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TRANSVERSE HOMOCLINIC ORBIT
BIFURCATED FROM A HOMOCLINIC
MANIFOLD BY THE HIGHER ORDER

MELNIKOV INTEGRALS∗

Bin Long1,† and Changrong Zhu2

Abstract Consider an autonomous ordinary differential equation in Rn that
has a d dimensional homoclinic solution manifold WH . Suppose the homo-
clinic manifold can be locally parametrized by (α, θ) ∈ Rd−1 × R. We study
the bifurcation of the homoclinic solution manifold WH under periodic per-
turbations. Using exponential dichotomies and Lyapunov-Schmidt reduction,
we obtain the higher order Melnikov function. For a fixed (α0, θ0) on WH ,
if the Melnikov function have a simple zeros, then the perturbed system can
have transverse homoclinic solutions near WH .
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dichotomies, Melnikov integral, chaos.
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1. Introduction
The problem of the bifurcation of homoclinic orbit under small periodic perturba-
tion is very important in dynamic system because they are related to some complex
dynamic behaviors, such as chaotic motions. Homoclinic orbit is a special invari-
ant set of a differential equation. Suppose the equation ẋ = f(x) has a solution
γ(t), which asymptotic to the hyperbolic equilibrium x = 0 in both forward and
backward time direction. The orbit γ corresponding to the solution γ(t) in phase
space is called homoclinic orbit [11]. Suppose the variational equation of ẋ = f(x)
along γ has d linearly independent bounded solutions. Let W s(0), Wu(0) denote
the stable and unstable manifolds of the equilibrium 0, respectively. Clearly, the
homoclinic orbit γ lies on W s(0)

⋂
Wu(0). From the number of the linearly inde-

pendent bounded solutions of the variational equation, we know the dimension of
the intersection of the tangent space of W s(0) and Wu(0) is equal to d. Apparently
γ̇ ∈ Tγ(0)W

s(0)
⋂
Tγ(0)W

u(0), so d ⩾ 1. If d = 1, the homoclinic orbit γ is called
nondegenerate; otherwise it is called degenerate [15].
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From geometrical viewpoint, in 1963 Melnikov [17] used Poincare map to inves-
tigate the persistence of homoclinic orbit in R2. In 1980, Chow, Hale and Mallet-
Parret [3] used functional methods to study the persistence of homoclinic orbit of
Duffing’s equation under damping and periodic forcing. Later Palmer [18] extended
the work in [3] to N -dimensional system. He assumed the unperturbed system has a
nondegenerate homoclinic solution. By the Exponential dichotomies and the meth-
ods of the Lyapunove-Schmidt reduction, he obtained the bifurcation function which
are Melnikov types integrals. The zeros of the function correspond to the persis-
tence of the homolicnic orbit for the perturbed system. Also by the Shadowing
Lemma, Palmer proved that the persistent homoclinic orbit is transversal. Hence
the periodic map of the perturbed system exhibits chaotic motion.

In 1984, Hale [12] suggested a further extension of the functional method to
a more general case where the unperturbed equation has a degenerate homoclinic
orbit. In 1992, Gruendler [8] studied the persistence of the homoclinic orbit for
an autonomous ordinary differential equation with an autonomous perturbation
in RN . He assumed the autonomous system has a homoclinic solution and the
variational equation has d bounded solutions, d ⩾ 1. By using functional methods,
he obtained the bifurcation function which deponed on d dimension independent
parameters except for the perturbation parameters. The low order term of the
bifurcation function are also Melnikov types integrals. He expanded the bifurcation
function about those parameters to the second derivative by Taylor’s Theorem. And
by a final application of the Implicit Function Theorem, he proved the bifurcation
function has a zero. Therefore the perturbed system has a homoclinic orbit. In 1995,
Gruendler [9] generalized this result to the periodic perturbed ordinary differential
equation. In 1996, Gruendler [10] showed that the variational equation alone the
perturbed homoclinic orbit has no nozero bounded solution by the exponential
dichotomies and Lyapunov-Schmidt reduction. Hence the perturbed system exhibits
chaos.

In 1990, Palmer [19] considered the bifurcation of the degenerate homoclinic or-
bit under the periodic perturbation. He assumed unperturbed equation has a family
of homoclinic orbits which depend on two parameter family. In 1992, Battelli and
Palmer [2] given us one way of degenerate homoclinic orbit. That is the intersec-
tion of the stable and unstable manifold have branches which is a two dimensional
homoclinic solution manifold. And this can occur in the integrable Hamiltonian
system [16]. Moreover in [20], Zhu and Zhang investigated the bifurcations of a de-
generate homoclinic loop in RN . They obtained an invariant manifold of a definite
dimension bifurcated from the degenerate homoclinic orbit.

