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INFINITELY MANY LOW- AND
HIGH-ENERGY SOLUTIONS FOR A CLASS OF

ELLIPTIC EQUATIONS WITH VARIABLE
EXPONENT∗

Chang-Mu Chu1,† and Haidong Liu2

Abstract This paper is concerned with the p(x)-Laplacian equation of the
form −∆p(x)u = Q(x)|u|r(x)−2u, in Ω,

u = 0, on ∂Ω,

(0.1)

where Ω ⊂ RN is a smooth bounded domain, 1 < p− = minx∈Ω p(x) ≤ p(x) ≤
maxx∈Ω p(x) = p+ < N , 1 ≤ r(x) < p∗(x) = Np(x)

N−p(x)
, r− = minx∈Ω r(x) < p−,

r+ = maxx∈Ω r(x) > p+ and Q : Ω → R is a nonnegative continuous function.
We prove that (0.1) has infinitely many small solutions and infinitely many
large solutions by using the Clark’s theorem and the symmetric mountain pass
lemma.
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1. Introduction and main results
In recent years, the following nonlinear elliptic equation−∆p(x)u = f(x, u), in Ω,

u = 0, on ∂Ω
(1.1)

has received considerable attention due to the fact that it can be applied to fluid
mechanics and the field of image processing (see [7, 23]), where Ω ⊂ RN is a
smooth bounded domain, p : Ω → R is a continuous function satisfying 1 < p− =

†The corresponding author. Email: gzmychuchangmu@sina.com.(C. Chu)
1School of Data Science and Information Engineering, Guizhou Minzu Univer-
sity, Guiyang, 550025, China

2College of Mathematics, Physics and Information Engineering, Jiaxing Uni-
versity, Jiaxing, 314001, China

∗C. Chu is supported by National Natural Science Foundation of China
(No. 11861021). H. Liu is supported National Natural Science Foundation
of China (Nos. 11701220, 11926334, 11926335).

http://jaac-online.com
http://dx.doi.org/10.11948/20190319


Infinitely many low- and high-energy solutions 2025

minx∈Ω p(x) ≤ p(x) ≤ maxx∈Ω p(x) = p+ < N and f : Ω × R → R is a suitable
function.

In 2003, Fan and Zhang in [10] gave several sufficient conditions for the existence
and multiplicity of nontrivial solutions for problem (1.1). These conditions include
either the sublinear growth condition

|f(x, t)| ≤ C
(
1 + |t|β

)
, for x ∈ Ω and t ∈ R

or Ambrosetti-Rabinowitz type superlinear condition ((AR)-condition, for short)

f(x, t)t ≥ θF (x, t) > 0, for x ∈ Ω and |t| sufficiently large,

where C > 0, 1 ≤ β < p−, θ > p+ and F (x, t) =
∫ t

0
f(x, s) ds. Subsequently,

Chabrowski and Fu in [6] discussed problem (1.1) in a more general setting than
that in [10]. It is well known that (AR)-condition is important to guarantee the
boundedness of Palais-Smale sequence of the Euler-Lagrange functional which plays
a crucial pole in applying the critical point theory. However, it excludes many cases
of nonlinearity (see [4, 13, 14, 22, 25, 27–29]). In fact, either the uniform superlin-
ear growth condition or the uniform sublinear growth condition was still imposed
on f(x, t). In addition, some papers discussed problem (1.1) with concave-convex
nonlinearities (see [3, 12,18,20,26]).

For the case f(x, t) = Q(x)|t|r(x)−2t, problem (1.1) reduces to−∆p(x)u = Q(x)|u|r(x)−2u, in Ω,

u = 0, on ∂Ω,
(1.2)

where Q, r : Ω → R are nonnegative continuous functions. The sets Ω0 = {x ∈
Ω | r(x) = p(x)}, Ω− = {x ∈ Ω | r(x) < p(x)} and Ω+ = {x ∈ Ω | r(x) > p(x)} can
have positive measure at the same time. This situation is new and closely related
to the existence of variable exponents since we can’t meet such a phenomenon
in the constant exponent case(see [1–4]). Mihǎilescu and Rǎdulescu in [19] have
considered problem (1.2) with Q(x) ≡ λ under the basic assumption 1 < r− =
minx∈Ω r(x) < p− < r+ = maxx∈Ω r(x) and proved that there exists λ0 > 0 such
that any λ ∈ (0, λ0) is an eigenvalue for problem (1.2). Subsequently, Fan in [8]
extended the main results of [19] in the case Ω = Ω− (but r+ < p− does not hold)
and in the case Ω = Ω+ (but r− > p+ does not hold), respectively. Their results
implied that for any positive constant C > 0 there exists u0 ∈W

1,p(x)
0 (Ω) such that

C

∫
Ω

|u0|r(x)dx ≥
∫
Ω

|∇u0|p(x)dx.

