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Abstract Initialization of fractional differential equations remains an on-
going problem. The initialization function approach and the infinite state
approach provide two effective ways of dealing with this issue. The purpose
of this paper is to prove the equivalence of the initialized Riemann-Liouville
derivative and the initialized Caputo derivative with arbitrary order. By syn-
thesizing the above two initialization theories, diffusive representations of the
two initialized derivatives with arbitrary order are derived. The Laplace trans-
forms of the two initialized derivatives are shown to be identical. Therefore,
the two most commonly used derivatives are proved to be equivalent as long
as initial conditions are properly imposed.
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1. Introduction
Fractional calculus provides a powerful tool of modeling real-world phenomena ex-
hibiting memory and hereditary properties [10]. For fractional-order dynamical
systems, initial conditions are required to characterize the historical effects. There-
fore, initial conditions of fractional differential equations should be imposed in a
different way from that of integer-order differential equations. However, proper ini-
tialization of fractional-order systems remains an ongoing problem [2,9,12,17,19,20].
This issue dates back as far as Riemann’s complementary function theory, in which
many mathematicians were made confused, including Liouville, Peacoch, Cayley,
and Riemann himself [4].

In recent years, the initialization function approach and the infinite state ap-
proach provide two effective ways of imposing physically coherent initial conditions
to fractional systems. In the initialization function theory [5], initialization func-
tions are proposed to initialize fractional differential equations. The initialization
function is a time-varying function. It can be viewed as generalization of the con-
stant of integration required for the order-one integral. By virtue of using the
initialization function, the Riemann-Liouville derivative and the Caputo derivative
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can be properly initialized. In the infinite state theory, the Riemann-Liouville frac-
tional integral is viewed as a linear system which is characterized by the impulse
function and excited by the integrand function. The linear system is termed as the
fractional integrator. It can be equivalently converted into an infinite dimensional
frequency distributed differential system. As a result, initial conditions of fractional
systems can be represented by the distributed initial conditions [13,14]. The equiv-
alence and compatibility of the above two initialization theories have been proved
in [3, 18].

The Riemann-Liouville derivative and the Caputo derivative are the two most
commonly used derivatives in the real-world modeling of factional systems. How-
ever, definitions of the two derivatives are different. Thus, which derivative to choose
is a trial and error process. On the other hand, the two derivatives are expected to
be equivalent in many practical applications, as long as the initial conditions are
properly taken into account [1, 11]. As a result, from mathematical point of view,
it is a primary task to prove equivalence of the two definitions. In [6], the two
derivatives are shown to be identical in the special case where the history function
is a constant and the fractional order lies in between 0 and 1. In [15], the Laplace
transforms of Riemann-Liouville derivative and Caputo derivative are calculated
based on the infinite state approach. However, relationships between these Laplace
transforms are not mentioned by the authors. Motivated by the above work, we
go further in this paper to prove the equivalence and compatibility of the two ini-
tialized derivatives with arbitrary orders and history functions. By synthesizing
the initialization function approach and the infinite state approach, the diffusive
models of the initialized Riemann-Liouville derivatives and the initialized Caputo
derivatives are derived. The Laplace transforms of the two initialized derivatives
are shown to be identical. Consequently, the Riemann-Liouville derivative and the
Caputo derivative are proved to equivalent as long as initial conditions are properly
imposed.

The rest of this paper is organized as follows. Section 2 revisits the diffusive
model for the initialized Riemann-Liouville fractional integral. Section 3 presents
the equivalence of the initialized Riemann-Liouville derivatives and the initialized
Caputo derivatives with order between 0 and 1. Section 4 shows the equivalence
of the two initialized derivatives with order between 1 and 2. Section 5 proves the
equivalence of the two initialized derivatives with arbitrary orders. Two examples
of elementary functions are presented in Section 6. Finally, the paper is concluded
in Section 7.

2. Preliminaries
2.1. Diffusive model of the fractional integrator
The Riemann-Liouville fractional integral of a function f (t) with order 0 < α < 1
is defined as

t0I
α
t f (t) =

1

Γ (α)

∫ t

t0

(t− τ)
α−1

f (τ) dτ (2.1)

where α is an non-integer order of the factional integral, the subscripts t0 and t are
lower and upper terminals respectively.