The definition of the degenerate homoclinic orbit is equivalent to require the
tangent space of W s(0) and Wu(0) at least have a two dimension intersection. In
certain integrable Hamiltonian system with more than two degrees of freedom, the
corresponding stable and unstable manifold can coincide or intersect in a more
than two dimension submanifold. In this paper we suppose W s(0)

⋂
Wu(0) have a

branch which is a d dimension homoclinic solution manifold denoted by WH . Let
(t, α) ∈ R×Rd−1, d > 1, be the local coordinates on WH . For each α ∈ Rd−1, d > 1,
let γ(t, α) are homoclinic orbits which asymptotic to the hyperbolic equilibrium 0.
We will using the higher order melnikov types integrals to study the bifurcation
of the homoclinic manifold WH under the periodic perturbation. Meantime many
authors studied the homoclinic orbit bifurcation and limit cycle bifurcations by high
order Melnikov method [1, 4–7,13,14].
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Consider the following system:

ẋ(t) = f(x(t)) + µg(x(t), µ, t), x ∈ Rn, µ ∈ R, (1.1)

we make the following assumptions:

(H1) f ∈ C3.
(H2) f(0) = 0 and the eigenvalues of Df(0) lie off the imaginary axis.
(H3) Unperturbed equation ẋ(t) = f(x(t)) has a homoclinic solution manifold

WH which can be parameterized by γ(t, α), where (t, α) ∈ R× Rd−1, d > 1 ,
γ ∈ C3.

γ̇(t, α) = f(γ(t, α)) and lim
t→±∞

γ(t, α) = 0,

which uniformly with respect to α ∈ Rd−1, d > 1.
(H4) g ∈ C3, g(0, µ, t) = 0 and g(x, µ, t+ 2) = g(x, µ, t).

Clearly by (H3), the homoclinic solution γ(t, α) lies on W s(0)
⋂
Wu(0). The vari-

ational equation of unperturbed equation of (1.1) along the homoclinic solution
γ(t, α) is

u̇(t) = Df(γ(t, α))u(t). (1.2)

From γ̇(t, α) = f(γ(t, α)), we can take derivative with respect to variables t and αi,
for i = 1, ...d − 1. Then we can get γ̇(t, α), ∂γ

∂αi
(t, α) are solutions of system (1.2),

i = 1, ..., d− 1. For simplicity, let

γ̇(t, α) = u1(t, α),
∂γ

∂αi
(t, α) = ui+1(t, α),

i = 1, ..., d− 1. We assume ui satisfies

(H5) u1(t, α), u2(t, α), ..., ud(t, α) are linearly independent and uniformly bounded
about (t, α) ∈ R× Rd−1, d > 1.

We will investigate the homoclinic bifurcations of (1.1) near the homoclinic
manifold γ(t, α) by the higher order melnikov integrals. This paper is organized
as following. In section 2, we list some properties of fundamental solutions of
the variational equation along the homoclinic manifold γ(t, α). The main result
is presented. In section 3, we prove the main result. By using the functional
analytic method, we obtained the bifurcation function. And expanded it about d
dimensional parameters to the third order derivatives by Taylor’s Theorem. We
obtained the lower order term of the bifurcation function which denote by M . Take
a fixed point (α0, θ0) on the homoclinic manifold WH , if M has a simple zero, then
the system (1.1) has a homoclinic solutions near γ(t, α0). In section 4, we prove
the homoclinic orbit bifurcated from the homoclinic manifold WH is transversal.
Hence the periodic map of the system (1.1) can have chaotic motion.

2. Preliminaries and Main result
For each α ∈ Rd−1, d > 1, since γ(t, α) is a homoclinic orbit which asymptotic
to the hyperbolic equilibrium 0. Hence, from [9, 18], variational equation (1.2) has
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exponential dichotomies on J = R± respectively. Let U(t, α) be the fundamental
solution matrix of the system (1.2). In particular, there exist projections to the
stable and unstable subspaces, Ps + Pu = I, and constants m > 0, K0 ≥ 1 which
are uniformly with respect to α ∈ Rd−1, such that

(i) |U(t, α)PsU
−1(s, α)| ≤ K0e

2m(s−t), for s ⩽ t on J,

(ii) |U(t, α)PuU
−1(s, α)| ≤ K0e

2m(t−s), for t ⩽ s on J.
(2.1)