Therefore, we have to overcome new difficulties in dealing with (1.2).
Different from the concave-convex nonlinearities, the main feature of problem

(1.2) is thatQ(x)|t|r(x) has both local superlinear growth and local sublinear growth.
Due to this, it is difficult to prove the boundedness of Palais-Smale sequence of the
Euler-Lagrange functional. To the best of our knowledge, we only realize that
Aouaoui [1] obtainded at least three nontrivial solutions of problem (1.2) with Ω =
RN by perturbation method. Motivated by [5] and [16], we are concerned with the
existence of infinitely many small solutions and infinitely many large solutions for
problem (1.2) under the assumption 1 ≤ r(x) < p∗(x) = Np(x)

N−p(x) and r− < p− ≤
p+ < r+. The main results of this paper read as follows.
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Theorem 1.1. Suppose that 1 ≤ r(x) < p∗(x), r− < p− ≤ p+ < N , Q : Ω → R is a
nonnegative continuous function and there exists a point x1 ∈ Ω− = {x ∈ Ω | r(x) <
p−} such that Q(x1) > 0. Then, problem (1.2) has infinitely many solutions {uk}
with the property ∥uk∥L∞(Ω) → 0 as k → ∞.

Theorem 1.2. Suppose that 1 < p− ≤ p+ < N , 1 ≤ r(x) < p∗(x), r+ > p+,
Q : Ω → R is a nonnegative continuous function and there exists a point x2 ∈ Ω+ =
{x ∈ Ω | r(x) > p+} such that Q(x2) > 0. Either r− > p+, or 1 < r− ≤ p+ and
there exists ε > 0 such that Q(x) ≡ 0 in Ωε = {x ∈ Ω | p− − ε < r(x) < p+ + ε}.
Then, problem (1.2) has infinitely many solutions {vk} such that ∥vk∥ → ∞ as
k → ∞.

As a corollary of Theorems 1.1 and 1.2, we have

Corollary 1.3. Suppose that 1 < p− ≤ p+ < N , 1 ≤ r(x) < p∗(x), r− < p−, r+ >
p+, Q(x) is a nonnegative continuous function and there exist ε > 0, x1 ∈ Ω− =
{x ∈ Ω | r(x) < p−}, x2 ∈ Ω+ = {x ∈ Ω | r(x) > p+} such that Q(x1), Q(x2) > 0
and Q(x) ≡ 0 in Ωε = {x ∈ Ω | p− − ε < r(x) < p+ + ε}. Then, problem (1.2) has
infinitely many small solutions {uk} and infinitely many large solutions {vk}.

In this paper, the letters C and Cj stand for positive constants. ∥u∥s denotes the
standard norms of Ls(Ω) (s ≥ 1). The paper is organized as follows. In Section 2,
we give some basic properties of the variable exponent Lebesgue space and Sobolev
space. In Sections 3 and 4, we prove Theorems 1.1 and 1.2 by the Clark’s theorem
and the symmetric mountain pass lemma, respectively.

2. Preliminaries
The variable exponent Lebesgue space Lp(x)(Ω) is defined by

Lp(x)(Ω) =

{
u | u : Ω → R is measurable,

∫
Ω

|u|p(x) dx <∞
}

with the norm
|u|p(x) = inf

{
λ > 0

∣∣∣ ∫
Ω

∣∣∣u
λ

∣∣∣p(x) dx ≤ 1

}
.

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) | |∇u| ∈ Lp(x)(Ω)

}
with the norm

∥u∥1,p(x) = |u|p(x) + |∇u|p(x).