On the other hand, Eq.(2.1) can be viewed as a convolution of the function f (t)
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with the the impulse response hα (t) = tα−1

Γ(α) , namely,

t0I
α
t f(t) = hα (t) ∗ f (t) . (2.2)

From this viewpoint, the fractional integral can be obtained as the output of a
linear system. It is characterized by the impulse response hα (t) and excited by
f (t), namely,

x(t) = hα (t) ∗ f (t) . (2.3)
This linear system is terms as the fractional integrator.
Note that

hα (t) =

∫ ∞

0

µα(ω)e
−ωtdω (2.4)

where the elementary frequency ω is ranging from 0 to ∞, and

µα(ω) =
sinαπ

π
ω−α.

Eq.(2.3) becomes

x(t) =

∫ +∞

0

µα (ω) z(ω, t)dω (2.5)

where z(ω, t) is the frequency distributed state and it verifies the following ordinary
differential equation:

∂z(ω, t)

∂t
= −ωz(ω, t) + f (t) . (2.6)

The relations Eq.(2.5) and Eq.(2.6) are termed as frequency distributed model or
diffusive model of fractional integrator [16].

2.2. The initialized fractional integral
In the time-varying initialization theory [7,8], the fractional integration is assumed
to take place for t > −a rather than t > 0, thus the integrand v(t) is required to
be zero for all t < −a. The time period between t = −a and t = 0 represents the
“history” of the fractional integral. Accordingly, the integrand v(t) is described as

v(t) =


0, t < −a
fin(t), − a ≤ t ≤ 0

f(t), t > 0

where t = −a is the starting time of integral, t = 0 is the initial time, fin(t) is
the history function describing the behavior during the initialization period [−a, 0],
f(t) is the function of primary interest after the initial time t = 0.

The initialized Riemann-Liouville fractional integral of order α is defined as

0D
−α
t f (t) = 0d

−α
t f (t) + ψ (t) , t > 0. (2.7)

In Eq.(2.7), 0D
−α
t f (t) is called the initialized fractional integral. 0d

−α
t f (t) is called

the uninitialized fractional integral and defined as

0d
−α
t f (t) =

1

Γ (α)

∫ t

0

(t− τ)
α−1

f (τ) dτ. (2.8)
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Eq.(2.8) is actually the standard definition of fractional Riemann-Liouville integral.
ψ (t) is defined as

ψ (t) =
1

Γ (α)

∫ 0

−a

(t− τ)
α−1

fin (τ) dτ. (2.9)

ψ (t) is termed as the initialization function, as it describes the hereditary effect of
the past.

2.3. Diffusive model of the initialized Riemann-Liouville frac-
tional integral [13]

Lemma 2.1. The uninitialized Riemann-Liouville fractional integral 0d
−α
t f(t) with

order 0 < α < 1 is equivalent to the diffusive model with zero initial condition:
∂z(ω, t)

∂t
= −ωz(ω, t) + f(t)

z(ω, t0) = 0

and

0d
−α
t f(t) =

∫ +∞

0

µα (ω) z(ω, t)dω.

Lemma 2.2. The initialized Riemann-Liouville fractional integral 0D
−α
t f(t) with

order 0 < α < 1 is equivalent to the diffusive model with distributed initial condition:
∂z(ω, t)

∂t
= −ωz(ω, t) + f(t)

z(ω, 0) =

∫ 0

−a

eωτfin(τ)dτ

and

0D
−α
t f(t) =

∫ +∞

0

µα(ω)z(ω, t)dω.

3. Equivalence of the two Derivatives with order
between 0 and 1

3.1. The Laplace transform of initialized Riemann-Liouville
derivative

The initialized Riemann-Liouville fractional derivative with order 0 < α < 1 is
defined as

RL
0 Dα

t f (t) =
d

dt
0D

α−1
t f (t)

where RL
0 Dα

t represents the initialized fractional derivative in the Riemann-Liouville
sense.