By H(3), we know u1, u2, ..., ud are linearly independent bounded solutions of
system (1.2). Hence d = dim(Tγ(0,α)W

s(0)
⋂
Tγ(0,α)W

u(0)).
Take the same m in (2.1), define the Banach space

Z = {z ∈ C1(R,Rn) : sup
t∈R

|z(t)|em|t| <∞},

with the norm ‖z‖ = supt∈R |z(t)|em|t|. The linear variational system

Lα(u) := u̇−Df(γ(t, α))u = h (2.2)

will be considered in Z. The adjoint operator for Lα is

L∗
α(ψ) := ψ̇ + (Df(γ(t, α)))∗ψ. (2.3)

The domains of (2.2) and (2.3) are the dense subset of Z, defined as

D(Lα) := {u(t, α) : u, ut, uα ∈ Z}, D(L∗
α) := {ψ(t, α) : ψ,ψt, ψα ∈ Z}.

From the theory of homoclinic bifurcation [18], γ(t, α) asymptotic to the hyper-
bolic equilibrium x = 0, so Lα : Z → Z be Fredholm operators with index 0, for
α ∈ Rd−1. And we have

h ∈ R(Lα) iff
∫ ∞

−∞
〈ψ, h〉dt = 0, for all ψ ∈ N(L∗

α). (2.4)

From H(3), we know N(Lα) is d dimensional. Let (u1(t, α), ..., ud(t, α)) be an
orthonormal unit basis of N(Lα) and (φ1(t, α), ..., φd(t, α)) be an orthonormal unit
basis of N(L∗

α).
By the defination of uj(t, α), we take derivatives about t and α on both side of

(1.2). So we have

üj(t, α) = Df(γ(t, α))u̇j(t, α) +D11f(γ(t, α))uj(t, α)u1(t, α),

d

dt
(
∂uj
∂αk−1

(t, α)) = Df(γ(t, α))
∂uj
∂αk−1

(t, α) +D11f(γ(t, α))uj(t, α)uk(t, α),
(2.5)

where j = 1, ..., d, k = 2, ..., d. Let

vj(t, α) = u̇j(t, α) or ∂uj
∂αk−1

(t, α) (2.6)

So from (2.5) , we have

Lα(vj(t, α)) = D11f(γ(t, α))uj(t, α)uk(t, α), (2.7)
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j, k = 1, ..., d.
We define some Melnikov types of integrals that will be used in the future. For

integers i, j, k, l from the set {1, ..., d}, let

a(i)(α, θ) =

∫ +∞

−∞
〈ψi(t, α), g(γ(t, α), 0, t+ θ)〉dt; (2.8)

c
(i)
jkl(α) =

∫ +∞

−∞
〈ψi(t, α), D11f(γ(t, α))uj(t, α)vk(t, α))〉dt

+

∫ +∞

−∞
〈ψi(t, α), D11f(γ(t, α))uk(t, α)vl(t, α))〉dt

+

∫ +∞

−∞
〈ψi(t, α), D11f(γ(t, α))ul(t, α)vj(t, α))〉dt

+

∫ +∞

−∞
〈ψi(t, α), D111f(γ(t, α))uj(t, α)uk(t, α)ul(t, α)〉dt,

(2.9)

where vj(t, α) be as in (2.6).
Define M : Rd × R× Rd−1 × R → Rd be given by

M(β, µ, α, θ) = (M1(β, µ, α, θ), ...,Md(β, µ, α, θ)),

where

Mi(β, µ, α, θ) = a(i)(α, θ)µ+
1

6

d∑
j=1

d∑
k=1

d∑
l=1

c
(i)
jkl(α)βjβkβl.

Theorem 2.1. Assume that (H1)−(H5) hold. If there are some fixed (β0, µ0, α0, θ0)
such that M(β0, µ0, α0, θ0) = 0 and D1M(β0, µ0, α0, θ0) is a nonsingular d × d
matrix. Then there exits an open interval I ∈ R which contain zeros, such that
(1.1) with µ = s3u0 has a homoclinic solutions γs near γ(t, α0) for s ∈ I.

Moreover γs is transverse for s ∈ I \ {0}.

3. The proof of the main result
By (H3), system (1.1) with µ = 0 has a homoclinic solution manifold WH which
can be parameterized by γ(t, α). In this section, we will find conditions such that
(1.1), with small µ 6= 0, has homoclinic solution γµ near WH for some α0.