Define W 1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(x)(Ω). The spaces Lp(x)(Ω),
W 1,p(x)(Ω) and W

1,p(x)
0 (Ω) are separable and reflexive Banach spaces if 1 < p− ≤

p+ <∞ (see [10]). Moreover, there is a constant C > 0 such that

|u|p(x) ≤ C|∇u|p(x), for any u ∈W
1,p(x)
0 (Ω).

Therefore, ∥u∥ = |∇u|p(x) and ∥u∥1,p(x) are equivalent norms on W
1,p(x)
0 (Ω). We

will use ∥u∥ to replace ∥u∥1,p(x) in the following discussions.



Infinitely many low- and high-energy solutions 2027

Lemma 2.1 ( [10]). If q ∈ C(Ω) satisfies 1 ≤ q(x) < p∗(x) for x ∈ Ω, then the
imbedding from W 1,p(x)(Ω) to Lq(x)(Ω) is compact and continuous.

Lemma 2.2 ( [10,11]). Set

ρ(u) =

∫
Ω

|u|p(x) dx, for u ∈ Lp(x)(Ω).

If u ∈ Lp(x)(Ω) and {uk}k∈N ⊂ Lp(x)(Ω), then we have
(i) |u|p(x) < 1 (= 1; > 1) ⇔ ρ(u) < 1 (= 1; > 1);
(ii) |u|p(x) > 1 ⇒ |u|p

−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x);
(iii) |u|p(x) < 1 ⇒ |u|p

+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x);
(iv) limk→∞ |uk−u|p(x) = 0 ⇔ limk→∞ ρ(uk−u) = 0 ⇔ uk → u in measure in Ω and
limk→∞ ρ(uk) = ρ(u).

Similar to Lemma 2.2, we have

Lemma 2.3. Set

L(u) =

∫
Ω

|∇u|p(x) dx, for u ∈W
1,p(x)
0 (Ω).

If u ∈W
1,p(x)
0 (Ω) and {uk}k∈N ⊂W

1,p(x)
0 (Ω), we have

(i) ∥u∥ < 1 (= 1; > 1) ⇔ L(u) < 1 (= 1; > 1);
(ii) ∥u∥ > 1 ⇒ ∥u∥p− ≤ L(u) ≤ ∥u∥p+ ;
(iii) ∥u∥ < 1 ⇒ ∥u∥p+ ≤ L(u) ≤ ∥u∥p− ;
(iv) ∥uk∥ → 0 ⇔ L(uk) → 0; ∥uk∥ → ∞ ⇔ L(uk) → ∞.

Definition 2.4. u ∈W
1,p(x)
0 (Ω) is called a weak solution of problem (1.2) if∫

Ω

|∇u|p(x)−2∇u · ∇ϕdx =

∫
Ω

Q(x)|u|r(x)−2uϕ dx

for all ϕ ∈W
1,p(x)
0 (Ω).

3. Infinitely many small solutions
In this section, we use a truncation technique and the Clark’s theorem to get a
sequence of solutions converging to zero. We first introduce a variant of the Clark’s
theorem.

Theorem 3.1 ( [17], Theorem 1.1). Let X be a Banach space, Φ ∈ C1(X,R).
Assume Φ satisfies the Palais-Smale condition ((PS) condition for short), is even
and bounded from below, and Φ(0) = 0. If for any k ∈ N, there exists a k-
dimensional subspace Xk of X and ρk > 0 such that supXk∩Sρk

Φ < 0, where
Sρ = {u ∈ X | ∥u∥ = ρ}, then at least one of the following conclusions holds.
(i) There exists a sequence of critical points {uk} satisfying Φ(uk) < 0 for all k and
∥uk∥ → 0 as k → ∞.
(ii) There exists R > 0 such that for any 0 < b < R there exists a critical point u
such that ∥u∥ = b and Φ(u) = 0.
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Recall that there is no restriction on r+ in Theorem 1.1. In order to obtain
infinitely many small solutions, we need to have a proper truncation of the nonlinear
terms. Let ϕ ∈ C(R,R) be an even function satisfying 0 ≤ ϕ(t) ≤ 1, ϕ(t) = 1 for
|t| ≤ 1