By virtue of Lemma 2.2, the diffusive representation of the initialized Riemann-
Liouville fractional integral 0D

α−1
t f(t) is

0D
α−1
t f (t) =

∫ ∞

0

µ1-α(ω)zRL (ω, t) dω
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where zRL (ω, t) satisfies{
∂zRL(ω,t)

∂t = −ωzRL(ω, t) + f(t)

zRL(ω, 0) =
∫ 0

−a
eωτfin(τ)dτ

(3.1)

Therefore, the diffusive model of the initialized Riemann-Liouville derivative is

RL
0 Dα

t f (t) =
d

dt

∫ ∞

0

µ1-α(ω)zRL (ω, t) dω. (3.2)

Taking the Laplace transform of the first equation of Eq.(3.1), yields

ZRL (ω, t) =
zRL (ω, 0) + F (s)

s+ ω
. (3.3)

Taking the Laplace transform of Eq.(3.2), we have

L
{
RL
0 Dα

t f (t)
}
= L

{
d

dt

∫ ∞

0

µ1-α(ω)zRL (ω, t) dω

}
= s

∫ ∞

0

µ1-α(ω)ZRL (ω, t) dω −
∫ ∞

0

µ1-α(ω)zRL (ω, 0) dω.

(3.4)

Substituting Eq.(3.3) into Eq.(3.4), we obtain

L
{
RL
0 Dα

t f (t)
}
= sF (s)

∫ ∞

0

µ1-α(ω)

s+ ω
dω + s

∫ ∞

0

µ1−α(ω)zRL (ω, 0)

s+ ω
dω

−
∫ ∞

0

µ1−α(ω)zRL (ω, 0) dω.

(3.5)

Taking the Laplace transform of Eq.(2.4), yields∫ ∞

0

µ1-α(ω)

s+ ω
dω = sα−1.

Therefore, Eq.(3.5) becomes

L
{
RL
0 Dα

t f (t)
}
= sαF (s) + s

∫ ∞

0

µ1-α(ω)zRL (ω, 0)

s+ ω
dω

−
∫ ∞

0

µ1-α(ω)zRL (ω, 0) dω

= sαF (s) +

∫ ∞

0

(
s

s+ ω
− 1

)
µ1-α(ω)zRL (ω, 0) dω

= sαF (s)−
∫ ∞

0

ωµ1-α(ω)zRL (ω, 0)

s+ ω
dω.

(3.6)

Eq.(3.6) is the Laplace transform of the initialized Riemann-Liouville derivative
with order 0 < α < 1.

3.2. The Laplace transform of initialized Caputo derivative
The initialized Caputo fractional derivative with order 0 < α < 1 is defined as

C
0 D

α
t f (t) = 0D

α−1
t f ′ (t)
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where C
0 D

α
t represents the initialized fractional derivative in the Caputo sense.

In terms of Lemma 2.2, the diffusive representation of the initialized Caputo frac-
tional derivative is

C
0 D

α
t f (t) =

∫ ∞

0

µ1-α(ω)zC (ω, t) dω (3.7)

where zC (ω, t) satisfies {
∂zC(ω,t)

∂t = −ωzC(ω, t) + f ′ (t)

zC(ω, 0) =
∫ 0

−a
eωτfin

′(τ)dτ
(3.8)

Taking the Laplace transform of Eq.(3.8), we have

ZC (ω, t) =
sF (s)− f (0) + zC (ω, 0)

s+ ω
. (3.9)

Taking the Laplace transform of Eq.(3.7), yields

L
{
C
0 D

α
t f (t)

}
= L

{∫ ∞

0

µ1-α(ω)zC (ω, t) dω

}
=

∫ ∞

0

µ1-α(ω)ZC (ω, t) dω.

(3.10)

Substituting Eq.(3.9) into Eq.(3.10), leads to

L
{
C
0 D

α
t f (t)

}
= sF (s)

∫ ∞

0

µ1-α(ω)

s+ ω
dω +

∫ ∞

0

µ1-α(ω)zC (ω, 0)

s+ ω
dω

− f (0)

∫ ∞

0

µ1-α(ω)

s+ ω
dω

= sαF (s) +

∫ ∞

0

µ1-α(ω)zC (ω, 0)

s+ ω
dω − sα−1f (0) .