Let Dih, Dijh or Dijkh denote the derivatives of a multivariate function h with
respect to its i-th , i, j-th or the i, j, k-th variables. And suppose d > 1 in the rest
of the paper. With the change of variable

x(t+ θ) = γ(t, α) + z(t),

then (1.1) is transformed to

ż = Df(γ(t, α))z + g̃(z, µ, α, θ), (3.1)

where
g̃(z, µ, α, θ)(t) =f(γ(t, α) + z(t))− f(γ(t, α))−Df(γ(t, α))z

+ µg(γ(t, α) + z(t), µ, t+ θ).
(3.2)

As in [9], one can prove that g̃ satisfies the following properties:
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Lemma 3.1. The function g̃(·, µ, α, θ) : Z 7→ Z satisfies the following properties:

(1) g̃(0, 0, α, θ) = 0,

(2) D1g̃(0, 0, α, θ) = 0, D2g̃(0, 0, α, θ) = g(γ(t, α), 0, t+ θ),

(3) D11g̃(0, 0, α, θ) = D11f(γ(t, α)),

(4) D111g̃(0, 0, α, θ) = D111f(γ(t, α)).

For any α ∈ Rd−1, i = 1, ..., d, we define the subspace of Z which consists the
range of Lα by the method in [9, 18]. Let

Z̃ = {h ∈ Z :

∫ ∞

−∞
〈ψi(s, α), h(s)〉ds = 0, i = 1, ..., d}.

Consider a nonhomogeneous equation

ż −Df(γ(t, α))z = h. (3.3)

If h ∈ Z̃, using the variation of constants, with some phase condition, there exists
an operator K : Z̃ → Z such that Kh is a solution of (3.3). Clearly, the general
bounded solution of (3.3) is

z(t) =

d∑
i=1

βiui(t, α) + (Kh)(t),

where βi ∈ R.
Recall that Lα be a family Fredholm operators with index 0 which indepen-

dent of α. And we know dimN(Lα) = dim(Z⧸R(Lα)) = d. So we suppose
φ1(t, α), ..., φd(t, α) be an orthonormal unit basis of Z/R(Lα). Define a map P :
Z → Z by

(Pz)(t) =

d∑
i=1

φi(t, α)

∫ ∞

−∞
〈ψi(s, α), z(s)〉ds,

which φi(s, α) satisfying 〈ψi(s, α), φj(s, α)〉 = δij , for α ∈ Rd−1, δij be the Kro-
necker delta.

As in [18], one can prove that

Lemma 3.2. The map P satisfies the following properties:
(1) P and I − P are projections;
(2) R(P )⊕ R(Lα) = Z;
(3) R(I − P ) = N(P ) = R(Lα) = Z̃.

We now use the Lyapunov-Schmidt reduction to solve (3.1). Applying P and
(I − P ) on (3.1), we find that (3.1) is equivalent to the following system

ż = Df(γ(t, α))z − (I − P )g̃(z, µ, α, θ), (3.4)
P g̃(z, µ, α, θ) = 0. (3.5)

First, we solve (3.4) for z ∈ Z. Then the bifurcation equations are obtained by
substituting the solution z into (3.5).
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Lemma 3.3. There exist open balls B1(δ0) ⊂ Rd, B2(δ0) ⊂ R with radius δ0 > 0
centered at the origins and a C2 map ϕ : B1(δ0)×B2(δ0)×Rd−1×R → Z, denoted
by ϕ(β, µ, α, θ), such that z = ϕ(β, µ, α, θ) is a solution of equation (3.4). Moreover
for any (α, θ) ∈ Rd−1 × R, ϕ(β, µ, α, θ) satisfies:

(1) ϕ(0, 0, α, θ) = 0;

(2)
∂ϕ

∂βi
|(0,0,α,θ) = ui(t, α), i = 1, ..., d;

(3)
∂2ϕ

∂βi∂βj
|(0,0,α,θ) = K(I − P )D11f(γ(t, α))ui(t, α)uj(t, α), i, j = 1, ..., d.

Proof. Since R(I − P ) = Z̃ and K : Z̃ → Z, we define a C2 map: F : Z × Rd ×
R× Rd−1 × R → Z by

F (z,β, µ, α, θ)(t) =

d∑
i=1

βiui(t, α) +K(I − P )g̃(z, µ, α, θ)(t), (3.6)

where β = (β1, ..., βd) ∈ Rd. Clearly, the fixed point z of (3.6) is a solution of (3.4)
in Z.

For any (α, θ) ∈ Rd−1 × R, from (1) of Lemma 3.1 and the definition of g̃ in
(3.2) , we have

F (0, 0, 0, α, θ) = 0, D1F (0, 0, 0, α, θ) = 0. (3.7)

By the smoothness of F , given any δ > 0, there exists c > 0 such that

‖D2F‖ < c, ‖D3F‖ < c, ‖D11F‖ < c, ‖D12F‖ < c, ‖D13F‖ < c,

for (z,β, µ, α, θ) ∈ B̄(δ)× B̄1(δ)× B̄2(δ)×Rd−1 ×R, where B̄(δ) ⊂ Z, B̄1(δ) ⊂ Rd,
B̄2(δ) ⊂ R are closed balls of radius δ. Let

δ1 = min{δ, 1
4c

}, δ2 = min{δ, δ1,
δ1
8c

}.