2 and ϕ(t) = 0 for |t| ≥ 1. Define g : Ω×R → R by g(x, t) := Q(x)ϕ(t)|t|r(x)−2t
and consider the auxiliary problem−∆p(x)u = g(x, u), in Ω,

u = 0, on ∂Ω.
(3.1)

The energy functional J :W
1,p(x)
0 (Ω) → R associated with (3.1) is defined by

J(u) =

∫
Ω

|∇u|p(x)

p(x)
dx−

∫
Ω

G(x, u) dx,

where G(x, t) =
∫ t

0
g(x, s) ds. We will show that J satisfies the conditions of Theo-

rem 3.1 and obtain infinitely many solutions {uk} of (3.1) such that ∥uk∥L∞(Ω) ≤ 1
2

for large k. Then, for large k, there holds g(x, uk) = Q(x)|uk|r(x)−2uk, and so uk
becomes a solution of (1.2).
Proof of Theorem 1.1. From the properties of η, we see that there exists a
constant M > 0 such that |g(x, t)| ≤ M and |G(x, t)| ≤ M for all (x, t) ∈ Ω × R.
Set X := W

1,p(x)
0 (Ω). Then it is easy to see that J(0) = 0, J ∈ C1(X,R) is even

and bounded from below, and satisfies the (PS) condition.
Since r(x1) < p− and Q(x1) > 0, we see from the continuity of Q and r that

there exist δ1 > 0, Q1 > 0 and r1 < p− such that

r− ≤ r(x) < r1 and Q(x) > Q1, for x ∈ Ω1 ≜ B(x1, δ1) ∩ Ω. (3.2)

By the definition of g and (3.2), we have

G(x, u) =
Q(x)

r(x)
|u|r(x) ≥ Q1

r1
|u|r1 , for x ∈ Ω1 and |u| ≤ 1

2
. (3.3)

For k ∈ N, choose {φj}kj=1 ⊂ C∞
0 (Ω) such that

φj ̸= 0, suppφj ⊂ Ω1, suppφi ∩ suppφj = ∅ for i ̸= j.

Let Xk := span{φ1, φ2, · · · , φk}. Then Xk is a k-dimensional subspace of X. Since
any norms in a finite dimensional space are equivalent, there exist ak, bk > 0 such
that

∥u∥r1 ≥ ak∥u∥, ∥u∥ ≥ bk∥u∥L∞(Ω), for any u ∈ Xk. (3.4)

Set

ρk = min

{
1

2
,
bk
2
,

(
p−Q1a

r1
k

2r1

) 1

p−−r1

}
.

It follows from (3.3), (3.4) and Lemma 2.3 that, for any u ∈ Xk ∩ Sρk
,

J(u) ≤
∫
Ω

|∇u|p(x)

p(x)
dx− Q1

r1

∫
Ω1

|u|r1dx ≤ 1

p−
∥u∥p

−
−
Q1a

r1
k

r1
∥u∥r1 < 0.
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According to Theorem 3.1, J has a sequence of nontrivial critical points {uk} sat-
isfying J(uk) ≤ 0 for all k and ∥uk∥ → 0 as k → ∞. Since g(x, t) is bounded in
Ω×R, the weak solutions {uk} belong to C1,µ(Ω) for some µ ∈ (0, 1) and they are
bounded in this space (see [9]). Here µ is independent of k and C1,µ(Ω) denotes the
set of all C1(Ω) functions whose derivatives are Hölder continuous with exponent
µ. Since C1,µ(Ω) is compactly embedded in C1(Ω), there is a subsequence of {uk},
still denoted by itself, such that uk → u∞ in C1(Ω). Since uk → 0 in X, u∞ must
be zero. By the uniqueness of the limit u∞, we can show that {uk} itself (without
extracting a subsequence) converges to zero in C1(Ω). Then ∥uk∥L∞(Ω) ≤ 1

2 for
large k and so uk is a solution of (1.2). The proof is complete.

4. Infinitely many large solutions
In this section, we will apply the symmetric mountain pass lemma (see [21, The-
orem 9.12]) to get a sequence of large solutions. As in Section 3, we denote
X = W

1,p(x)
0 (Ω). The energy functional I : X → R associated with (1.2) is de-

fined by

I(u) =

∫
Ω

|∇u|p(x)

p(x)
dx−

∫
Ω

Q(x)

r(x)
|u|r(x) dx.