(3.11)

In terms of the formula of integration by parts, the initial condition in Eq.(3.8)
becomes

zC(ω, 0) =

∫ 0

−a

eωτfin
′(τ)dτ = eωτfin(τ)|τ=0

τ=−a − ω

∫ 0

−a

eωτfin(τ)dτ.

In terms of Eq.(3.1), we have

zC(ω, 0) = f (0)− ωzRL(ω, 0). (3.12)
Then∫ ∞

0

µ1-α(ω)zC (ω, 0)

s+ ω
dω = f (0)

∫ ∞

0

µ1−α(ω)

s+ ω
dω −

∫ ∞

0

ωµ1-α(ω)zRL (ω, 0)

s+ ω
dω

= sα−1f (0)−
∫ ∞

0

µ1-α(ω)zRL (ω, 0)

s+ ω
dω.

(3.13)

Substituting Eq.(3.13) into Eq.(3.11), yields

L
{
C
0 D

α
t f (t)

}
= sαF (s)−

∫ ∞

0

ωµ1-α(ω)zRL (ω, 0)

s+ ω
dω. (3.14)
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Eq.(3.14) is the Laplace transform of the initialized Caputo derivative with order
0 < α < 1.

By comparing Eq.(3.6) with Eq.(3.14), one finds that the Laplace transforms of
the two initialized derivatives are identical, i.e.,

L
{
RL
0 Dα

t f (t)
}
= L

{
C
0 D

α
t f (t)

}
. (3.15)

Therefore,
RL
0 Dα

t f (t)=C
0 D

α
t f (t) . (3.16)

Eq.(3.16) shows the equivalence of the initialized Riemann-Liouville derivative and
Caputo derivative with order lying in between 0 and 1.

4. Equivalence of the two derivatives with order be-
tween 1 and 2

4.1. The Laplace transform of initialized Riemann-Liouville
derivative

The initialized Riemann-Liouville fractional derivative 0D
α
t f(t) with order 1 < α <

2 is defined as
RL
0 Dα

t f (t) =
d2

dt2
0D

α−2
t f (t) .

In terms of of Lemma 2.2, the diffusive representation of the initialized Riemann-
Liouville fractional integral 0D

α−2
t f(t) is

0D
α−2
t f (t) =

∫ ∞

0

µ2−α(ω)zRL (ω, t) dω

where zRL (ω, t) satisfies Eq.(3.1).
Thus, the diffusive model of the initialized Riemann-Liouville derivative is

RL
0 Dα

t f (t) =
d2

dt2

∫ ∞

0

µ1-α(ω)zRL (ω, t) dω. (4.1)

Taking the Laplace transform of Eq.(4.1), we have

L
{
RL
0 Dα

t f (t)
}
= L

{
d2

dt2

∫ ∞

0

µ1−α(ω)zRL (ω, t) dω

}
= s2

∫ ∞

0

µ2−α(ω)ZRL (ω, t) dω − s

∫ ∞

0

µ2-α(ω)zRL (ω, 0) dω

−
∫ ∞

0

µ2-α(ω)
∂zRL(ω, t)

∂t

∣∣∣∣
t=0

dω.

(4.2)

Substituting Eq.(3.3) into Eq.(4.2), yields

L
{
RL
0 Dα

t f (t)
}
= sF (s)

∫ ∞

0

µ2−α(ω)

s+ ω
dω + s2

∫ ∞

0

µ2−α(ω)zRL (ω, 0)

s+ ω
dω

− s

∫ ∞

0

µ2−α(ω)zRL (ω, 0) dω −
∫ ∞

0

µ2−α(ω)
∂zRL(ω, t)

∂t

∣∣∣∣
t=0

dω.

(4.3)
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Note that ∫ ∞

0

µ2−α(ω)

s+ ω
dω = sα−2.