For any (z,β, µ, α, θ) ∈ B̄(δ1) × B̄1(δ2) × B̄2(δ2) × Rd−1 × R, define a map
φ1 : [0, 1] → L(Z,Z) by φ1(s) = D1F (sz, sβ, sµ, α, θ). By the smoothness of F , we
see φ1 ∈ C1. By (3.7) we know φ1(0) = 0. Then there exists s1 ∈ (0, 1), such that

‖D1F (z,β, µ, α, θ)‖ = ‖φ1(1)− φ1(0)‖ = ‖φ′
1(s1)‖

⩽ ‖D11F (s1z, s1β, s1µ, α, θ)‖ · ‖z‖
+ ‖D12F (s1z, s1β, s1µ, α, θ)‖ · ‖β‖
+ ‖D13F (s1z, s1β, s1µ, α, θ)‖ · ‖µ‖

⩽ c · 1

4c
+ c · 1

4c
+ c · 1

4c
=

3

4
. (3.8)

For (z,β, µ, α, θ) ∈ B̄(δ1) × B̄1(δ2) × B̄2(δ2) × Rd−1 × R, define a map φ2 :
[0, 1] → Z by φ2(s) = F (sz, sβ, sµ, α, θ). Clearly φ2 ∈ C1 and φ2(0) = 0. Then
there exists s2 ∈ (0, 1) such that

‖F (z,β, µ, α, θ)‖ = ‖φ2(1)− φ2(0)‖ = ‖φ′
2(s2)‖
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⩽ ‖D1F (s2z, s2β, s2µ, α, θ)‖ · ‖z‖
+ ‖D2F (s2z, s2β, s2µ, α, θ)‖ · ‖β‖
+ ‖D3F (s2z, s2β, s2µ, α, θ)‖ · ‖µ‖

⩽ 3

4
δ1 + c · δ1

8c
+ c · δ1

8c
= δ1,

which implies that F (·,β, µ, α, θ) maps B̄(δ1) into itself.
For z1, z2 ∈ B̄(δ1), (β, µ, α, θ) ∈ B̄1(δ2) × B̄2(δ2) × Rd−1 × R, define a map

φ3 : [0, 1] → Z by φ3(s) = F (sz1 +(1− s)z2,β, µ, α, θ). Then φ3 ∈ C2, there exists
s3 ∈ (0, 1), such that

‖F (z1,β, µ, α, θ)− F (z2,β, µ, α, θ)‖
=‖φ3(1)− φ3(0)‖ = ‖φ′

3(s3)‖

⩽‖D1F (s3z1 + (1− s3)z
(k)
2 ,β, µ, α, θ)‖ · ‖z1 − z2‖

⩽3

4
‖z1 − z2‖.

Therefore F is a uniform contraction in B̄(δ1). By the contraction mapping princi-
ple, there are δ21, δ22 > 0 and a C2 map ϕ : B1(δ21)×B2(δ22)×Rd−1 ×R → B(δ1)
such that ϕ(0, 0, α, θ) = 0, (α, θ) ∈ Rd−1 × R, d > 1 and

ϕ(β, µ, α, θ) = F (ϕ(β, µ, α, θ),β, µ, α, θ).

Let δ0 = min{δ2, δ21, δ22}. From (3.6), we have

ϕ(β, µ, α, θ)(t) =

d∑
i=1

βiui(t, α) +K(I − P )g̃(ϕ(β, µ, α, θ), µ, α, θ). (3.9)

Differentiating (3.9) with respect to βi and the second derivative about βi, βj ,
we can get

∂ϕ

∂βi
=ui(t, α) +K(I − p)D1g̃(ϕ, µ, α, θ)

∂ϕ

∂βi
,

∂2ϕ

∂βiβj
=K(I − p)D11g̃(ϕ, µ, α, θ)

∂ϕ

∂βi

∂ϕ

∂βj

+K(I − p)D1g̃(ϕ, µ, α, θ)
∂2ϕ

∂βi∂βj
,

where i, j = 1, ..., d. By Lemma 3, evaluating above formulas at (0, 0, α, θ), we get

∂ϕ

∂βi

∣∣∣∣
(0,0,α,θ)

(t) = ui(t, α),

∂2ϕ

∂βiβj

∣∣∣∣
(0,0,α,θ)