First of all, we prove that the functional I satisfies (PS) condition.

Lemma 4.1. Under the assumption of theorem 1.2, the functional I satisfies (PS)
condition.

Proof. Let {un} ⊂ X be a (PS) sequence of the functional I. Then there exists
a constant C > 0 such that

I(un) ≤ C, I ′(un) → 0 in X∗, (4.1)

where X∗ denotes the dual space of X.
We first prove that {un} is bounded in X. If r− > p+, then it follows from

Q(x) ≥ 0 and Lemma 2.3 that

r−I(un)− ⟨I ′(un), un⟩ =
∫
Ω

r− − p(x)

p(x)
|∇u|p(x) dx+

∫
Ω

r(x)− r−

r(x)
Q(x)|un|r(x)dx

≥ r− − p+

p+
min{∥un∥p

−
, ∥un∥p

+

}.

From (4.1) and 1 < p− ≤ p+, we see that {un} is bounded in X. If 1 < r− ≤ p+,
we set Ωε− := {x ∈ Ω | r(x) ≤ p− − ε} and Ωε+ := {x ∈ Ω | r(x) ≥ p+ + ε}. From
Q(x) ≥ 0 and Lemma 2.1, we have∫

Ωε−

p+ + ε− r(x)

r(x)
Q(x)|un|r(x)dx ≤ p+ + ε

r−
sup
x∈Ω

Q(x)

∫
Ω

(|un|p
−−ε + 1)dx

≤ Cε∥un∥p
−−ε + Cε (4.2)

and ∫
Ωε+

p+ + ε− r(x)

r(x)
Q(x)|un|r(x)dx ≤ 0, (4.3)
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where Cε > 0. Recall that Q(x) ≡ 0 in Ωε. By (4.2), (4.3) and Lemma 2.3, we have

(p+ + ε)I(un)− ⟨I ′(un), un⟩

=

∫
Ω

p+ + ε− p(x)

p(x)
|∇u|p(x) dx−

∫
Ωε−

p+ + ε− r(x)

r(x)
Q(x)|un|r(x)dx

−
∫
Ωε

p+ + ε− r(x)

r(x)
Q(x)|un|r(x)dx−

∫
Ωε+

p+ + ε− r(x)

r(x)
Q(x)|un|r(x)dx

≥ ε

p+
min{∥un∥p

−
, ∥un∥p

+

} − Cε∥un∥p
−−ε − Cε.

Then, by (4.1), {un} is bounded in X.
Up to a subsequence, we may assume that un ⇀ u and then ⟨I ′(un), un−u⟩ → 0

as n→ ∞. Since the imbedding from X to Lr(x)(Ω) is compact, we obtain un → u
in Lr(x)(Ω). Then∣∣∣∣∫

Ω

Q(x)|un|r(x)−2un(un − u)dx

∣∣∣∣ ≤ sup
x∈Ω

Q(x)

∫
Ω

|un|r(x)−1|un − u|dx→ 0.

Therefore, one has ∫
Ω

|∇un|p(x)−2∇un · ∇(un − u)dx→ 0.

By [10, Theorem 3.1], we have un → u in X. Therefore, I satisfies (PS) condition.

Since r(x2) > p+ and Q(x2) > 0, we see from the continuity of Q and r that
there exist δ2 > 0, Q2 > 0 and r2 > p+ such that

r2 < r(x) ≤ r+ and Q(x) ≥ Q2, for all x ∈ Ω2 ≜ B(x2, δ2) ∩ Ω. (4.4)

For k ∈ N, choose {ψj}kj=1 ⊂ C∞
0 (Ω) such that

ψj ̸= 0, suppψj ⊂ Ω2, suppψi ∩ suppψj = ∅ for i ̸= j.

Denote Y k := span{ψ1, ψ2, · · · , ψk}.

