥u∥4L6 + 4∥ũ∥4L6) ≤ 8 δ22 N
4
2 ∥u− ũ∥2H1(Ω).

Substitute the above two inequalities into (3.8). We obtain

∥f(g)− f(g̃)∥2H ≤
(
4 δ21N

2
1 (4a

2 + 2β2) + 32 b2δ22 N
4
2 + 2q2

)
∥u− ũ∥2H1(Ω)

+ 6∥v − ṽ∥2 + (4 + 2r2)∥w − w̃∥2
(3.9)

which shows that (3.1) is valid with the constant CE(M) > 0 given by

CE(M) =
√
max {4 δ21N2

1 (4a
2 + 2β2) + 32 b2δ22 N

4
2 + 2q2, 6, 4 + 2r2}.

The proof is completed.
Finally we prove the main result on the existence of exponential attractor for the

Hindmarsh-Rose semiflow {S(t)}t≥0 generated by the Hindmarsh-Rose evolutionary
equation (1.8)

Theorem 3.2. Under the same assumptions as in Theorem 1.3, there exists an ex-
ponential attractor E in the space H = L2(Ω,R3) for the Hindmarsh-Rose semiflow
{S(t)}t≥0 generated by the weak solutions of the diffusive Hindmarsh-Rose equations
(1.8).
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Proof. The following steps will check all the three conditions stated in Theorem
1.4 are satisfied for the diffusive Hindmarsh-Rose equations (1.8).

Step 1. First we show that there exists a compact, positively invariant, absorbing
set M ⊂ H for the Hindmarsh-Rose semiflow {S(t)}t≥0 such that (2.3) and (2.4)
are satisfied. Then according to Theorem 2.1 the squeezing property is satisfied for
the mapping S(t∗) at t∗ = 1 on this set M .

Theorem 1.2 has shown that the closed and bounded ball BE(Q) centered at
the origin with radius Q > 0 in the space E = H1(Ω,R3) is an (H,E) absorbing
set for this semiflow. We can easily verify that the set

M =
⋃

0≤t≤T∗

S(t)BE(Q) (3.10)

is a compact, positively invariant, absorbing set in the space H for this semiflow,
where T ∗ = T ∗(BE(Q)) is the permanently entering time for the solution tra-
jectories starting from the ball BE(Q) into itself, as indicated in (1.12). By the
boundedness of M in the space E and the compact embedding E ↪→ H so that the
cylinder [0, T ∗]×BE(Q) is a compact set in R×H. Moreover, the function

γ(t, g) = S(t)g is continuous on [0, T ∗]×BE(Q). (3.11)

These two facts infer that the set M is a compact set in H.
In Theorem 3.1 it has been shown that the nonlinear mapping f(g) given in

(1.10) satisfies both the Lipschitz continuous condition (2.3) and the monotone
condition (2.4) on this set M given in (3.10). In addition, by the continuity of the
functions γ(t, g) in (3.11), we see that

G = max{∥γ(t, g)∥E : (t, g) ∈ [0, T ∗]×BE(Q)} <∞. (3.12)

Thus we can apply Theorem 2.1 with its proof to confirm that the squeezing
property is satisfied by the mapping S(t∗) at t∗ = 1 so that the squeezing property is
satisfied by the Hindmarsh-Rose semiflow {S(t)}t≥0 on this set M in H. Therefore,
the first condition in Theorem 1.4 is satisfied by the Hindmarsh-Rose semiflow.

Step 2. Next we show that, for the Hindmarsh-Rose semiflow and for any t ∈
[0, t∗] = [0, 1], the mapping S(t) : M → M is Lipschitz continuous in H and the
associated Lipschitz constant K(t) : [0, 1] → (0,∞) is a bounded function.

For this purpose, consider any two g0 = (u0, v0, w0), g̃0 = (ũ0, ṽ0, w̃0) ∈ M and
the solutions g(t) = S(t)g0 and g̃(t) = S(t)g̃0 for t ∈ [0, 1]. Then h(t) = g(t)− g̃(t)
satisfies the following equation and the initial condition:

dh

dt
= Ah+ f(g)− f(g̃), t > 0,

h(0) = h0 = g0 − g̃0.
(3.13)

The three component functions of h(t) = (U(t), V (t),W (t)) can be estimated as
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follows. First,

1

2

d

dt
∥U∥2 + d1∥∇U∥2 = ⟨f1(g)− f1(g̃), u− ũ⟩

= ⟨(ϕ(u)− ϕ(ũ)) + (v − ṽ)− (w − w̃), u− ũ⟩

=

∫
Ω

(
a(u2 − ũ2)− b(u3 − ũ3) + (v − ṽ)− (w − w̃)