Substituting the first equation of Eq.(3.1) into Eq.(4.3), we get

L
{
RL
0 Dα

t f (t)
}
= sαF (s) +

∫ ∞

0

(
s2

s+ ω
− s+ ω

)
µ2-α(ω)zRL (ω, 0) dω

− f (0)

∫ ∞

0

µ2−α(ω)dω

= sαF (s) +

∫ ∞

0

ω2µ2-α(ω)zRL (ω, 0)

s+ ω
dω

− f (0)

∫ ∞

0

µ2-α(ω)dω.

(4.4)

Eq.(4.4) is the Laplace transform of the initialized Riemann-Liouville derivative
with order 1 < α < 2.

4.2. The Laplace transform of initialized Caputo derivative
The initialized Caputo fractional derivative 0D

α
t f(t) with order 1 < α < 2 is defined

as
C
0 D

α
t f (t) = 0D

α−2
t f ′′ (t) .

By virtue of Lemma 2.2, the diffusive representation of the initialized Caputo frac-
tional derivative is

C
0 D

α
t f (t) =

∫ ∞

0

µ2-α(ω)zC (ω, t) dω (4.5)

where zC (ω, t) satisfies {
∂zC(ω,t)

∂t = −ωzC(ω, t) + f ′′ (t)

zC(ω, 0) =
∫ 0

−a
eωτfin

′′(τ)dτ
(4.6)

Taking the Laplace transform of the first equation in Eq.(4.6), we have

ZC (ω, t) =
s2F (s)− sf (0)− f ′ (0) + zC (ω, 0)

s+ ω
. (4.7)

In terms of the formula of integration by parts, the initial condition in Eq.(4.6)
becomes

zC(ω, 0) =

∫ 0

−a

eωτfin
′′(τ)dτ

= eωτfin
′(τ)

∣∣τ=0

τ=−a
− ω

∫ 0

−a

eωτfin
′(τ)dτ

= f ′ (0)− ω

∫ 0

−a

eωτfin
′(τ)dτ

= f ′ (0)− ωf (0) + ω2zR(ω, 0).

(4.8)
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Substituting Eq.(4.8) into Eq.(4.7), leads to

ZC (ω, t) =
s2F (s)− (s+ ω) f (0) + ω2zRL (ω, 0)

s+ ω
. (4.9)

Taking the Laplace transform of Eq.(4.5)and substituting Eq.(4.9) into it, we obtain

L
{
C
0 D

α
t f (t)

}
= L

{∫ ∞

0

µ2-α(ω)zC (ω, t) dω

}
=

∫ ∞

0

µ2-α(ω)ZC (ω, t) dω

= s2F (s)

∫ ∞

0

µ2−α(ω)

s+ ω
dω +

∫ ∞

0

ω2µ2-α(ω)zRL (ω, 0)

s+ ω
dω

− f (0)

∫ ∞

0

µ2-α(ω)dω

= sαF (s) +

∫ ∞

0

ω2µ2-α(ω)zRL (ω, 0)

s+ ω
dω

− f (0)

∫ ∞

0

µ2-α(ω)dω.

(4.10)

Eq.(4.10) is the Laplace transform of initialized Caputo derivative with order 1 <
α < 2.

From Eq.(4.4) and Eq.(4.10), one easily shows that

L
{
RL
0 Dα

t f (t)
}
= L

{
C
0 D

α
t f (t)

}
. (4.11)

Thus,
RL
0 Dα

t f (t)=C
0 D

α
t f (t) . (4.12)

Eq.(4.12) shows the equivalence of the initialized Riemann-Liouville derivative and
Caputo derivative with order 1 < α < 2.

5. Equivalence of the two derivatives with arbitrary
orders

5.1. The Laplace transform of initialized Riemann-Liouville
derivative

The initialized Riemann-Liouville fractional derivative 0D
α
t f(t) with order n− 1 <

α < n is defined as
RL
0 Dα

t f (t) =
dn

dtn
0D

α−n
t f (t) .