Lemma 4.2. Under the assumption of theorem 1.2, there exists Rk > 0 such that

I(u) < 0, for any u ∈ Y k with ∥u∥ ≥ Rk. (4.5)

Proof. By (4.4), we have

Q(x)

r(x)
|u|r(x) ≥ Q2

r+
|u|r2 , for x ∈ Ω2 and |u| > 1,

which implies that

Q(x)

r(x)
|u|r(x) ≥ Q2

r+
(|u|r2 − 1), for x ∈ Ω2 and u ∈ R. (4.6)

Since dimY k <∞, there exists ãk > 0 such that

∥u∥r2 ≥ ãk∥u∥, for any u ∈ Y k. (4.7)
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Using (4.6) and (4.7) we have, for any u ∈ Y k,

I(u) =

∫
Ω

|∇u|p(x)

p(x)
dx−

∫
Ω2

Q(x)

r(x)
|u|r(x) dx

≤
∫
Ω

|∇u|p(x)

p(x)
dx− Q2

r+

∫
Ω2

(|u|r2 − 1) dx

≤ 1

p−
max{∥u∥p

−
, ∥u∥p

+

} −
Q2ã

r2
k

r+
∥u∥r2 + Q2

r+
|Ω2|.

Since r2 > p+, (4.5) holds for large Rk.
Define the minimax value

ck = inf
h∈Gk

max
u∈Dk

I(h(u)),

where Dk = BRk
∩ Y k and Gk = {h ∈ C(Dk, X) |h is odd and h = id on ∂BRk

∩
Y k}.

Remark 4.3. Using the arguments in the proof of [15, Lemma 4.9], we see that
the minimax value ck is independent of the choice of Rk satisfying (4.5). Therefore,
we can replace Rk by a larger number such that {Rk} is strictly increasing and
limk→∞Rk = +∞.

Lemma 4.4. ck → +∞ as k → +∞.

We postpone the proof of Lemma 4.4 for a moment and prove Theorem 1.2 in
the following.
Proof of Theorem 1.2. It follows from Lemma 4.4 that there exists k0 ∈ N and
α > 0 such that

ck ≥ α > 0, for any k ≥ k0.

We claim that, for k ≥ k0, the minimax value ck is a critical value of I. If this is
false, then, by Lemma 4.1, there would exist ε ∈ (0, α) and η ∈ C([0, 1] × X,X)
such that

• η(0, u) = u for all u ∈ X;
• η(1, Ick+ε) ⊂ Ick−ε, where Id = {u ∈ X | I(u) ≤ d};
• If I(u) ̸∈ [ck − ε, ck + ε], then η(t, u) = u for all t ∈ [0, 1];
• η(t, u) is odd in u.

Choose h ∈ Gk such that maxu∈Dk
I(h(u)) < ck + ε. Then η(1, h(·)) ∈ Gk and

I(η(1, h(u))) ≤ ck − ε, for all u ∈ Dk.

This contradicts the definition of ck.
For k ≥ k0, let vk be a critical point corresponding to ck. Then we have∫

Ω

|∇vk|p(x) dx =

∫
Ω

Q(x)|vk|r(x)dx,

which combined with I(vk) = ck leads to

ck =

∫
Ω

|∇vk|p(x)

p(x)
dx−

∫
Ω

Q(x)

r(x)
|vk|r(x)dx
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≤ 1

p−

∫
Ω

|∇vk|p(x) dx− 1

r+

∫
Ω

Q(x)|vk|r(x)dx

=

(
1

p−
− 1

r+

)∫
Ω

|∇vk|p(x) dx

≤
(

1

p−
− 1

r+

)
max{∥vk∥p

−
, ∥vk∥p

+

}.

By Lemma 4.4 and r+ > p−, we have ∥vk∥ → ∞ as k → ∞. The proof is complete.
To reach the conclusion, it only remains to prove Lemma 4.4. For this purpose,

we recall the definition and properties of genus which is due to Krasnoselski.

Definition 4.5. Let E be a Banach space. A subset A of E is said to be symmetric
if u ∈ A implies −u ∈ A. Let A denote the family of closed symmetric subsets A
of E \ {0}. For A ∈ A, we define the genus γ(A) of A by the smallest integer m
such that there exists an odd continuous map from A to Rm \ {0}. If there does
not exist a finite such m, we define γ(A) = ∞. Moreover, we set γ(∅) = 0.

Lemma 4.6. Let A,B ∈ A. Then we have
(i) If A ⊂ B, then γ(A) ≤ γ(B).
(ii) If there exists an odd continuous map f ∈ C(A,B), then γ(A) ≤ γ(B).
(iii) If V is a bounded symmetric neighborhood of 0 in RN , then γ(∂V ) = N .
(iv) If Y is a subspace of E such that codimY = m and γ(A) > m, then A∩Y ̸= ∅.