(t) = K(I − p)D11f(γ(t, α)ui(t, α)uj(t, α),

where i, j = 1, ..., d. The proof has been completed.
By Lemma 3.3, (3.4) has a solution ϕ(β, µ, α, θ). Substituting ϕ(β, µ, α, θ) into

(3.5), we have the bifurcation equation

0 = P g̃(ϕ(β, µ, α, θ), µ, α, θ)
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=

d∑
i=1

φi(t, α)

∫ +∞

−∞
〈ψi(s, α), g̃(ϕ(β, µ, α, θ), µ, α, θ)(s)〉ds, (3.10)

where the definition of projection P is used. By the linear independence of ψ1, ..., ψd,
(3.10) is equivalent to

Hi(β, µ, α, θ) :=

∫ +∞

−∞
〈ψi(s, θ), g̃(ϕ(β, µ, α, θ), µ, α, θ)(s)〉ds = 0, i = 1, ..., d.

If there are some parameter values (β, µ, α, θ) ∈ Rd × R× Rd−1 × R such that

Hi(β, µ, α, θ) = 0, i = 1, ..., d,

then z = ϕ is a solution of (3.1) and hence the perturbed system (1.1) has a
homoclinic orbit x = γ + ϕ, where ϕ is given in (3.9). Let

H(β, µ, α, θ) = (H1(β, µ, α, θ), ..., Hd(β, µ, α, θ)).

We have the following Lemma.

Lemma 3.4. For i, j, k, l ∈ {1, ..., d}, the function Hi(β, µ, α, θ) has the following
properties:

(i) Hi(0, 0, α, θ) = 0;

(ii)
∂Hi

∂βj
(0, 0, α, θ) = 0,

∂Hi

∂µ
(0, 0, α, θ) = a(i)(α, θ);

(iii)
∂2Hi

∂βj∂βk
(0, 0, α, θ) = 0;

(iv)
∂3Hi

∂βj∂βk∂βl
(0, 0, α, θ) = c

(i)
jkl(α),

where a(i)(α, θ) and c(i)jkl(α) be as in (2.8) and (2.9).

Proof. To prove those properties of Hi ,we should take derivatives with respect to
µ and β in (3.2) by the formula of Hi, where z is equal to ϕ which is in (3.9). From
Lemma 3.1,Lemma 3.2, so it is easy to check (i), (ii) through direct calculations.
Next we prove (iii) and (iv).

By the definition of u1, ..., ud, we have

u̇j(t, α) = Df(γ(t, α))uj(t, α), (3.11)

where j = 1, ..., d. From Eq.(2.5), we have

üj(t, α) = D11f(γ(t, α))uj(t, α)u1(t, α) +Df(γ(t, α))u̇j(t, α),

d

dt
(
∂uj
∂αk−1

(t, α)) = D11f(γ(t, α))uj(t, α)uk(t, α) +Df(γ(t, α))
∂uj
∂αk−1

(t, α),

where k = 2, ..., d. So from the above formula, D11f(γ(t, α))uj(t, α)uk(t, α) is equal
to

üj(t, α)−Df(γ(t, α))u̇j(t, α)
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or
d

dt
(
∂uj
∂αk−1

(t, α))−Df(γ(t, α))
∂uj
∂αk−1

(t, α),

where j, k = 2, ..., d. Hence

D11f(γ(t, α))uj(t, α)uk(t, α) ∈ R(Lα) = R(I − P ). (3.12)

When k = 1, we have

∂2Hi

∂βj∂βk
(0, 0, α, θ) =

∫ +∞

−∞
〈ψi, D11f(γ)ujuk〉dt

=

∫ +∞

−∞
〈ψi, üj −Df(γ)u̇j〉dt

=

∫ +∞

−∞
〈ψi, üj〉dt−

∫ +∞

−∞
〈ψi, Df(γ)u̇j〉dt

=

∫ +∞

−∞
〈ψi, üj〉dt−

∫ +∞

−∞
〈(Df(γ))∗ψi, u̇j〉dt

=

∫ +∞

−∞
〈ψi, üj〉dt+

∫ +∞

−∞
〈ψ̇i, u̇j〉dt

=

∫ +∞

−∞
d〈ψi, üj〉

= 〈ψi, u̇j〉|+∞
−∞

= 0.