By virtue of Lemma 2, the diffusive representation of the initialized Riemann-
Liouville fractional integral 0D

α−n
t f (t) is

0D
α−n
t f (t) =

∫ ∞

0

µn−α(ω)zRL (ω, t) dω

where zRL (ω, t) satisfies Eq.(4).
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As a result, the diffusive model of the initialized Riemann-Liouville derivative is

RL
0 Dα

t f (t) =
dn

dtn

∫ ∞

0

µn-α(ω)zRL (ω, t) dω. (5.1)

Taking the Laplace transform of Eq.(5.1), we have

L
{
RL
0 Dα

t f (t)
}
= L

{
dn

dtn

∫ ∞

0

µn−α(ω)zRL (ω, t) dω

}
= sn

∫ ∞

0

µn−α(ω)ZRL (ω, t) dω − sn−1

∫ ∞

0

µn−α(ω)zRL (ω, 0) dω

− sn−2

∫ ∞

0

µn−α(ω)z
′
RL(ω, 0)dω

− sn−3

∫ ∞

0

µn−α(ω)z
′′
RL(ω, 0)dω

− · · · −
∫ ∞

0

µn−α(ω)z
(n−1)

RL(ω, 0)dω.

(5.2)

Substituting Eq.(3.3) into Eq.(5.2), and applying
∫∞
0

µ2−α(ω)
s+ω dω = sα−2, we have

L
{
RL
0 Dα

t f (t)
}
= sαF (s) + sn

∫ ∞

0

µn−α(ω)zRL (ω, 0)

s+ ω
dω

− sn−1

∫ ∞

0

µn−α(ω)zRL (ω, 0) dω

− sn−2

∫ ∞

0

µn−α(ω)z
′
RL (ω, 0) dω

− sn−3

∫ ∞

0

µn−α(ω)z
′′
RL (ω, 0) dω

− · · · −
∫ ∞

0

µn−α(ω)z
(n−1)

RL (ω, 0) dω.

(5.3)

From Eq.(3.1), we can calculate high-order derivatives of zRL (ω, t), namely,

∂2zRL (ω, t)

∂t2
= ω2zRL (ω, t)− ωf (t) + f ′′ (t)

∂3zRL (ω, t)

∂t3
= −ω3zRL (ω, t) + ω2f (t)− ωf ′ (t) + f ′′ (t)

· · · · · ·
∂n−1zRL (ω, t)

∂tn−1
= (−ω)n−1

zRL (ω, t) + (−ω)n−2
f (t) + (−ω)n−3

f ′ (t)

+ · · ·+ f (n−2) (t) .
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Substituting the above derivatives into Eq.(5.3), we obtain

L
{
RL
0 Dα

t f (t)
}
= sαF (s) + sn

∫ ∞

0

µn−α(ω)zRL (ω, 0)

s+ ω
dω

− sn−1

∫ ∞

0

µn−α(ω)zRL (ω, 0) dω

− sn−2

∫ ∞

0

µn−α(ω) [−ωzRL(ω, 0) + f(0)] dω

− sn−3

∫ ∞

0

µn−α(ω)
[
ω2zRL (ω, 0)− ωf (0) + f ′′ (0)

]
dω

− · · · · · ·

−
∫ ∞

0

µn−α(ω)
[
(−ω)n−1

zRL (ω, 0) + (−ω)n−2
f (0)

+(−ω)n−3
f ′ (0) + · · ·+ f (n−2) (0)

]
dω

= sαF (s) +

∫ ∞

0

µn−α(ω)zRL (ω, 0)

[
sn

s+ ω
− sn−1 + ωsn−2

−ω2sn−3 + · · ·+ (−ω)n−2
s+ (−ω)n−1

]
dω

+

∫ ∞

0

µn−α(ω) {∆1} dω

= sαF (s) +

∫ ∞

0

µn−α(ω)zRL (ω, 0)
(−ω)n

s+ ω
dω

−
∫ ∞

0

µn−α(ω) {∆1} dω

(5.4)

where

∆1 =
[
sn−2 + (−ω) sn−3 + (−ω)2sn−4 + · · · (−ω)n−2

]
f (0)

+
[
sn−3 + (−ω) sn−4 + · · · (−ω)n−3

]
f ′ (0) + · · ·+ f (n−2) (0) .