)
(u− ũ) dx

=

∫
Ω

(
a(u− ũ)2(u+ ũ)− b(u− ũ)2(u2ũ+ uũ+ ũ2)

)
dx

+

∫
Ω

((v − ṽ)(u− ũ)− (w − w̃)(u− ũ)) dx

≤
∫
Ω

(u− ũ)2
[
a(u+ ũ)− b(u2 + uũ+ ũ2)

]
dx

+ ∥u− ũ∥(∥v − ṽ∥+ ∥w − w̃∥)

≤
∫
Ω

(u− ũ)2
[
a(u+ ũ)− b(u2 + uũ+ ũ2)

]
dx+ 2∥g − g̃∥2

(3.14)

and by Young’s inequality we have

a(u+ ũ)−−b(u2 + uũ+ ũ2) = [a(u+ ũ)− buũ]− b(u2 + ũ2)

≤
(
b

4
u2 +

a2

b

)
+

(
b

4
ũ2 +

a2

b

)
+
b

2
(u2 + ũ2)− b(u2 + ũ2) ≤ − b

4
(u2 + ũ2) +

2a2

b
.

It follows that
d

dt
∥U∥2 ≤ d

dt
∥U∥2 + 2d1∥∇U∥2

≤ 2

∫
Ω

(u− ũ)2
(
− b
4
(u2 + ũ2) +

2a2

b

)
dx+ 4∥g − g̃∥2

≤
∫
Ω

(u− ũ)2
(
− b
2
(u2 + ũ2)

)
dx+

4a2

b
∥u− ũ∥2 + 4∥g − g̃∥2

≤ − b

2

∫
Ω

(u− ũ)2(u2 + ũ2) dx+ 4

(
1 +

a2

b

)
∥h∥2.

(3.15)

Similarly, for the second and third components of h(t) = g(t)−g̃(t) = (U(t), V (t),W (t)),
we get

d

dt
∥V ∥2 ≤ d

dt
∥V ∥2 + 2d2∥∇V ∥2 ≤ 2⟨ψ(u)− ψ(ũ)− (v − ṽ), v − ṽ⟩

=2

∫
Ω

(
−β(u2 − ũ2)− (v − ṽ)

)
(v − ṽ) dx

≤ 2

∫
Ω

(−β(u− ũ)u(v − ṽ)− β(u− ũ)ũ(v − ṽ)) dx (3.16)

≤
∫
Ω

(
bu2

2
(u− ũ)2 +

bũ2

2
(u− ũ)2

)
dx+

4β

b
∥v − ṽ∥2
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≤ b

2

∫
Ω

(u2 + ũ2)(u− ũ)2 dx+
4β

b
∥h∥2

and

d

dt
∥W∥2 ≤ d

dt
∥W∥2 + 2d3∥∇W∥2 ≤ 2⟨q(u− ũ)− r(w − w̃), w − w̃⟩

=2

∫
Ω

(q(u− ũ)− r(w − w̃)) (w − w̃) dx

≤ q∥u− ũ∥2 + (q + 2r)∥w − w̃∥2 ≤ 2(q + r)∥h∥2.

(3.17)

Add up the inequalities (3.15), (3.16) and (3.17) with a cancellation of the first
terms on the rightmost side of (3.15) and (3.16). Then we obtain

d

dt
∥h∥2 =

d

dt

(
∥U∥2 + ∥V ∥2 + ∥W∥2

)
≤ C∗∥h∥2, t > 0, (3.18)

where C∗ is a positive constant given by

C∗ = 4

(
1 +

β

b
+
a2

b

)
+ 2(q + r).

Solve the differential Gronwall inequality (3.18) to obtain

∥g(t)− g̃(t)∥ = ∥h(t)∥ ≤ eC∗t/2∥h(0)∥ = K(t)∥g0 − g̃0∥, t ≥ 0, (3.19)

where K(t) = eC∗t/2 ∈ [1, eC∗/2] is a bounded function on the time interval t ∈ [0, t∗]
where t∗ = 1. The claim at the beginning of this step is proved.

Step 3. Finally we show that for any given g ∈M the mapping S(·)g0 : [0, t∗] =
[0, 1] → M is Lipschitz continuous and the associated Lipschitz constant L(g0) :
M → (0,∞) is a bounded function.