When k = 2, ..., d, we can prove it by the similar process. Hence (iii) is proved.
By the definition of K, K(h) can be regard as a particular solution of (3.3) in

the formula of the variation of constants. So from (2.5), without loss of generality
we can take

K(I − P )D11f(γ(t, α))uj(t, α)uk(t, α) = vj(t, α),

where
vj(t, α) = u̇j(t, α) or

∂uj
∂αk−1

,

j = 1, ..., d, k = 2, ..., d. Through direct calculations, we have

∂3Hi

∂βj∂βk∂βl
(0, 0, α, θ) =

∫ +∞

−∞
〈ψi, D111f(γ)ujukul〉dt

+

∫ +∞

−∞
〈ψi, D11f(γ)uj(K(I − P )D11f(γ)ukul)〉dt

+

∫ +∞

−∞
〈ψi, D11f(γ(t, α))uk(K(I − P )D11f(γ)ujul)〉dt

+

∫ +∞

−∞
〈ψi, D11f(γ)ul(K(I − P )D11f(γ)ujuk)〉dt

=

∫ +∞

−∞
〈ψi, D11f(γ)ujvk)〉dt+

∫ +∞

−∞
〈ψi, D11f(γ)ukvj)〉dt
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+

∫ +∞

−∞
〈ψi, D11f(γ)ulvj)〉dt+

∫ +∞

−∞
〈ψi, D111f(γ)ujukul〉dt

=c
(i)
jkl(α).

The proof is completed.
Let M : Rd × R× Rd−1 × R → Rd be given by

M(β, µ, α, θ) = (M1(β, µ, α, θ), ...,Md(β, µ, α, θ)),

where

Mi(β, µ, α, θ) = a(i)(α, θ)µ+
1

6

d∑
j=1

d∑
k=1

d∑
l=1

c
(i)
jkl(α)βjβkβl.

So
H(β, µ, α, θ) =M(β, µ, α, θ) +H.O.T.

Lemma 3.5. If there are some fixed (β0, µ0, α0, θ0) such that M(β0, µ0, α0, θ0) = 0
and D1M(β0, µ0, α0, θ0) is a nonsingular d × d matrix. Then there exits an open
interval I ∈ R which contain zeros and a differentiable functions δ : I → Rd with
δ(0) = 0, such that

H(s(β0 + δ(s)), s3µ0, α0, θ0) = 0,

for s ∈ I.

Proof. Define a C2 function W : Rd × R 7→ R2 by

W (x, s) =


1

s3
H(s(β0 + x), s3µ0, α0, θ0), for s 6= 0,

M(β0 + x, µ0, α0, θ0), for s = 0.

Clearly, H = 0 if and only if W = 0 for s 6= 0. Through direct calculations, we
have W (0, 0) = 0 and DxW (0, 0) = DβM(β0, µ0, α0, θ0) is a nonsingular matrix.
By the implicit function theorem there exist an open region I ⊂ R containing zero
and a differentiable functions, δ : I → Rd with δ(0) = 0 such that W (δ(s), s) = 0
for s ∈ I. Hence we have

H(s(β0 + δ(s)), s3µ0, α0, θ0) = 0 for s 6= 0.

The proof has been completed.
By Lemma 3.5, the bifurcation function H vanishes at β = s(β0 + δ(s)) and

µ = s3µ0. Then system (3.1) has the solution ϕ(s(β0 + δ(s)), s3µ0, α0, θ0). Hence
system (1.1) have homoclinic solutions given by

γs(t) =γ(t, α0) +

d∑
i=1

s(β0i + δi(s))ui(t, α0)

+K(I − P )g̃(ϕ, s3µ0, α0, θ0)(t), (3.13)

for s ∈ I. Clearly, lims→0 γs(t, α0) = γ(t, α0).
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4. The Transversality
In this section we will prove that the homoclinic solutions γs(t) are transverse for
0 6= s ∈ I. From Section three, the solution γs(t) satisfying

γ̇s(t) = f(γs(t, α0)) + s3µ0g(γs(t), s
3µ0, t+ θ0). (4.1)

From (3.13), through calculations, we have

∂γs
∂s

|s=0 =

d∑
j=1

β0juj(t, α0)

and

∂2γs
∂s2

|s=0 = K(I − P )D11f(γ(t, α0)

d∑
j=1

d∑
k=1

β0jβ0kuj(t, α0)uk(t, α0)

+ 2

d∑
j=1

Dδj(0)uj(t, α0).

(4.2)

Differentiating with respect to t in (4.1), we have

γ̈s(t) =(Df(γs(t)) + s3µ0D1g(γs(t), s
3µ0, t+ θ0))γ̇s(t)

+ s3µ0D3g(γs(t), s
3µ0, t+ θ0).

Due to the extra term s3µ0D3g(γs(t), s
3µ0, t + θ0), γ̇s(t) is not a solution of the

variational equation along γs(t):

u̇(t) = (Df(γ(t, α0) + S(s)(t))u(t), (4.3)

where

S(s)(t) = Df(γs(t)) + s3µ0D1g(γs(t), s
3µ0, t+ θ0)−Df(γ(t, α0).