(5.5)

Eq.(5.4) is the Laplace transform of the initialized Riemann-Liouville derivative
with order n− 1 < α < n.

5.2. The Laplace transform of initialized Caputo derivative
The initialized Caputo fractional derivative 0D

α
t f(t) with order n − 1 < α < n is

defined as
C
0 D

α
t f (t) = 0D

α−n
t f (n) (t) .

By virtue of Lemma 2.2, the diffusive representation of the initialized Caputo
fractional derivative is

C
0 D

α
t f (t) =

∫ ∞

0

µn−α(ω)zC (ω, t) dω (5.6)

where zC (ω, t) satisfies{
∂zC(ω,t)

∂t = −ωzC(ω, t) + f (n) (t)

zC(ω, 0) =
∫ 0

−a
eωτf

(n)
in (τ)dτ

(5.7)
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Taking the Laplace transform of Eq.(5.7), we have

ZC (ω, s) =
1

s+ ω

[
zC (ω, 0) + snF (s)− sn−1f (0)− sn−1f ′ (0)− · · ·

−sf (n−2) (0)− f (n−1) (0)
]
.

(5.8)

In terms of the formula of integration by parts, the initial condition in Eq.(5.7)
becomes

zC(ω, 0) = f (n−1) (0) + (−ω) f (n−2) (0) + (−ω)2f (n−3) (0) + (−ω)3f (n−4) (0)

+ · · ·+ (−ω)n−2
f ′ (0) + (−ω)n−1

f (0) + (−ω)nzRL(ω, 0).

(5.9)

Substituting Eq.(5.9) into Eq.(5.8), we have

ZC (ω, s) =
1

s+ ω

{
snF (s) +

[
(−ω)n−1 − sn−1

]
f (0)

+
[
(−ω)n−2 − sn−2

]
f ′ (0) + · · ·

+ [(−ω)− s] f (n−2) (0) + (−ω)nZRL (ω, 0)
}
.

(5.10)

Taking the Laplace transform of Eq.(5.6) and substituting Eq.(5.10) into it, we
obtain

L
{
C
0 D

α
t f (t)

}
= L

{∫ ∞

0

µn−α(ω)zC (ω, t) dω

}
=

∫ ∞

0

µn−α(ω)ZC (ω, t) dω

= sαF (s) +

∫ ∞

0

(−ω)n

s+ ω
µn−α(ω)zRL (ω, 0) dω

−
∫ ∞

0

µn−α(ω) {∆2} dω

(5.11)

where

∆2 =

[
sn−1 − (−ω)n−1

s+ ω

]
f (0)+

[
sn−2 − (−ω)n−2

s+ ω

]
f ′ (0)+· · ·+f (n−2) (0) . (5.12)

Eq.(5.11) is the Laplace transform of initialized Caputo derivative with order n−1 <
α < n.

By comparing Eq.(5.5) with Eq.(5.12), one easily shows that ∆1 = ∆2. There-
fore,

L
{
RL
0 Dα

t f (t)
}
= L

{
C
0 D

α
t f (t)

}
. (5.13)

Thus,
RL
0 Dα

t f (t) =
C
0 D

α
t f (t) . (5.14)

Eq.(5.14) shows the equivalence of the initialized Riemann-Liouville derivative and
Caputo derivative with arbitrary order α.



2020 J. Yuan, S. Gao, G. Z. Xiu & B. Shi

6. Examples
In this section, examples of two elementary functions are presented to illustrate the
equivalence of the two initialized fractional derivatives.

6.1. Fractional derivatives of the Heaviside function
Consider the Heaviside function:

f (t) = H (t) =

{
1, t ≥ 0

0, t < 0

Firstly, we calculate the initialized Riemann-Liouville derivative with order 0 < α <
1. In terms of Eq.(3.1), we have zRL(ω, 0) = 0 and

zRL(ω, t) =

∫ t

0

e−ω(t−τ)dτ =
1

ω

(
1− e−ωt

)
.