Similar to [21, Proposition 9.23], we have

Lemma 4.7. If Y is a closed subspace of X with codimY < k, then

h(Dk) ∩ ∂BR ∩ Y ̸= ∅, for all h ∈ Gk and 0 < R < Rk,

where Gk = {h ∈ C(Dk, X) |h is odd and h = id on ∂BRk
∩ Y k} and Rk is from

Lemma 4.2.

Proof. Set V := {u ∈ Y k | ∥u∥ < Rk and h(u) ∈ BR} ⊂ Dk. Then 0 ∈ V and V
is bounded and symmetric in Y k. By Lemma 4.6, we have γ(h(∂V )) ≥ γ(∂V ) = k.
Next we claim that

∥u∥ < Rk, for u ∈ ∂V.

Suppose by contradiction that ∥wk∥ = Rk for some wk ∈ ∂V . Then, since h = id
on ∂BRk

∩ Y k, we have h(wk) = wk. Hence Rk = ∥wk∥ = ∥h(wk)∥ ≤ R, which
contradicts R < Rk. Consequently, ∥u∥ < Rk for u ∈ ∂V . From the definition of V
we see that

h(u) ∈ ∂BR, for u ∈ ∂V. (4.8)
Since codimY < k ≤ γ(h(∂V )), using Lemma 4.4 yields that Y ∩h(∂V ) ̸= ∅. Then
there is a point w0 ∈ ∂V such that h(w0) ∈ Y . By (4.8), we have h(w0) ∈ Y ∩∂BR.
The proof is complete.

It is known that there exist {en} ⊂ X and {fn} ⊂ X∗ such that

X = span{en |n = 1, 2, · · · }, X∗ = span{fn |n = 1, 2, · · · },

and

fn(em) =

1, if m = n,

0, if m ̸= n.
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For k ∈ N, we set

Yk = span{en |n = k, k + 1, · · · }, Zk = span{en |n = 1, 2, · · · , k − 1}.

Then X = Yk + Zk and codimYk = k − 1. Similar to [24, Lemma 4.1], we have the
following lemma.

Lemma 4.8. There exists a sequence {δk} of positive numbers such that limk→∞δk=
0 and

∥u∥r+ ≤ δk∥u∥, for all u ∈ Yk.

Now we are ready to prove Lemma 4.4.
Proof of Lemma 4.4. Since codimYk = k − 1, it follows from Lemma 4.7 that

h(Dk) ∩ ∂BR ∩ Yk ̸= ∅, for all h ∈ Gk and 0 < R < Rk.

Then
max
u∈Dk

I(h(u)) ≥ inf
∂BR∩Yk

I(u), for all h ∈ Gk and 0 < R < Rk,

which implies that

ck ≥ inf
∂BR∩Yk

I(u), for all 0 < R < Rk. (4.9)

By Lemma 4.8, we have

I(u) =

∫
Ω

|∇u|p(x)

p(x)
dx−

∫
Ω

Q(x)

r(x)
|u|r(x) dx

≥ 1

p+
min{∥un∥p

−
, ∥un∥p

+

} − C1

∫
Ω

(|u|r
+

+ 1) dx

≥ 1

p+
min{∥un∥p

−
, ∥un∥p

+

} − C2∥u∥r
+

r+ − C3

≥ 1

p+
∥un∥p

−
− C4δ

r+

k ∥u∥r
+

− C5,

for all u ∈ Yk. Combining this with (4.9) leads to

ck ≥ 1

p+
Rp−

− C4δ
r+

k Rr+ − C5, for all 0 < R < Rk.

Set ξk =
(

p−

C4p+r+δr
+

k

) 1

r+−p− and, by Remark 4.3, we may assume that Rk ≥ ξk.
Then we have

ck ≥ 1

p+
ξp

−

k − C4δ
r+

k ξr
+

k − C5 =
r+ − p−

p+r+

(
p−

C4p+r+δr
+

k

) p−

r+−p−

− C5.

The desired conclusion follows easily from limk→∞ δk = 0 and r+ > p−.
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