Note that S(0) = 0, DS(0) = D11f(γ(t, α0))
∑d

j=1 β0juj(t, α0) and

D11S(0) =D11f(γ(t, α0))(2

d∑
j=1

Dδj(0)uj(t, α0)

+K(I − p)D11f(γ(t, α0))

d∑
j=1

β0juj(t, α0)

d∑
k=1

β0kuk(t, α0))

+D111f(γ(t, α0))

d∑
j=1

β0juj(t, α0)

d∑
k=1

β0kuk(t, α0),

(4.4)

where (4.2) be used.
From the exponential dichotomy theory in [18], if we proved that the variational

equation of (4.3) has no nonzero bounded solution, then the equation of (4.3) has
an exponential dichotomy on R. Hence the perturbed stable and unstable manifolds
intersect transversely. So next we will prove the variational equation of (4.3) has no
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nonzero bounded solution as the similar methods in [10]. Applying the projections
P and (I − P ) on equation (4.3), we have

u̇(t) = Df(γ(t, α0))u+ (I − P )S(s)(t)u(t), (4.5)
0 = PS(s)(t)u(t). (4.6)

The general bounded solution û of (4.5) has the following form

û(t) =

d∑
l=1

alul(t, α0) +K(I − P )S(s)(t)û(t),

where al ∈ R, l = 1, ..., d. By the formula of S(s), we have S(0) = 0, there exist a
small region Ĩ contained zero such that (I −K(I − P )S(s)) is invertible for s ∈ Ĩ.
We get

û = [I −K(I − P )G(s)]−1
l∑

l=1

alul for s ∈ Ĩ .

Substituting u = û into equation (4.6), we have

0 = PS(s)[I −K(I − P )S(s)]−1
d∑

l=1

alul

=

d∑
l=1

φi

∫ +∞

−∞
〈ψi, S(s)[I −K(I − P )S(s)]−1

d∑
l=1

alul〉ds

=

d∑
i,l=1

φial

∫ +∞

−∞
〈ψi, S(s)[I −K(I − P )S(s)]−1ul〉ds

= (φ1, ..., φd)V (S(s))(a1, ..., ad),

where matrix V (S(s)) is given by V (S(s)) = [vil(s)]d×d and

vil(s) =

∫ +∞

−∞
〈ψi, S(s)[I −K(I − P )S(s)]−1ul〉dt. (4.7)

Note that φ1, ..., φd are linearly independent. If we can prove that V (G(s)) is a
nonsingular matrix, then al = 0, l = 1, ..., d. Thus the only bounded solution for
the linear variational equation along γs is û = 0. The Shadowing Lemma implies
that γs is a transverse homoclinic solution of (1.1) and its periodic map exhibits
chaotic motion.

Since S(0) = 0, we have

S(s)[I −K(I − P )S(s)]−1

=DS(0)s+
1

2
D11S(0)s

2 +DS(0)K(I − P )DS(0)s2 +O(s3).
(4.8)
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By the formulas of DS(0) and D11S(0) in (4.4), we have

vil(s) =

∫ +∞

−∞
〈ψi, S(s)[I −K(I − P )S(s)]−1ul〉dt

=s2(
1

2

d∑
j=1

d∑
k=1

β0jβ0k

∫ +∞

−∞
〈ψi, D111f(γ)ujukul〉dt

+
1

2

d∑
j=1

d∑
k=1

β0jβ0k

∫ +∞

−∞
〈ψi, D11f(γ)ujvk〉dt

+
1

2

d∑
j=1

d∑
k=1

β0jβ0k

∫ +∞

−∞
〈ψi, D11f(γ)ukvl〉dt

+
1

2

d∑
j=1

d∑
k=1

β0jβ0k

∫ +∞

−∞
〈ψi, D11f(γ)ulvj〉dt) +O(s3),

where
∫ +∞
−∞ 〈ψi, D11f(γ)ujuk〉dt = 0 be used. We have the following approximation

of vil(s):

vil(s) =
1

2
s2

d∑
j=1

d∑
k=1

β0jβ0kc
(i)
jkl(α0) +O(s3), (4.9)

where i, l = 1, ..., d. Therefore

det(V (S(s))) = s2ddet (D1M(β0, µ0, α0, θ0)) +O(s2d+1).

Note that D1M(β0, µ0, α0, θ0) is nonsingular. Then there exists a region Î, Î ⊂ Ĩ
such that V (S(s)) is nonsingular when 0 6= s ∈ Î. And we again take I = Î
Then the variational equation along γs has no nonzero bounded solutions. So γs
is a transverse homoclinic solution of (1.1) and its periodic map exhibits chaotic
motion.
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