Therefore,
∂zRL(ω, t)

∂t
= e−ωt. (6.1)

Substituting Eq.(6.1) into Eq.(3.2), we get

RL
0 Dα

t f (t) =

∫ ∞

0

µ1-α(ω)
∂zRL(ω, t)

∂t
dω =

∫ ∞

0

µ1-α(ω)e
−ωtdω. (6.2)

In terms of Eq.(2.4), we have∫ ∞

0

µ1-α(ω)e
−ωtdω =

t−α

Γ (1− α)
, t ≥ 0. (6.3)

Thus, the initialized Riemann-Liouville derivative is

RL
0 Dα

t f (t) =
t−α

Γ (1− α)
, t ≥ 0. (6.4)

Next, we calculate the initialized Caputo derivative with order 0 < α < 1.
Note that

df (t)

dt
= δ (t) (6.5)

where δ (t) is the Dirac function.
In terms of Eq.(3.8), we have zC(ω, 0) = 0 and

zC(ω, t) =

∫ t

0

e−ω(t−τ)δ (τ) dτ = e−ωt. (6.6)

In terms of Eq.(3.7), we obtain

C
0 D

α
t f (t) =

∫ ∞

0

µ1-α(ω)e
−ωtdω =

t−α

Γ (1− α)
, t ≥ 0. (6.7)

By comparing Eq.(6.7) with Eq.(6.4), one can easily get
RL
0 Dα

t f (t) =
C
0 D

α
t f (t) .
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6.2. Fractional derivatives of the exponential function
Consider the exponential function:

f (t) = eλt, t ∈ (−∞,+∞) .

Firstly, we evaluate the initialized Riemann-Liouville derivative with order 0 < α <
1. In terms of Eq.(3.1),

zRL(ω, t) =

∫ t

−∞
e−ω(t−τ)eλτdτ =

eλt

λ+ ω
.

Therefore,
∂zRL(ω, t)

∂t
=

λeλt

λ+ ω
. (6.8)

Substituting Eq.(6.8) into Eq.(3.2), we get

RL
0 Dα

t f (t) =

∫ ∞

0

µ1−α(ω)
∂zRL(ω, t)

∂t
dω = λeλt

∫ ∞

0

µ1−α(ω)

λ+ ω
dω. (6.9)

Recall that
sα−1 =

∫ ∞

0

µ1-α(ω)

s+ ω
dω.

Thus, with s = λ, we have ∫ ∞

0

µ1-α(ω)

λ+ ω
dω = λα−1. (6.10)

Substituting Eq.(6.10) into Eq.(6.9), we obtain

RL
0 Dα

t f (t) = λαeλt, t ≥ 0. (6.11)

Next, we evaluate the initialized Caputo derivative with order 0 < α < 1. In terms
of Eq.(3.8), we have

zC(ω, t) = λ

∫ t

−∞
e−ω(t−τ)eλτdτ =

λeλt

λ+ ω
. (6.12)

Substituting Eq.(6.12) into Eq.(3.7), we obtain

C
0 D

α
t f (t) = λeλt

∫ ∞

0

µ1-α(ω)

λ+ ω
dω = λαeλt, t ≥ 0. (6.13)

From Eq.(6.13) and Eq.(6.11), one can easily get

RL
0 Dα

t f (t) =
C
0 D

α
t f (t) .

7. Conclusions
This paper has proved the equivalence of the initialized Riemann-Liouville deriva-
tive and the initialized Caputo derivative with arbitrary order. By synthesizing the
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initialization function theory and the infinite state theory, the diffusive representa-
tions of the two initialized derivatives have been obtained. Laplace transforms of
the two initialized derivatives with order 0 < α < 1, 1 < α < 2 and arbitrary order
have been progressively shown to be identical. As a result, the two most commonly
used derivatives have been shown to be equivalent as long as initial conditions are
properly imposed. Although definitions of the Riemann-Liouville derivative and
the Caputo derivative are different, this result eliminates the distinction of the two
derivatives in practical applications. In mathematical modeling and analysis, we
need not to dwell on which derivative to choose.
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