For any given g0 ∈ M , since the weak solution S(t)g0, t ≥ 0, is a mild solution
for the evolutionary equation (1.8), we have

S(t)g0 = eAtg0 +

∫ t

0

eA(t−s)f(g(s, g0)) ds, t ≥ 0, (3.20)

where the operator A and the nonlinear mapping f are defined in (1.9) and (1.10),
respectively. Here the parabolic semigroup {eAt}t≥0 is a self-adjoint contraction
semigroup so that maxt≥0 ∥eAt∥L(H) = 1. A fundamental theorem on sectorial
operators [26, Theorem 37.5] shows that the operator function eAt : [0,∞) → L(H)
is uniformly Lipschitz continuous. Actually, the spectral expansion of eAt shows

(eAtg0)(x) =

∞∑
k=1

e−λkt⟨g0, ek⟩ek(x), g ∈ H, t ≥ 0,

where {−λk}∞k=1, with 0 ≤ λk → ∞ as k → ∞, is the set of all the eigenvalues
(repeated to the respective multiplicities) of A : D(A) → H, and {ek}∞k=1 with
Aek = −λkek is the complete set of the orthonormal eigenvectors of A. Then we
can derive the Lipschitz continuity of eAt as follows. For any g0 ∈ M and any
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0 ≤ τ < t,

∥eAtg0 − eAτg0∥2 =

∞∑
k=1

|e−λkt − eλkτ |2|⟨g0, ek⟩|2

=

∞∑
k=1

|e−ζk |2λk|t− τ ||⟨g0, ek⟩|2 (where 0 ≤ λkτ ≤ ζk ≤ λkt)

≤ |t− τ |∥∇g0∥2 ≤ |t− τ |∥g0∥2E ≤ G2|t− τ |.

(3.21)

Therefore we can deduce that, for any 0 ≤ τ < t,

∥S(t)g0 − S(τ)g0∥H ≤ ∥eAtg0 − eAτg0∥+
∫ t

τ

∥eA(t−s)f(g(s, g0))∥ ds

≤G2|t− τ |+
∫ t

τ

∥eA(t−s)∥L(H)∥f(g(s, g0))∥H ds

≤G2|t− τ |+
∫ t

τ

∥f(g(s, g0))− f(0)∥H dt+

∫ t

τ

∥f(0)∥H ds

≤G2|t− τ |+
∫ t

τ

CE(M)∥g(s, g0)∥E dt+ (J + α+ q|c|)|t− τ |

≤G2|t− τ |+ CE(M)G2|t− τ |+ (J + α+ q|c|)|t− τ |

≤L(M)|t− τ |,

(3.22)

where the Lipschitz constant CE(M) is given in (3.1) and

L(M) = (1 + CE(M))G2 + (J + α+ q|c|).

Thus the claim in Step 3 is proved.
Since we have proved that all the three conditions in Theorem 1.4 are satisfied

by the Hindmarsh-Rose semiflow, there exists an exponential attractor E in the
space H for this Hindmarsh-Rose semiflow. The proof is completed.

The existence of an exponential attractor as well as the squeezing property has
the following meaningful corollaries on the finite fractal dimensionality of the global
attractor shown in [22] and on the finite-dimensional determining modes.

Corollary 3.1. The global attractor A of the Hindmarsh-Rose semiflow has a finite
fractal dimension

dimF (A ) ≤ N max

{
1,

log(2
√
2K/θ + 1)

− log θ

}
, θ ∈ (0, 1), (3.23)

where N is the rank of the spectral projection associated with the squeezing property
of the mapping S(1) and K is the Lipschitz constant of the mapping S(1) on the
compact, positively invariant, absorbing set M .

Proof. This result is simply implied by the inclusion of the global attractor A in
the exponential attractor E ,

A ⊂ E ,
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because limt→∞ distH(S(t)A ,E ) = distH(A ,E ) = 0, and that by definition the
exponential attractor E has a finite fractal dimension. The estimate (3.23) follows
from Theorem 1.4.

Corollary 3.2. Under the same assumptions as in Theorem 1.3, the orthogonal
projection of the trajectories in the global attractor A on the finite-dimensional
subspace PH of the low modes is a set of determining modes in the sense that, for
two trajectories g(t) and g̃(t) in A , if

∥Pg(t)− P g̃(t)∥H → 0, as t→ ∞,

then
∥g(t)− g̃(t)∥H → 0, as t→ ∞.

Here the finite-rank orthogonal projection P is affiliated with the corresponding
squeezing property of the Hindmarsh-Rose semiflow.

This Corollary 3.2 is a consequence of the squeezing property of the Hindmarsh-
Rose semiflow shown in Theorem 3.2 and by Theorem 14.3 in [24].
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